
Lecture 15X: Pro-Étale Sheaves

March 20, 2018

Throughout this lecture, we let C denote an essentially small coherent category with disjoint coproducts
(for example, a small pretopos). In the previous lecture, we proved that Pro(C) is also a coherent category
with disjioont coproducts. In particular, we can endow Pro(C) with a finitary Grothendieck topology, where
a finite collection of morphisms {Ui → X} is a covering if the induced map

∐
Ui → X is an effective

epimorphism. We let Shv(Pro(C)) denote the category of sheaves with respect to this topology.

Warning 1. The category Shv(Pro(C)) is not a topos (note that Pro(C) is not small).

Example 2. Let X be a quasi-compact and quasi-separated scheme, and let Schet
X denote the category of

quasi-compact, quasi-separated schemes U equipped with an étale map U → X. Then Schet
X is an essentially

small coherent category, and Shv(Pro(Schet
X)) can be identified with the category of pro-étale sheaves on X

introduced by Bhatt-Scholze.
Similarly, Scholze’s category of pro-étale sheaves on a (quasi-compact, quasi-separated) perfectoid space

X can be realized as Shv(Pro(C)), where C is the category of (quasi-compact, quasi-separated) perfectoid
spaces which are étale over X.

Our first goal is to understand the relationship of Shv(Pro(C)) with the topos Shv(C).

Proposition 3. Let C be as above and let F : Pro(C)op → Set be a functor. Then:

(1) If F is a sheaf on the category Pro(C), then the restriction F |Cop is a sheaf on C.

(2) If F |Cop is a sheaf on C and the functor F commutes with filtered colimits, then F is a sheaf on
Pro(C).

Proof. We will prove (2) and leave (1) as an exercise for the reader. Assume that F |Cop is a sheaf and that
F commutes with filtered colimits; we wish to show that F is a sheaf. For this, we must prove the following:

(a) The functor F carries finite coproducts in Pro(C) to products of sets.

(b) For each effective epimorphism U → X in Pro(C), the diagram

F (X)→ F (U) ⇒ F (U ×X U)

is an equalizer.

We begin with (a). Suppose we are given a finite collection of objects C1, . . . , Cn ∈ Pro(C), each of which
is the limit of a pro-system {Ci,α} in C; without loss of generality, we may assume that each of these pro-
systems is indexed by the same category. Then the coproduct C1 q · · · q Cn is given by the limit of the
pro-system {C1,α q · · · q Cn,α}. Since F carries filtered limits in Pro(C) to filtered colimits of sets, we are
reduced to showing that the canonical map

lim−→
α

F (C1,α q · · · q Cn,α)→
∏

1≤i≤n

lim−→
α

F (Ci,α)
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is an isomorphism, which follows from the fact that filtered colimits of sets commute with products and our
assumption that F |Cop is a sheaf.

We now prove (b). Let f : U → X be an effective epimorphism in Pro(C). Then we can write f as
the limit of a diagram {fα : Uα → Xα of effective epimorphisms in C. Using our assumption that F is
compatible with filtered limits in Pro(C), we are reduced to showing that the diagram

lim−→
α

F (Xα)→ lim−→
α

F (Uα) ⇒ lim−→
α

F (Uα ×Xα Uα).

This follows from our assumption that F |Cop is a sheaf, since the collection of equalizer diagrams in Set is
closed under filtered colimits.

The universal property of Pro(C) implies that any presheaf F 0 ∈ Fun(Cop, Set) admits an essentially
unique extension to a presheaf F ∈ Fun(Pro(C)op, Set) which preserves filtered colimits. It follows from
Proposition 3 that F 0 is a sheaf if and only if F is a sheaf. This proves the following:

Proposition 4. Let Shvc(Pro(C)) denote the full subcategory of Shv(Pro(C)) consisting of those sheaves
F : Pro(C)op → Set which preserve filtered colimits. Then the restriction functor F 7→ F |Cop induces an
equivalence of categories Shvc(Pro(C))→ Shv(C).

Proposition 4 is the starting point of a strategy for understanding the topos Shv(C): its objects can also
be understood as sheaves on the larger coherent category Pro(C), satisfying a certain continuity condition.
This is convenient because Pro(C) contains many useful objects that do not belong to C:

Definition 5. Recall that a model of C is a morphism of coherent categories M : C→ Set: that is, a functor
which satisfies the following axioms:

(1) The functor M commutes with finite limits.

(2) The functor M carries effective epimorphisms in C to surjections of sets.

(3) The functor M preserves finite coproducts.

Let Mod(C) denote the full subcategory of Fun(C, Set) spanned by the models of C. By definition, Pro(C)
is the opposite of the full subcategory of Fun(C, Set) spanned by those functors which satisfy condition (1).
We can therefore identify Mod(C)op with a full subcategory of Pro(C). Note that objects of Mod(C)op very
rarely belong to C itself (regarded as a full subcategory of Pro(C) via the Yoneda embedding.

We will say that an object M ∈ Pro(C) is weakly projective if it satisfies conditions (1) and (2). We let
Prowp(C) denote the full subcategory of Pro(C) spanned by the weakly projective objects.

Example 6. Any model of C is weakly projective when viewed as an object of Pro(C). That is, we have
inclusions

Mod(C) ⊆ Prowp(C)op ⊆ Pro(C)op ⊆ Fun(C, Set).

Example 7. Suppose that C is the category of finite sets. Then every effective epimorphism in C admits a
section, so condition (2) of Definition 5 is automatic: that is, we have Prowp(C) = Pro(C).

Remark 8. By definition, an object X ∈ Pro(C) is weakly projective if and only if, for every effective
epimorphism C → D in C, the map HomPro(C)(X,C) → HomPro(C)(X,D) is surjective: that is, every map
from X to D factors through C. It follows that Prowp(C) is closed under (possibly infinite) coproducts in
Pro(C).

Beware that the map HomPro(C)(X,C)→ HomPro(C)(X,D) is generally not surjective if we assume only
that C → D is an effective epimorphism in C (this is the motivation for the using the modifier “weakly” to
describe the condition of Definition 4).

Remark 9. The full subcategory Prowp(C) ⊆ Pro(C) is closed under filtered inverse limits (since the collec-
tion of surjections in Set is closed under filtered direct limits).
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The following result allows us to “resolve” any object of Pro(C) by weakly projective objects:

Proposition 10. For every object X ∈ Pro(C), there exists an effective epimorphism ρX : λ(X) → X in
Pro(C) where λ(X) is weakly projective. Moreover, we can arrange that λ(X) is a functor of X, that ρX is
a natural transformation of functors, and that the functor λ commutes with filtered limits.

Proof. We use the small object argument of Quillen. Let {Ci → Di}i∈I be a set of representatives for all
isomorphism classes of effective epimorphisms in C. For each object X ∈ Pro(C), set

C(X) =
∏
i∈I

∏
η∈HomPro(C)(X,Di)

Ci D(X) =
∏
i∈I

∏
η∈HomPro(C)(X,Di)

Di,

where both products are formed in the category Pro(C). We have a tautological map X → D(X); we define
λ1(X) = C(X) ×D(X) X. Note that that there is a projection map λ1(X) → X in Pro(C), which is easily
seen to be an effective epimorphism. For n > 1, we define λn(X) by the formula λn(X) = λ1(λn−1(X)), so
that we have an inverse system

· · · → λ3(X)→ λ2(X)→ λ1(X)→ X.

Set λ(X) = lim←−λn(X). Note that each map f : λ(X)→ Di factors through fn : λn(X)→ Di for some n� 0.

By construction, the composite map λn+1(X) → λn(X)
fn−→ Di factors through Ci, so that f : λ(X) → Di

factors through Ci. It follows that λ(X) is weakly projective. By inspection, the construction of λ(X) (and
the projection map λ(X)→ X) is functorial in X and commutes with filtered limits.

We will say that a collection of morphisms {Ui → X}i∈I in Prowp(C) is a covering if it is a covering in
Pro(C): that is, if there is a finite subset I0 ⊆ I such that

∐
i∈I0 Ui → X is an effective epimorphism in

Pro(C) (note that in this case,
∐
i∈I0 Ui is also weakly projective). This determines a Grothendieck topology

on the category Prowp(C).

Warning 11. In Lecture 8, we defined the notion of a Grothendieck topology on a category E under the
assumption that E admits finite limits. In general, the category Prowp(C) need not admit finite limits. In
such cases, we must replace condition (T1) appearing in Lecture 8 with the following:

(T1′) For every covering {Ui → X} in E and every morphism Y → X in E, there exists a covering {Vj → Y }
for which each of the maps Vj → Y → X factors through some Ui.

We also need to revise the notion of sheaf. A functor F : Eop → Set is said to be a sheaf if, for every covering
{Ui → X} in E, the canonical map

F (X)→ lim←−F (U)

is a bijection, where the limit is taken over the sieve on X generated by the objects Ui (see Definition 13 of
Lecture 9).

Example 12. Let C be the category of finite sets. Then Prowp(C) = Pro(C) can be identified with the
category of Stone spaces. The preceding topology can be described as follows: a finite collection of maps of
Stone spaces {Yi → X} is a covering if and only if the induced map

∐
Yi → X is surjective.

Proposition 13. The construction F 7→ F |Prowp(C)op induces an equivalence of categories Shv(Pro(C))→
Shv(Prowp(C)). Moreover, a sheaf F : Pro(C)op → Set commutes with filtered colimits if and only if
F |Prowp(C)op commutes with filtered colimits.

Proof. Let F ∈ Shv(Pro(C)). For each object X ∈ Pro(C), let λ(X) be defined as in Proposition 11, and
set µ(X) = λ(λ(X)×X λ(X)). We then have an equalizer diagram

F (X)→ F (λ(X)) ⇒ F (µ(X)),
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so that we can functorially recover F (X) from the values of F on weakly projective objects. This gives an
explicit left inverse to the restriction functor

Shv(Pro(C))→ Shv(Prowp(C)) F 7→ F |Prowp(C)op ;

we leave it to the reader to verify that it is a right inverse as well.
It is clear that if F commutes with filtered colimits, then so does the restriction F |Prowp(C)op . The

converse follows from the formula

F (X) = Eq(F (λ(X)) ⇒ F (µ(X))),

since the constructions X 7→ λ(X) and X 7→ µ(X) both preserve filtered inverse limits (as functors from
Pro(C) to itself).

Corollary 14. Let Shvc(Prowp(C)) be the full subcategory of Shv(Prowp(C)) spanned by those sheaves F :
Prowp(C)op → Set which preserve filtered colimits. Then there is a canonical equvialence of categories
Shv(C) ' Shvc(Prowp(C)).

Proof. Combine Propositions 14 and 4.
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