
Lecture 20X-Ultraproducts

March 31, 2018

In this lecture, we review the theory of ultrafilters and ultraproducts.

Definition 1. Let I be a set. An ultrafilter on I is a collection U of subsets of I satisfying the following
conditions:

(a) The set U is closed under finite intersections. That is, the set I belongs to U, and for every J, J ′ ∈ U,
the intersection J ∩ J ′ also belongs to U.

(b) The set U is closed upwards: that is, if J ⊆ J ′ and J is contained in U, then J ′ is also contained in U.

(c) For every subset J ⊆ I, exactly one of the sets J and I − J belongs to U.

Exercise 2. In Definition 1, show that (b) can be deduced from (a) and (c).

Remark 3. Let I be a set. Then the datum of an ultrafilter U on I is equivalent to the datum of a finitely
additive measure

µ : {Subsets of I} → {0, 1};

the equivalence is implemented by taking U = {J ⊆ I : µ(J) = 1}.

Example 4 (Principal Ultrafilters). Let I be a set containing an element i, and let Ui be the collection of
all subsets of I which contain i. Then Ui is an ultrafilter on I. We refer to Ui as the principal ultrafilter
associated to i.

Exercise 5. Let U be a collection of subsets of a set I. We say that U is a filter on I if it satisfies conditions
(a) and (b) of Definition 1. Show that if U is a filter on I such that ∅ /∈ U, then U can be enlarged to an
ultrafilter on I.

Construction 6 (Ultraproducts). Let {Mi}i∈I be a collection of sets indexed by a set I, and let U be an
ultrafilter on I. We let (

∏
i∈I Mi)/U denote the direct limit

lim−→
J∈U

∏
i∈J

Mi.

We will refer to (
∏

i∈I Mi)/U as the ultraproduct of the sets Mi with respect to the ultrafilter U.

Exercise 7. In the situation of Construction 6, suppose that each of the sets Mi is nonempty. Show that
the ultraproduct (

∏
i∈I Mi)/U can be identified with the quotient of

∏
i∈I Mi by an equivalence relation

∼, where {xi}i∈I ' {yi}i∈I if {i ∈ I : xi = yi} belongs to the ultrafilter U (in this case, we say that the
sequences {xi}i∈I and {yi}i∈I agree almost everywhere with respect to U).

Beware that this is not necessarily true if some Mj is empty. In this case, the product
∏

i∈I Mi is also
empty. However, the ultraproduct (

∏
i∈I Mi)/U will be nonempty if the set {i ∈ I : Mi 6= ∅} belongs to the

ultrafilter U.

Example 8. In the situation of Construction 6, suppose that U = Uj is the principal ultrafilter associated
to an element j ∈ I. Then the ultraproduct (

∏
i∈I Mi)/U can be identified with Mj .
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Ultraproducts appear in mathematical logic because they behave well with respect to the truth of first-
order formulas.

Theorem 9 ( Los’s Ultraproduct Theorem, Pretopos Version). Let C be a pretopos, let {Mi}i∈I be a collection
of models of C indexed by a set I, and let U be an ultrafilter on I. Then the construction

(C ∈ C) 7→ (
∏
i∈I

Mi(C))/U

is also a model of C

Corollary 10 ( Los’s Ultraproduct Theorem, Classical Version). Let T be a first-order theory in a language
{Pj}j∈J . Let {Mi}i∈I be a collection of models of T , and assume for simplicity that each Mi is nonempty.
Suppose we are given an ultrafilter U on the set I, and set M = (

∏
i∈I Mi)/U. Regard M as a structure for

the language L by declaring

(M � Pj({~ci}i∈I))⇔ {i ∈ I : Mi � Pj(~ci)} ∈ U .

Then M is also a model of T . Moreover, for any formula ϕ(~x) in the language L, we have

(M � ϕ({~ci}i∈I))⇔ {i ∈ I : Mi � ϕ(~ci)} ∈ U .

Proof. Apply Theorem 9 to the syntactic category Syn(T ). (Note that the desired conclusion can be restated
as M [ϕ] ' (

∏
i∈I Mi[ϕ])/U.)

It is not difficult to give a direct proof of Theorem 9 (or Corollary 10): the essential point is that the
formation of ultraproducts commutes with the formation of finite limits, finite coproducts, and images.
However, we will give a different explanation of Theorem 9, which connects up with the material of the last
few lectures.

For the remainder of this lecture, let C be a small pretopos. Recall that the category Pro(C) has small
limits and colimits.

Proposition 11. (1) The subcategory Prowp(C) ⊆ Pro(C) of weakly projective pro-objects of C has (possi-
bly infinite) coproducts, which are preserved by the inclusion Prowp(C) ↪→ Pro(C).

(2) For every object C ∈ C, the construction M 7→ M(C) determines a functor Prowp(C)op → Set which
preserves (possibly infinite) products: that is, it carries coproducts in Prowp(C) to products of sets.

(3) The category StoneC has (possibly infinite) coproducts. Moreover, for each object C ∈ C, the functor
(X,OX) 7→ OC

X(X) carries coproducts in StoneC to products of sets.

Proof. Recall that Pro(C) can be defined as the opposite of the category Funlex(C, Set) of left exact functors
from C to Set. Since the class of left exact functors is closed under inverse limits, it follows that colimits
in Pro(C) are computed pointwise. In particular, given a collection of pro-objects {Mi}i∈I , the coproduct
M = qi∈IMi in the category Pro(C) is given by the formula M(C) =

∏
i∈I Mi(C). From this description,

it is clear that that if each Mi is weakly projective, then so is M (note that a product of surjections in the
category of sets is again a surjection). This proves (1) and (2), and assertion (3) is just a restatement.

Example 12 (Ultrafilters). Let C = Setfin be the category of finite sets, so that StoneC ' Stone is the
category of Stone spaces. Proposition 11 implies that the category Stone admits coproducts. Beware that
the inclusion Stone ↪→ Top does not preserve coproducts: a coproduct of Stone spaces is Hausdorff and
totally disconnected, but usually not compact.

For example, let I be a set, and consider the coproduct qi∈I{i}, formed in the category Stone. We
denote this coproduct by βI and refer to it as the Stone-Čech compactification of I. It is characterized by
the following universal property: there is a map ρ : I → βI such that composition with ρ induces a bijection

HomTop(βI,X)→
∏
i∈I

X
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for any Stone space X (or, more generally, any compact Hausdorff space X). In particular, taking X to be
a two-point space, we obtain a bijection

{Clopen subsets of βI} ' {Arbitrary subsets of I}.

In other words, we can describe βI as the spectrum of the Boolean algebra P (I) of subsets of I. It follows
that βI can be identified with the set of Boolean algebra homomorphisms µ : P (I) → {0, 1}: that is, with
the collection of all ultrafilters on I (see Remark 3). The topology on βI is generated by open (and closed)
sets of the form

UJ := {U ∈ βI : J ∈ U},

where J ranges over all subsets of I (in fact, the construction J 7→ UJ implements the isomorphism of P (I)
with the Boolean algebra of clopen subsets of βI).

Remark 13. In the situation of Example 12, the canonical map ρ : I → βI carries each element i ∈ I to
the principal ultrafilter Ui of Example 4.

Example 14 (Ultraproducts). Let us now return to the situation where C is an arbitrary small pretopos.
Suppose we are given a collection of models {Mi ∈ Mod(C)}i∈I . We can then regard each pair ({i},Mi) as
an object of StoneC, and form the coproduct

(X,OX) = qi∈I({i},Mi)

in StoneC.
Note that the forgetful functor StoneC → Stone preserves coproducts: it is given by the composition

StoneC ' Prowp(C) ↪→ Pro(C) = Funlex(C, Set)op → Funlex(Setfin,C)op = Pro(Setfin) = Stone

induced by the morphism of pretopoi Setfin → C. It follows that we can identify the Stone space X with the
Stone-Čech compactification βI. In particular, the construction

(J ⊆ I) 7→ UJ = {U ∈ βI : J ∈ U}

induces a bijection from the collection P (I) of subsets of I to the collection of clopen subsets of X. Unwinding
the definitions, we see that OX is given by the formula

OC
X(UJ) =

∏
i∈J

Mi(C).

In particular, given a point x ∈ X corresponding to an ultrafilter U on the set I, we have

OC
X,x = lim−→

x∈UJ

OC
X(UJ)

= lim−→
J∈U

∏
i∈J

Mi(C)

= (
∏
i∈I

Mi(C))/U .

Proof of Theorem 9. Let C be a pretopos, let {Mi}i∈I be a collection of models of C indexed by a set I, and
let U be an ultrafilter on I. Forming the coproduct (X,OX) = qi∈I({i},Mi) in StoneC, we observe that U

can be identified with a point x ∈ X ' βI, and that the stalk OX,x is a model of C given by the formula
C 7→ (

∏
i∈I Mi(C))/U.

We can summarize the situation informally as follows: given a collection of models {Mi}i∈I of a pretopos
C, we can construct a larger family of models parametrized by the Stone-Čech compactification βI, which
assigns to each ultrafilter U ∈ βI the corresponding ultraproduct (

∏
i∈I Mi)/U.
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Definition 15. We will say that an object M ∈ Pro(C) is free if it can be written as a coproduct
∐

i∈I Mi

in Pro(C), where each Mi is a model of C. Note that in this case, M is automatically weakly projective.
We say that an object (X,OX) ∈ StoneC is free if it corresponds to a free object of Pro(C) under the

equivalence StoneC ' Prowp(C): that is, if it can be written as a coproduct∐
i∈I

({i},Mi)

in the category StoneC.

Proposition 16. (1) For every object Z ∈ Pro(C), there exists an effective epimorphism M → Z, where
M is free.

(2) For every object (X,OX), there exists a covering (Y,OY )→ (X,OX) in StoneC, where (Y,OY ) is free.

Proof. To prove (1) we may assume without loss of generality that Z is weakly projective. In this case,
(1) and (2) are equivalent. Let us therefore consider (2). Fix an object (X,OX) in StoneC, and form the
coproduct

(Y,OY ) =
∐
x∈X

({x},OX,x).

We claim that the tautological map (Y,OY ) → (X,OX) is a covering. Using the criterion of Lecture 18X,
we are reduced to showing that for each point x ∈ X, we can choose a point y ∈ Y lying over x for which
the induced map of models OX,x → OY,y is an isomorphism. Identifying Y with the set βX of ultrafilters
on X, it suffices to choose y to correspond to the principal ultrafilter Ux; in this case, the canonical map
OX,x → OY,y is an isomorphism (Example 8).
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