Lecture 15X: Pro-Etale Sheaves

March 20, 2018

Throughout this lecture, we let € denote an essentially small coherent category with disjoint coproducts
(for example, a small pretopos). In the previous lecture, we proved that Pro(€) is also a coherent category
with disjioont coproducts. In particular, we can endow Pro(€) with a finitary Grothendieck topology, where
a finite collection of morphisms {U; — X} is a covering if the induced map [[U; — X is an effective
epimorphism. We let Shv(Pro(€)) denote the category of sheaves with respect to this topology.

Warning 1. The category Shv(Pro(€)) is not a topos (note that Pro(C) is not small).

Example 2. Let X be a quasi-compact and quasi-separated scheme, and let Sch‘}? denote the category of
quasi-compact, quasi-separated schemes U equipped with an étale map U — X. Then Schg’g is an essentially
small coherent category, and Shv(Pro(Sch%)) can be identified with the category of pro-étale sheaves on X
introduced by Bhatt-Scholze.

Similarly, Scholze’s category of pro-étale sheaves on a (quasi-compact, quasi-separated) perfectoid space
X can be realized as Shv(Pro(C)), where C is the category of (quasi-compact, quasi-separated) perfectoid
spaces which are étale over X.

Our first goal is to understand the relationship of Shv(Pro(C)) with the topos Shv(C).
Proposition 3. Let C be as above and let F : Pro(C)°P — Set be a functor. Then:
(1) If F is a sheaf on the category Pro(C), then the restriction F |eov is a sheaf on C.

(2) If F |eov is a sheaf on C and the functor F commutes with filtered colimits, then .F is a sheaf on
Pro(C).

Proof. We will prove (2) and leave (1) as an exercise for the reader. Assume that .% |eor is a sheaf and that
Z commutes with filtered colimits; we wish to show that % is a sheaf. For this, we must prove the following;:

(a) The functor Z carries finite coproducts in Pro(C) to products of sets.

(b) For each effective epimorphism U — X in Pro(€), the diagram
F(X)=>FU)= F(UxxU)
is an equalizer.

We begin with (a). Suppose we are given a finite collection of objects Ci,...,C, € Pro(€), each of which
is the limit of a pro-system {C; o} in C; without loss of generality, we may assume that each of these pro-
systems is indexed by the same category. Then the coproduct C7 II --- II C,, is given by the limit of the
pro-system {Cy o IT---II C,, o}. Since .# carries filtered limits in Pro(C) to filtered colimits of sets, we are
reduced to showing that the canonical map

lim Z(Cra 11+ 11 Cpa) = [ lim#(Cia)
« 1<i<n @



is an isomorphism, which follows from the fact that filtered colimits of sets commute with products and our
assumption that .7 |eer is a sheaf.

We now prove (b). Let f : U — X be an effective epimorphism in Pro(€). Then we can write f as
the limit of a diagram {f, : U, — X, of effective epimorphisms in C. Using our assumption that # is
compatible with filtered limits in Pro(€), we are reduced to showing that the diagram

ling F (Xo) — limg F(Ua) = lim F (Us xx, Ua)-
«@ (6% (6%

This follows from our assumption that .% |eor is a sheaf, since the collection of equalizer diagrams in Set is
closed under filtered colimits. O

The universal property of Pro(C) implies that any presheaf %, € Fun(C°P, Set) admits an essentially
unique extension to a presheaf .# € Fun(Pro(€)°P,8et) which preserves filtered colimits. It follows from
Proposition 3 that % is a sheaf if and only if .% is a sheaf. This proves the following:

Proposition 4. Let Shv.(Pro(€)) denote the full subcategory of Shv(Pro(C)) consisting of those sheaves
F : Pro(C)°P — Set which preserve filtered colimits. Then the restriction functor F — F |eov induces an
equivalence of categories Shv.(Pro(€)) — Shv(C).

Proposition 4 is the starting point of a strategy for understanding the topos Shv(€): its objects can also
be understood as sheaves on the larger coherent category Pro(C), satisfying a certain continuity condition.
This is convenient because Pro(C) contains many useful objects that do not belong to C:

Definition 5. Recall that a model of € is a morphism of coherent categories M : € — Set: that is, a functor
which satisfies the following axioms:

(1) The functor M commutes with finite limits.
(2) The functor M carries effective epimorphisms in € to surjections of sets.
(3) The functor M preserves finite coproducts.

Let Mod(€) denote the full subcategory of Fun(C, Set) spanned by the models of €. By definition, Pro(C)
is the opposite of the full subcategory of Fun(C, 8et) spanned by those functors which satisfy condition (1).
We can therefore identify Mod(€)°P with a full subcategory of Pro(€). Note that objects of Mod(€)°P very
rarely belong to C itself (regarded as a full subcategory of Pro(€) via the Yoneda embedding.

We will say that an object M € Pro(C) is weakly projective if it satisfies conditions (1) and (2). We let
Pro"?(€) denote the full subcategory of Pro(C) spanned by the weakly projective objects.

Example 6. Any model of C is weakly projective when viewed as an object of Pro(C). That is, we have
inclusions

Mod(€) C Pro™?(€)°P? C Pro(€)°? C Fun(C, Set).

Example 7. Suppose that C is the category of finite sets. Then every effective epimorphism in € admits a
section, so condition (2) of Definition 5 is automatic: that is, we have Pro"?(C) = Pro(C).

Remark 8. By definition, an object X € Pro(C) is weakly projective if and only if, for every effective
epimorphism C' — D in €, the map Homp,,(¢)(X,C) — Homp,oe) (X, D) is surjective: that is, every map
from X to D factors through C. It follows that Pro™?(€) is closed under (possibly infinite) coproducts in
Pro(C).

Beware that the map Homp,,e) (X, C) — Homp,oe) (X, D) is generally not surjective if we assume only
that C'— D is an effective epimorphism in € (this is the motivation for the using the modifier “weakly” to
describe the condition of Definition 4).

Remark 9. The full subcategory Pro"?(€) C Pro(C) is closed under filtered inverse limits (since the collec-
tion of surjections in Set is closed under filtered direct limits).



The following result allows us to “resolve” any object of Pro(€) by weakly projective objects:

Proposition 10. For every object X € Pro(C), there exists an effective epimorphism px : A(X) — X in
Pro(@) where A\(X) is weakly projective. Moreover, we can arrange that A(X) is a functor of X, that px is
a natural transformation of functors, and that the functor X commutes with filtered limits.

Proof. We use the small object argument of Quillen. Let {C; — D;};cr be a set of representatives for all
isomorphism classes of effective epimorphisms in €. For each object X € Pro(€), set

cx)=11I 11 ¢ px)=]] 1T D;,

1€l neHomp,o(e) (X,D:) 1€l nEHomp,(e) (X, D;)

where both products are formed in the category Pro(€). We have a tautological map X — D(X); we define
A (X) = O(X) xpcx) X. Note that that there is a projection map A;(X) — X in Pro(C), which is easily
seen to be an effective epimorphism. For n > 1, we define \,,(X) by the formula A\, (X) = A1 (A\,—1(X)), so
that we have an inverse system

e Ag(X) = Aa(X) 5 A(X) - X,

Set A(X) = @An(X). Note that each map f : A(X) — D; factors through f,, : \,,(X) — D; for some n > 0.

By construction, the composite map A,+1(X) = A, (X) In, D; factors through C;, so that f: AM(X) — D;
factors through C;. It follows that A(X) is weakly projective. By inspection, the construction of A(X) (and
the projection map A(X) — X) is functorial in X and commutes with filtered limits. O

We will say that a collection of morphisms {U; — X };cr in Pro™P(€) is a covering if it is a covering in
Pro(€): that is, if there is a finite subset Iy C I such that [[;.; Ui — X is an effective epimorphism in
Pro(€) (note that in this case, [],.; U; is also weakly projective). This determines a Grothendieck topology
on the category Pro™?(C).

i€l

Warning 11. In Lecture 8, we defined the notion of a Grothendieck topology on a category £ under the
assumption that & admits finite limits. In general, the category Pro™?(€) need not admit finite limits. In
such cases, we must replace condition (7'1) appearing in Lecture 8 with the following:

(T'1") For every covering {U; — X} in € and every morphism Y — X in &, there exists a covering {V; — Y}
for which each of the maps V; — Y — X factors through some U;.

We also need to revise the notion of sheaf. A functor % : € — 8et is said to be a sheaf if, for every covering
{U; — X} in &, the canonical map

F(X)— 1&1 F(U)
is a bijection, where the limit is taken over the sieve on X generated by the objects U; (see Definition 13 of
Lecture 9).

Example 12. Let C be the category of finite sets. Then Pro™?(C) = Pro(€) can be identified with the
category of Stone spaces. The preceding topology can be described as follows: a finite collection of maps of
Stone spaces {Y; — X} is a covering if and only if the induced map [[Y; — X is surjective.

Proposition 13. The construction .F s F |prowe(e)or induces an equivalence of categories Shv(Pro(C)) —
Shv(Pro"?(€)). Moreover, a sheaf F : Pro(C)°P — 8Set commutes with filtered colimits if and only if
F |prowe(e)or commutes with filtered colimits.

Proof. Let .% € Shv(Pro(C)). For each object X € Pro(C), let A(X) be defined as in Proposition 11, and
set pu(X) = AMA(X) xx A(X)). We then have an equalizer diagram

F(X) = F(AX)) = F (X)),



so that we can functorially recover .% (X) from the values of % on weakly projective objects. This gives an
explicit left inverse to the restriction functor

Shv(Pro(€)) — Shv(Pro"?(€)) F = F |provr(e)or;

we leave it to the reader to verify that it is a right inverse as well.
It is clear that if .# commutes with filtered colimits, then so does the restriction .Z |pyowr(eyor. The
converse follows from the formula

F(X) = Eq(F (M(X)) = F (X)),

since the constructions X — A(X) and X — u(X) both preserve filtered inverse limits (as functors from
Pro(C) to itself). O

Corollary 14. Let Shv.(Pro™?(C)) be the full subcategory of Shv(Pro™?(C)) spanned by those sheaves .F :
Pro"P(@€)°P — Set which preserve filtered colimits. Then there is a canonical equuialence of categories
Shv(€) ~ Shv.(Pro*?(€)).

Proof. Combine Propositions 14 and 4. O



