Lecture 15X: Pro-Étale Sheaves

March 20, 2018

Throughout this lecture, we let \mathcal{C} denote an essentially small coherent category with disjoint coproducts (for example, a small pretopos). In the previous lecture, we proved that $Pro(\mathcal{C})$ is also a coherent category with disjoint coproducts. In particular, we can endow $Pro(\mathcal{C})$ with a finitary Grothendieck topology, where a finite collection of morphisms $\{U_i \to X\}$ is a covering if the induced map $\coprod U_i \to X$ is an effective epimorphism. We let $Shv(Pro(\mathcal{C}))$ denote the category of sheaves with respect to this topology.

Warning 1. The category $Shv(Pro(\mathcal{C}))$ is *not* a topos (note that $Pro(\mathcal{C})$ is not small).

Example 2. Let X be a quasi-compact and quasi-separated scheme, and let $\operatorname{Sch}_X^{\operatorname{et}}$ denote the category of quasi-compact, quasi-separated schemes U equipped with an étale map $U \to X$. Then $\operatorname{Sch}_X^{\operatorname{et}}$ is an essentially small coherent category, and $\operatorname{Shv}(\operatorname{Pro}(\operatorname{Sch}_X^{\operatorname{et}}))$ can be identified with the category of *pro-étale sheaves on* X introduced by Bhatt-Scholze.

Similarly, Scholze's category of pro-étale sheaves on a (quasi-compact, quasi-separated) perfectoid space X can be realized as $Shv(Pro(\mathcal{C}))$, where \mathcal{C} is the category of (quasi-compact, quasi-separated) perfectoid spaces which are étale over X.

Our first goal is to understand the relationship of $Shv(Pro(\mathcal{C}))$ with the topos $Shv(\mathcal{C})$.

Proposition 3. Let \mathcal{C} be as above and let $\mathscr{F}: \operatorname{Pro}(\mathcal{C})^{\operatorname{op}} \to \operatorname{Set}$ be a functor. Then:

- (1) If \mathscr{F} is a sheaf on the category $Pro(\mathcal{C})$, then the restriction $\mathscr{F}|_{\mathcal{C}^{op}}$ is a sheaf on \mathcal{C} .
- (2) If $\mathscr{F}|_{\mathbb{C}^{\mathrm{op}}}$ is a sheaf on \mathbb{C} and the functor \mathscr{F} commutes with filtered colimits, then \mathscr{F} is a sheaf on $\mathrm{Pro}(\mathbb{C})$.

Proof. We will prove (2) and leave (1) as an exercise for the reader. Assume that $\mathscr{F}|_{\mathcal{C}^{op}}$ is a sheaf and that \mathscr{F} commutes with filtered colimits; we wish to show that \mathscr{F} is a sheaf. For this, we must prove the following:

- (a) The functor \mathscr{F} carries finite coproducts in $Pro(\mathcal{C})$ to products of sets.
- (b) For each effective epimorphism $U \to X$ in $Pro(\mathcal{C})$, the diagram

$$\mathscr{F}(X) \to \mathscr{F}(U) \rightrightarrows \mathscr{F}(U \times_X U)$$

is an equalizer.

We begin with (a). Suppose we are given a finite collection of objects $C_1, \ldots, C_n \in \operatorname{Pro}(\mathcal{C})$, each of which is the limit of a pro-system $\{C_{i,\alpha}\}$ in \mathcal{C} ; without loss of generality, we may assume that each of these prosystems is indexed by the same category. Then the coproduct $C_1 \coprod \cdots \coprod C_n$ is given by the limit of the pro-system $\{C_{1,\alpha}\coprod \cdots \coprod C_{n,\alpha}\}$. Since \mathscr{F} carries filtered limits in $\operatorname{Pro}(\mathcal{C})$ to filtered colimits of sets, we are reduced to showing that the canonical map

$$\varinjlim_{\alpha} \mathscr{F}(C_{1,\alpha} \coprod \cdots \coprod C_{n,\alpha}) \to \prod_{1 \le i \le n} \varinjlim_{\alpha} \mathscr{F}(C_{i,\alpha})$$

is an isomorphism, which follows from the fact that filtered colimits of sets commute with products and our assumption that $\mathscr{F}|_{\mathbb{C}^{op}}$ is a sheaf.

We now prove (b). Let $f: U \to X$ be an effective epimorphism in $Pro(\mathfrak{C})$. Then we can write f as the limit of a diagram $\{f_{\alpha}: U_{\alpha} \to X_{\alpha} \text{ of effective epimorphisms in } \mathfrak{C}$. Using our assumption that \mathscr{F} is compatible with filtered limits in $Pro(\mathfrak{C})$, we are reduced to showing that the diagram

$$\varinjlim_{\alpha} \mathscr{F}(X_{\alpha}) \to \varinjlim_{\alpha} \mathscr{F}(U_{\alpha}) \rightrightarrows \varinjlim_{\alpha} \mathscr{F}(U_{\alpha} \times_{X_{\alpha}} U_{\alpha}).$$

This follows from our assumption that $\mathscr{F}|_{\mathcal{C}^{op}}$ is a sheaf, since the collection of equalizer diagrams in Set is closed under filtered colimits.

The universal property of $\operatorname{Pro}(\mathfrak{C})$ implies that any presheaf $\mathscr{F}_0 \in \operatorname{Fun}(\mathfrak{C}^{\operatorname{op}}, \operatorname{Set})$ admits an essentially unique extension to a presheaf $\mathscr{F} \in \operatorname{Fun}(\operatorname{Pro}(\mathfrak{C})^{\operatorname{op}}, \operatorname{Set})$ which preserves filtered colimits. It follows from Proposition 3 that \mathscr{F}_0 is a sheaf if and only if \mathscr{F} is a sheaf. This proves the following:

Proposition 4. Let $\operatorname{Shv}_c(\operatorname{Pro}(\mathfrak{C}))$ denote the full subcategory of $\operatorname{Shv}(\operatorname{Pro}(\mathfrak{C}))$ consisting of those sheaves $\mathscr{F}: \operatorname{Pro}(\mathfrak{C})^{\operatorname{op}} \to \operatorname{Set}$ which preserve filtered colimits. Then the restriction functor $\mathscr{F} \mapsto \mathscr{F}|_{\mathfrak{C}^{\operatorname{op}}}$ induces an equivalence of categories $\operatorname{Shv}_c(\operatorname{Pro}(\mathfrak{C})) \to \operatorname{Shv}(\mathfrak{C})$.

Proposition 4 is the starting point of a strategy for understanding the topos $Shv(\mathcal{C})$: its objects can also be understood as sheaves on the larger coherent category $Pro(\mathcal{C})$, satisfying a certain continuity condition. This is convenient because $Pro(\mathcal{C})$ contains many useful objects that do not belong to \mathcal{C} :

Definition 5. Recall that a *model* of \mathcal{C} is a morphism of coherent categories $M: \mathcal{C} \to \mathcal{S}et$: that is, a functor which satisfies the following axioms:

- (1) The functor M commutes with finite limits.
- (2) The functor M carries effective epimorphisms in \mathcal{C} to surjections of sets.
- (3) The functor M preserves finite coproducts.

Let $\operatorname{Mod}(\mathcal{C})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{C},\operatorname{Set})$ spanned by the models of \mathcal{C} . By definition, $\operatorname{Pro}(\mathcal{C})$ is the opposite of the full subcategory of $\operatorname{Fun}(\mathcal{C},\operatorname{Set})$ spanned by those functors which satisfy condition (1). We can therefore identify $\operatorname{Mod}(\mathcal{C})^{\operatorname{op}}$ with a full subcategory of $\operatorname{Pro}(\mathcal{C})$. Note that objects of $\operatorname{Mod}(\mathcal{C})^{\operatorname{op}}$ very rarely belong to \mathcal{C} itself (regarded as a full subcategory of $\operatorname{Pro}(\mathcal{C})$ via the Yoneda embedding.

We will say that an object $M \in \text{Pro}(\mathcal{C})$ is weakly projective if it satisfies conditions (1) and (2). We let $\text{Pro}^{\text{wp}}(\mathcal{C})$ denote the full subcategory of $\text{Pro}(\mathcal{C})$ spanned by the weakly projective objects.

Example 6. Any model of \mathcal{C} is weakly projective when viewed as an object of $Pro(\mathcal{C})$. That is, we have inclusions

$$\operatorname{Mod}(\mathcal{C})\subseteq\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})^{\operatorname{op}}\subseteq\operatorname{Pro}(\mathcal{C})^{\operatorname{op}}\subseteq\operatorname{Fun}(\mathcal{C},\operatorname{\mathcal{S}et}).$$

Example 7. Suppose that \mathcal{C} is the category of finite sets. Then every effective epimorphism in \mathcal{C} admits a section, so condition (2) of Definition 5 is automatic: that is, we have $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C}) = \operatorname{Pro}(\mathcal{C})$.

Remark 8. By definition, an object $X \in \operatorname{Pro}(\mathcal{C})$ is weakly projective if and only if, for every effective epimorphism $C \to D$ in \mathcal{C} , the map $\operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X,C) \to \operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X,D)$ is surjective: that is, every map from X to D factors through C. It follows that $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})$ is closed under (possibly infinite) coproducts in $\operatorname{Pro}(\mathcal{C})$.

Beware that the map $\operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X,C) \to \operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X,D)$ is generally *not* surjective if we assume only that $C \to D$ is an effective epimorphism in \mathcal{C} (this is the motivation for the using the modifier "weakly" to describe the condition of Definition 4).

Remark 9. The full subcategory $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C}) \subseteq \operatorname{Pro}(\mathcal{C})$ is closed under filtered inverse limits (since the collection of surjections in Set is closed under filtered direct limits).

The following result allows us to "resolve" any object of $Pro(\mathcal{C})$ by weakly projective objects:

Proposition 10. For every object $X \in \text{Pro}(\mathfrak{C})$, there exists an effective epimorphism $\rho_X : \lambda(X) \to X$ in $\text{Pro}(\mathfrak{C})$ where $\lambda(X)$ is weakly projective. Moreover, we can arrange that $\lambda(X)$ is a functor of X, that ρ_X is a natural transformation of functors, and that the functor λ commutes with filtered limits.

Proof. We use the small object argument of Quillen. Let $\{C_i \to D_i\}_{i \in I}$ be a set of representatives for all isomorphism classes of effective epimorphisms in \mathcal{C} . For each object $X \in \text{Pro}(\mathcal{C})$, set

$$C(X) = \prod_{i \in I} \prod_{\eta \in \operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(X, D_i)} C_i \qquad D(X) = \prod_{i \in I} \prod_{\eta \in \operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(X, D_i)} D_i,$$

where both products are formed in the category $\operatorname{Pro}(\mathcal{C})$. We have a tautological map $X \to D(X)$; we define $\lambda_1(X) = C(X) \times_{D(X)} X$. Note that that there is a projection map $\lambda_1(X) \to X$ in $\operatorname{Pro}(\mathcal{C})$, which is easily seen to be an effective epimorphism. For n > 1, we define $\lambda_n(X)$ by the formula $\lambda_n(X) = \lambda_1(\lambda_{n-1}(X))$, so that we have an inverse system

$$\cdots \rightarrow \lambda_3(X) \rightarrow \lambda_2(X) \rightarrow \lambda_1(X) \rightarrow X.$$

Set $\lambda(X) = \varprojlim \lambda_n(X)$. Note that each map $f : \lambda(X) \to D_i$ factors through $f_n : \lambda_n(X) \to D_i$ for some $n \gg 0$. By construction, the composite map $\lambda_{n+1}(X) \to \lambda_n(X) \xrightarrow{f_n} D_i$ factors through C_i , so that $f : \lambda(X) \to D_i$ factors through C_i . It follows that $\lambda(X)$ is weakly projective. By inspection, the construction of $\lambda(X)$ (and the projection map $\lambda(X) \to X$) is functorial in X and commutes with filtered limits.

We will say that a collection of morphisms $\{U_i \to X\}_{i \in I}$ in $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})$ is a *covering* if it is a covering in $\operatorname{Pro}(\mathcal{C})$: that is, if there is a finite subset $I_0 \subseteq I$ such that $\coprod_{i \in I_0} U_i \to X$ is an effective epimorphism in $\operatorname{Pro}(\mathcal{C})$ (note that in this case, $\coprod_{i \in I_0} U_i$ is also weakly projective). This determines a Grothendieck topology on the category $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})$.

Warning 11. In Lecture 8, we defined the notion of a *Grothendieck topology* on a category \mathcal{E} under the assumption that \mathcal{E} admits finite limits. In general, the category $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})$ need not admit finite limits. In such cases, we must replace condition (T1) appearing in Lecture 8 with the following:

(T1') For every covering $\{U_i \to X\}$ in \mathcal{E} and every morphism $Y \to X$ in \mathcal{E} , there exists a covering $\{V_j \to Y\}$ for which each of the maps $V_j \to Y \to X$ factors through some U_i .

We also need to revise the notion of sheaf. A functor $\mathscr{F}: \mathcal{E}^{\text{op}} \to \text{Set}$ is said to be a sheaf if, for every covering $\{U_i \to X\}$ in \mathcal{E} , the canonical map

$$\mathscr{F}(X) \to \lim \mathscr{F}(U)$$

is a bijection, where the limit is taken over the sieve on X generated by the objects U_i (see Definition 13 of Lecture 9).

Example 12. Let \mathcal{C} be the category of finite sets. Then $\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C}) = \operatorname{Pro}(\mathcal{C})$ can be identified with the category of Stone spaces. The preceding topology can be described as follows: a finite collection of maps of Stone spaces $\{Y_i \to X\}$ is a covering if and only if the induced map $\coprod Y_i \to X$ is surjective.

Proposition 13. The construction $\mathscr{F} \mapsto \mathscr{F}|_{\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C})^{\operatorname{op}}}$ induces an equivalence of categories $\operatorname{Shv}(\operatorname{Pro}(\mathfrak{C})) \to \operatorname{Shv}(\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}))$. Moreover, a sheaf $\mathscr{F} : \operatorname{Pro}(\mathfrak{C})^{\operatorname{op}} \to \operatorname{Set}$ commutes with filtered colimits if and only if $\mathscr{F}|_{\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C})^{\operatorname{op}}}$ commutes with filtered colimits.

Proof. Let $\mathscr{F} \in \operatorname{Shv}(\operatorname{Pro}(\mathscr{C}))$. For each object $X \in \operatorname{Pro}(\mathscr{C})$, let $\lambda(X)$ be defined as in Proposition 11, and set $\mu(X) = \lambda(\lambda(X) \times_X \lambda(X))$. We then have an equalizer diagram

$$\mathscr{F}(X) \to \mathscr{F}(\lambda(X)) \rightrightarrows \mathscr{F}(\mu(X)),$$

so that we can functorially recover $\mathscr{F}(X)$ from the values of \mathscr{F} on weakly projective objects. This gives an explicit left inverse to the restriction functor

$$\operatorname{Shv}(\operatorname{Pro}(\mathcal{C})) \to \operatorname{Shv}(\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})) \qquad \mathscr{F} \mapsto \mathscr{F} \mid_{\operatorname{Pro}^{\operatorname{wp}}(\mathcal{C})^{\operatorname{op}}};$$

we leave it to the reader to verify that it is a right inverse as well.

It is clear that if \mathscr{F} commutes with filtered colimits, then so does the restriction $\mathscr{F}|_{\text{Pro}^{\text{wp}}(\mathcal{C})^{\text{op}}}$. The converse follows from the formula

$$\mathscr{F}(X) = \operatorname{Eq}(\mathscr{F}(\lambda(X)) \rightrightarrows \mathscr{F}(\mu(X))),$$

since the constructions $X \mapsto \lambda(X)$ and $X \mapsto \mu(X)$ both preserve filtered inverse limits (as functors from $\text{Pro}(\mathcal{C})$ to itself).

Corollary 14. Let $\operatorname{Shv}_c(\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}))$ be the full subcategory of $\operatorname{Shv}(\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}))$ spanned by those sheaves \mathscr{F} : $\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C})^{\operatorname{op}} \to \operatorname{Set}$ which preserve filtered colimits. Then there is a canonical equivalence of categories $\operatorname{Shv}(\mathfrak{C}) \simeq \operatorname{Shv}_c(\operatorname{Pro}^{\operatorname{wp}}(\mathfrak{C}))$.

Proof. Combine Propositions 14 and 4.