Lecture 15: Spaces and Locales

February 28, 2018

In the previous lecture, we introduced the notion of a locale. Every topological space X determines a
locale U(X), given by the poset of open subsets of X. Note that if f : X — Y is a continuous map of
topological spaces, then the formation of inverse images f~% : U(Y) — U(X) preserves arbitrary unions
(which are joins in U(X) and U(Y")) and finite intersections (which are meets in U(X) and U(Y")), and can
therefore be regarded as a morphism of locales from U(X) to U(Y"). Consequently, the construction

X = U(X)

can be regarded as a functor from the category of topological spaces to the category of locales. In this
lecture, we will show that this functor is not too far from being an equivalence of categories.
We now construct a functor in the opposite direction.

Definition 1. Let {0 < 1} be the poset with two elements 0 and 1, which we can identify with the locale
of open subsets of the one-point space .

Let U be any locale. A point of U is a morphism of locales {0 < 1} — U, which is given by a map of posets
z* : U — {0 < 1} which preserves finite meets and arbitrary joins. Note that such a map is determined by
the subset U, = {U € U: 2*(U) = 1} C U, which is required to satisfy the following conditions:

(a) If U < V and U belongs to U,, then V also belongs to Ug. (This guarantees that the map z* is
order-preserving.)

(b) If a join \/ U; belongs to U,, then some U; belongs to U, (this guarantees that the map x* preserves
joins).

(¢) The subset U, is closed under finite meets (this guarantees that the map x* preserves meets).

Note that conditions (a) and (b) are equivalent to the requirement that there exists an element U(x) € U
such that U, = {U € U: U £ U, }; we can define U(z) as the join Vg, U. In this case, we can restate (c)
as follows:

(¢') The element U(x) € U is prime: that is, it is not equal to the largest element 1 € U and, whenever
U(x) =V AW, we have either U(z) =V or U(z) = W.

Remark 2. In the situation of Definition 1, it is useful to think of U, as “the collection of U € U which
contain z” and U(z) as “the largest element of U which does not contain x.”

Definition 3. Let U be a locale. We let Pt(U) denote the collection of all points of U, which we can identify
either with the collection of subsets U, C U satisfying (a), (b), and (c¢), or with the collection of elements
U(z) € U satisfying (¢).

For each U € U, let U C Pt(U) be the collection of all points = € Pt(U) such that U € U,. Note that the
construction U + U carries joins in U to unions of subsets of Pt(U) (by virtue of (b)) and finite meets in U
to finite intersections of subsets of Pt(U) (by virtue of (¢)). It follows that the collection of subsets of Pt(U)
having the form U determines a topology on Pt(U). We will henceforth regard Pt(U) as equipped with this
topology.



Now suppose that we are given a topological space X and a locale U. Note that a map f : X — Pt(U)
is continuous if and only if, for each U € U, the set f~1(U) = {r € X : U € Upy} is open in X. In
this case, we the construction U +— f ~1U determines a morphism of locales from U(X) to U. Conversely, if
g* : U — U(X) is morphism of locales from U(X) to U, then the construction

(xeX)—»{UeclU:xeg U}
determines a continuous map from X to Pt(U). These constructions are mutually inverse:

Proposition 4. For any topological space X and any locale U, we have a canonical bijection
Homrop (X, Pt(U)) =~ Hom fpeqres(U(X), U) = Fun™ (U, U(X)).
Consequently, we have a pair of adjoint functors

X—U(X)
Topological Spaces =——= Locales .
U—sPt(U)

Let X be a topological space. Then we can identify elements of Pt(U(X)) with open subsets U C X
which are prime, in the following sense:

(x) U # X. Moreover, if U is an intersection Vo N V; of open subsets Vp,Vy C X, then either U = V; or
U="V.

We can rephrase this as a condition on the complement K = X — U:

(#') The set K is nonempty. Moreover, if K = Ky U K; written as a union of closed subsets of X, then
either K = Ko or K = K.

We say that a closed subset K C X is irreducible if it satisfies condition (). We have proven:
Proposition 5. Let X be a topological space. Then there is a canonical bijection

{ Irreducible closed subsets K C X } ~{ Points of W(X) }

This bijection carries an irreducible closed subset K C X to the point x of UW(X) given by UW(X), = {U C
X:UNK #0}.

For any topological space X, we have a unit map X — Pt(U(X)), which we can think of as a map of sets
X — {Irreducible closed subsets K C X}.

Unwinding the definitions, we see that this map carries a point x € X to the subset @ CcX.

Definition 6. Let X be a topological space. We say that X is sober if the map
X — {Irreducible closed subsets K C X}.

is bijective. In other words, X is sober if every irreducible closed subset K of X has a unique “generic point”
x € K, characterized by the requirement that K = {z}.

Proposition 7. Let X be a topological space. Then X is sober if and only if the canonical map X —
Pt(U(X)) is a homeomorphism.

Proof. The “only if” direction is obvious (since any homeomorphism is bijective). To prove the converse, we
observe that every open set U C X is the inverse image of an open subset of Pt(U(X)): namely, the open
subset U. O



We now give some examples of sober topological spaces.

Example 8. Let X be a Hausdorff space. Then a subset K C X is closed and irreducible if and only if
K = {z} for some x € X. In particular, every irreducible closed subset of X has a unique generic point, so
that X is sober.

Example 9. Let X be the underlying topological space of a scheme. Then X is sober.
Proposition 10. Let U be a locale. Then the topological space Pt(U) is sober.

Proof. We wish to show that the unit map
upe() : PH(U) — Pt(U(Pt(U)))

is bijective. Let vy : U(Pt(U)) — U be the counit map (regarded as a map of locales), so that the composition

PHU) 2299 pru(Pe(U))) —2 p(u)

is the identity. It follows immediately that upyny) is injective. To show surjectivity, it will suffice to show
that the map of topological spaces Pt(vy() : Pt(U(Pt(U))) — Pt(U) is injective. In other words, it will suffice
to show that a point z of the locale U(Pt(U)) is determined by the set {U € U : # € U}. This is clear,
because the map of posets _

v s U — UPL(U)) U—U

is surjective. is surjective (by definition, every open subset of Pt(U) has the form U for some U € u). O

Corollary 11. Let X be a topological space. Then X is sober if and only it is homeomorphic to Pt(U), for
some locale U.

Definition 12. Let U be a locale. We say that U is spatial if the counit U(Pt(U)) — U is an isomorphism
of locales. In other words, U is spatial if the construction

(U € U) = (U C Pt(U))
determines a bijection from U to the collection of open subsets of Pt(U).

Remark 13. Note that the construction
(U e U) — (U C Pt(W))

is automatically surjective (by the definition of the topology on Pt(U)). Consequently, U is spatial if and
only if it is injective. In other words, U is spatial if it has enough points, in the sense that for any pair of
distinct elements U # V in U, we can find a point x of U which distinguishes U from V' (in the sense that
UelU, and V ¢ U,, or vice versa).

Proposition 14. Let U be a locale. Then U is spatial if and only if it is isomorphic to W(X), for some
topological space X .

Proof. It U is spatial, then it is isomorphic to U(X) for X = Pt(U). Conversely, if X is any topological
space, then the locale U(X) is spatial, since every pair of distinct open sets U,V C X can be distinguished
by a point of X (and therefore also by its image in Pt(U(X))). O

It follows that the adjunction

X-U(X)
Topological Spaces =——= Locales .
U—Pt(U)



restricts to an equivalence of categories
{ Sober topological spaces } ~ { Spatial locales }.

Since every locale of the form U(X) is spatial and every topological space of the form Pt(U) is sober, we also
have the following;:

Corollary 15. The inclusion functor
{ Spatial Locales } — { Locales }

admits a right adjoint, given by the construction U — U(Pt(U)). Concretely, this construction carries a
locale U to the quotient U/ ~, where ~ denotes the equivalence relation

U~V)e (U=V)
Corollary 16. The inclusion functor
{ Sober topological spaces } — { Topological Spaces }

admits a left adjoint, given by the construction X — Pt(U(X)). Concretely, this left adjoint assigns to a
topological space X the collection of all irreducible closed subsets of X, endowed with an appropriate topology.

Not every topological space is sober. For example, if X is a topological space with the trivial topology
(defined by U(X) = {0, X}), then X is sober if and only if it has cardinality < 1. However, this can be
viewed as a pathology of the notion of topological space: we are generally not very interested in topological
spaces with the trivial topology. More generally, replacing a topological space X by its “soberification”
Pt(U(X)) is in practice an inoffensive procedure.

Example 17. Let X be an algebraic variety over C, which we identify with its set of C-valued points. Then
we can endow X with the Zariski topology. This space is usually not sober (unless X is O-dimensional): its
irreducible closed subsets are the subvarieties of X. The associated sober space Pt(U(X)) is the underlying
topological space of X as a scheme (where every subvariety has a generic point).

By contrast, replacing a locale U by the associated spatial locale U(Pt(U)) is often very destructive. In
this class, we will meet some interesting and useful examples of locales which have no points at all.

Example 18 (Deligne). Let U denote the collection of equivalence classes of measurable subsets of the
interval [0, 1], where two measurable subsets X and Y are considered to be equivalent if X —Y and ¥ — X
have measure zero. Then U is locale (in fact, it is a complete Boolean algebra) for which the associated
topological space Pt(U) is empty.



