Lecture 20X-Ultraproducts

March 31, 2018

In this lecture, we review the theory of ultrafilters and ultraproducts.

Definition 1. Let I be a set. An *ultrafilter on* I is a collection \mathcal{U} of subsets of I satisfying the following conditions:

- (a) The set \mathcal{U} is closed under finite intersections. That is, the set I belongs to \mathcal{U} , and for every $J, J' \in \mathcal{U}$, the intersection $J \cap J'$ also belongs to \mathcal{U} .
- (b) The set \mathcal{U} is closed upwards: that is, if $J \subseteq J'$ and J is contained in \mathcal{U} , then J' is also contained in \mathcal{U} .
- (c) For every subset $J \subseteq I$, exactly one of the sets J and I J belongs to \mathcal{U} .

Exercise 2. In Definition 1, show that (b) can be deduced from (a) and (c).

Remark 3. Let I be a set. Then the datum of an ultrafilter \mathcal{U} on I is equivalent to the datum of a finitely additive measure

$$\mu: \{\text{Subsets of } I\} \rightarrow \{0,1\};$$

the equivalence is implemented by taking $\mathcal{U} = \{J \subseteq I : \mu(J) = 1\}.$

Example 4 (Principal Ultrafilters). Let I be a set containing an element i, and let \mathcal{U}_i be the collection of all subsets of I which contain i. Then \mathcal{U}_i is an ultrafilter on I. We refer to \mathcal{U}_i as the *principal ultrafilter* associated to i.

Exercise 5. Let \mathcal{U} be a collection of subsets of a set I. We say that \mathcal{U} is a filter on I if it satisfies conditions (a) and (b) of Definition 1. Show that if \mathcal{U} is a filter on I such that $\emptyset \notin \mathcal{U}$, then \mathcal{U} can be enlarged to an ultrafilter on I.

Construction 6 (Ultraproducts). Let $\{M_i\}_{i\in I}$ be a collection of sets indexed by a set I, and let \mathcal{U} be an ultrafilter on I. We let $(\prod_{i\in I}\mathcal{M}_i)/\mathcal{U}$ denote the direct limit

$$\varinjlim_{J\in\mathcal{U}}\prod_{i\in J}M_i.$$

We will refer to $(\prod_{i\in I} \mathcal{M}_i)/\mathcal{U}$ as the ultraproduct of the sets M_i with respect to the ultrafilter \mathcal{U} .

Exercise 7. In the situation of Construction 6, suppose that each of the sets M_i is nonempty. Show that the ultraproduct $(\prod_{i\in I} M_i)/\mathcal{U}$ can be identified with the quotient of $\prod_{i\in I} M_i$ by an equivalence relation \sim , where $\{x_i\}_{i\in I} \simeq \{y_i\}_{i\in I}$ if $\{i\in I: x_i=y_i\}$ belongs to the ultrafilter \mathcal{U} (in this case, we say that the sequences $\{x_i\}_{i\in I}$ and $\{y_i\}_{i\in I}$ agree almost everywhere with respect to \mathcal{U}).

Beware that this is not necessarily true if some M_j is empty. In this case, the product $\prod_{i \in I} M_i$ is also empty. However, the ultraproduct $(\prod_{i \in I} M_i)/\mathcal{U}$ will be nonempty if the set $\{i \in I : M_i \neq \emptyset\}$ belongs to the ultrafilter \mathcal{U} .

Example 8. In the situation of Construction 6, suppose that $\mathcal{U} = \mathcal{U}_j$ is the principal ultrafilter associated to an element $j \in I$. Then the ultraproduct $(\prod_{i \in I} M_i) / \mathcal{U}$ can be identified with M_j .

Ultraproducts appear in mathematical logic because they behave well with respect to the truth of first-order formulas.

Theorem 9 (Łos's Ultraproduct Theorem, Pretopos Version). Let \mathcal{C} be a pretopos, let $\{M_i\}_{i\in I}$ be a collection of models of \mathcal{C} indexed by a set I, and let \mathcal{U} be an ultrafilter on I. Then the construction

$$(C\in\mathfrak{C})\mapsto (\prod_{i\in I}M_i(C))/\operatorname{\mathcal{U}}$$

is also a model of C

Corollary 10 (Los's Ultraproduct Theorem, Classical Version). Let T be a first-order theory in a language $\{P_j\}_{j\in J}$. Let $\{M_i\}_{i\in I}$ be a collection of models of T, and assume for simplicity that each M_i is nonempty. Suppose we are given an ultrafilter $\mathfrak U$ on the set I, and set $M = (\prod_{i\in I} M_i)/\mathfrak U$. Regard M as a structure for the language L by declaring

$$(M \vDash P_j(\{\vec{c}_i\}_{i \in I})) \Leftrightarrow \{i \in I : M_i \vDash P_j(\vec{c}_i)\} \in \mathcal{U}.$$

Then M is also a model of T. Moreover, for any formula $\varphi(\vec{x})$ in the language L, we have

$$(M \vDash \varphi(\{\vec{c}_i\}_{i \in I})) \Leftrightarrow \{i \in I : M_i \vDash \varphi(\vec{c}_i)\} \in \mathcal{U}.$$

Proof. Apply Theorem 9 to the syntactic category $\operatorname{Syn}(T)$. (Note that the desired conclusion can be restated as $M[\varphi] \simeq (\prod_{i \in I} M_i[\varphi]) / \mathfrak{U}$.)

It is not difficult to give a direct proof of Theorem 9 (or Corollary 10): the essential point is that the formation of ultraproducts commutes with the formation of finite limits, finite coproducts, and images. However, we will give a different explanation of Theorem 9, which connects up with the material of the last few lectures.

For the remainder of this lecture, let \mathcal{C} be a small pretopos. Recall that the category $Pro(\mathcal{C})$ has small limits and colimits.

Proposition 11. (1) The subcategory $\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}) \subseteq \operatorname{Pro}(\mathfrak{C})$ of weakly projective pro-objects of \mathfrak{C} has (possibly infinite) coproducts, which are preserved by the inclusion $\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}) \hookrightarrow \operatorname{Pro}(\mathfrak{C})$.

- (2) For every object $C \in \mathcal{C}$, the construction $M \mapsto M(C)$ determines a functor $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})^{\operatorname{op}} \to \operatorname{Set}$ which preserves (possibly infinite) products: that is, it carries coproducts in $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})$ to products of sets.
- (3) The category Stone_C has (possibly infinite) coproducts. Moreover, for each object $C \in \mathcal{C}$, the functor $(X, \mathcal{O}_X) \mapsto \mathcal{O}_X^C(X)$ carries coproducts in Stone_C to products of sets.

Proof. Recall that $\operatorname{Pro}(\mathfrak{C})$ can be defined as the opposite of the category $\operatorname{Fun}^{\operatorname{lex}}(\mathfrak{C},\operatorname{Set})$ of left exact functors from \mathfrak{C} to Set . Since the class of left exact functors is closed under inverse limits, it follows that colimits in $\operatorname{Pro}(\mathfrak{C})$ are computed pointwise. In particular, given a collection of pro-objects $\{M_i\}_{i\in I}$, the coproduct $M=\coprod_{i\in I}M_i$ in the category $\operatorname{Pro}(\mathfrak{C})$ is given by the formula $M(C)=\prod_{i\in I}M_i(C)$. From this description, it is clear that that if each M_i is weakly projective, then so is M (note that a product of surjections in the category of sets is again a surjection). This proves (1) and (2), and assertion (3) is just a restatement.

Example 12 (Ultrafilters). Let $\mathcal{C} = \operatorname{Set}_{\operatorname{fin}}$ be the category of finite sets, so that $\operatorname{Stone}_{\mathcal{C}} \simeq \operatorname{Stone}$ is the category of Stone spaces. Proposition 11 implies that the category Stone admits coproducts. Beware that the inclusion Stone \hookrightarrow Top does *not* preserve coproducts: a coproduct of Stone spaces is Hausdorff and totally disconnected, but usually not compact.

For example, let I be a set, and consider the coproduct $\coprod_{i \in I} \{i\}$, formed in the category Stone. We denote this coproduct by βI and refer to it as the *Stone-Čech compactification of I*. It is characterized by the following universal property: there is a map $\rho: I \to \beta I$ such that composition with ρ induces a bijection

$$\operatorname{Hom}_{\operatorname{Top}}(\beta I, X) \to \prod_{i \in I} X$$

for any Stone space X (or, more generally, any compact Hausdorff space X). In particular, taking X to be a two-point space, we obtain a bijection

{Clopen subsets of
$$\beta I$$
} \simeq {Arbitrary subsets of I }.

In other words, we can describe βI as the spectrum of the Boolean algebra P(I) of subsets of I. It follows that βI can be identified with the set of Boolean algebra homomorphisms $\mu: P(I) \to \{0,1\}$: that is, with the collection of all ultrafilters on I (see Remark 3). The topology on βI is generated by open (and closed) sets of the form

$$U_J := \{ \mathcal{U} \in \beta I : J \in \mathcal{U} \},$$

where J ranges over all subsets of I (in fact, the construction $J \mapsto U_J$ implements the isomorphism of P(I) with the Boolean algebra of clopen subsets of βI).

Remark 13. In the situation of Example 12, the canonical map $\rho: I \to \beta I$ carries each element $i \in I$ to the principal ultrafilter \mathcal{U}_i of Example 4.

Example 14 (Ultraproducts). Let us now return to the situation where \mathcal{C} is an arbitrary small pretopos. Suppose we are given a collection of models $\{M_i \in \operatorname{Mod}(\mathcal{C})\}_{i \in I}$. We can then regard each pair $(\{i\}, M_i)$ as an object of Stone_{\mathcal{C}}, and form the coproduct

$$(X, \mathcal{O}_X) = \coprod_{i \in I} (\{i\}, M_i)$$

in Stonec.

Note that the forgetful functor $Stone_{\mathcal{C}} \to Stone$ preserves coproducts: it is given by the composition

$$\mathrm{Stone}_{\mathfrak{C}} \simeq \mathrm{Pro}^{\mathrm{wp}}(\mathfrak{C}) \hookrightarrow \mathrm{Pro}(\mathfrak{C}) = \mathrm{Fun}^{\mathrm{lex}}(\mathfrak{C}, \mathbb{S}\mathrm{et})^{\mathrm{op}} \to \mathrm{Fun}^{\mathrm{lex}}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}, \mathfrak{C})^{\mathrm{op}} = \mathrm{Pro}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{Stone}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{Stone}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{Pro}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{Stone}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{Pro}(\mathbb{S}\mathrm{et}_{\mathrm{fin}}) = \mathrm{$$

induced by the morphism of pretopoi $\operatorname{Set}_{\operatorname{fin}} \to \mathbb{C}$. It follows that we can identify the Stone space X with the Stone-Čech compactification βI . In particular, the construction

$$(J \subseteq I) \mapsto U_J = \{ \mathcal{U} \in \beta I : J \in \mathcal{U} \}$$

induces a bijection from the collection P(I) of subsets of I to the collection of clopen subsets of X. Unwinding the definitions, we see that \mathcal{O}_X is given by the formula

$$\mathcal{O}_X^C(U_J) = \prod_{i \in J} M_i(C).$$

In particular, given a point $x \in X$ corresponding to an ultrafilter \mathcal{U} on the set I, we have

$$\mathfrak{O}_{X,x}^{C} = \underset{x \in U_{J}}{\underline{\lim}} \mathfrak{O}_{X}^{C}(U_{J})
= \underset{J \in \mathcal{U}}{\underline{\lim}} \prod_{i \in J} M_{i}(C)
= (\prod_{i \in I} M_{i}(C)) / \mathcal{U}.$$

Proof of Theorem 9. Let \mathcal{C} be a pretopos, let $\{M_i\}_{i\in I}$ be a collection of models of \mathcal{C} indexed by a set I, and let \mathcal{U} be an ultrafilter on I. Forming the coproduct $(X, \mathcal{O}_X) = \coprod_{i\in I} (\{i\}, M_i)$ in Stone \mathcal{C} , we observe that \mathcal{U} can be identified with a point $x \in X \simeq \beta I$, and that the stalk $\mathcal{O}_{X,x}$ is a model of \mathcal{C} given by the formula $C \mapsto (\prod_{i\in I} M_i(C))/\mathcal{U}$.

We can summarize the situation informally as follows: given a collection of models $\{M_i\}_{i\in I}$ of a pretopos \mathcal{C} , we can construct a larger family of models parametrized by the Stone-Čech compactification βI , which assigns to each ultrafilter $\mathcal{U} \in \beta I$ the corresponding ultraproduct $(\prod_{i\in I} M_i)/\mathcal{U}$.

Definition 15. We will say that an object $M \in \text{Pro}(\mathcal{C})$ is *free* if it can be written as a coproduct $\coprod_{i \in I} M_i$ in $\text{Pro}(\mathcal{C})$, where each M_i is a model of \mathcal{C} . Note that in this case, M is automatically weakly projective.

We say that an object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathcal{C}}$ is *free* if it corresponds to a free object of $\text{Pro}(\mathcal{C})$ under the equivalence $\text{Stone}_{\mathcal{C}} \simeq \text{Pro}^{\text{wp}}(\mathcal{C})$: that is, if it can be written as a coproduct

$$\coprod_{i\in I}(\{i\},M_i)$$

in the category Stone_C.

Proposition 16. (1) For every object $Z \in \text{Pro}(\mathfrak{C})$, there exists an effective epimorphism $M \to Z$, where M is free.

(2) For every object (X, \mathcal{O}_X) , there exists a covering $(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ in Stone_C, where (Y, \mathcal{O}_Y) is free.

Proof. To prove (1) we may assume without loss of generality that Z is weakly projective. In this case, (1) and (2) are equivalent. Let us therefore consider (2). Fix an object (X, \mathcal{O}_X) in Stone_C, and form the coproduct

$$(Y, \mathcal{O}_Y) = \coprod_{x \in X} (\{x\}, \mathcal{O}_{X,x}).$$

We claim that the tautological map $(Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ is a covering. Using the criterion of Lecture 18X, we are reduced to showing that for each point $x \in X$, we can choose a point $y \in Y$ lying over x for which the induced map of models $\mathcal{O}_{X,x} \to \mathcal{O}_{Y,y}$ is an isomorphism. Identifying Y with the set βX of ultrafilters on X, it suffices to choose y to correspond to the principal ultrafilter \mathcal{U}_x ; in this case, the canonical map $\mathcal{O}_{X,x} \to \mathcal{O}_{Y,y}$ is an isomorphism (Example 8).