Lecture 14X: Pro-Objects
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Let € and D be categories which admit finite limits. We let Fun]ex((‘f, D) denote the full subcategory of
Fun(€, D) spanned by those functors which are left ezact: that is, which preserve finite limits.

Definition 1. Let € be an essentially small category which admits finite limits. We let Pro(C) denote the
category Fun'®(C, Set)°P. We will refer to the objects of Pro(€) as pro-objects of €, and to Pro(€) as the
category of pro-objects of C.

Remark 2. Let C be a category which admits finite limits. For each object C' € €, the functor D —
Home(C, D) preserves finite limits, and can therefore be regarded as an object of Pro(C). The Yoneda
embedding C' +— Home(C, o) induces a fully faithful functor € — Pro(C€). In what follows, we will generally
abuse notation by identifying C with its essential image in Pro(C).

Remark 3. In the category of sets, the formation of finite limits commutes with filtered colimits. It follows
that the full subcategory Fun'®*(C,Set) is closed under filtered colimits in Fun(€,8et). In particular, the
category Fun'® (@, Set) admits filtered colimits, so that Pro(€) = Fun'®(€, Set)°P admits filtered limits.

Example 4. Let C be a small category which admits finite limits. Suppose we are given a diagram {C4, }oca0r
indexed by (the opposite of) a filtered category A. Then we can also regard {C,} as a diagram in the category
Pro(€) (via the Yoneda embedding), where we can take the inverse limit. We will abuse notation by denoting
this inverse limit also by {C,}. When viewed as a functor from € to the category of sets, it is given by the
construction D +— lim | Home(Cy, D).

Remark 5. Let € be an essentially small category which admits finite limits, and let F' : ¢ — Set be a
functor. Then F' has a canonical presentation

lim Home(C, o)
(Cm)eA

has a colimit of corepresentable functors, indexed by the category A whose objects are pairs (C,7n) where
C € Cand n € F(C), where

Hom, ((C,n), (C", 1)) = {f € Home(C",C) : F(f)(n) = n}-

If the functor F' preserves finite limits, then the category A is filtered. It follows that every object of Pro(C)
has a (canonical) presentation as a filtered limit of objects of C.

Remark 6. Let C be an essentially small category which admits finite limits. From the above discussion,
we see that the category Pro(€) can be described more informally as follows:

e The objects of Pro(€) are diagrams {C,} in €, indexed by (the opposite of) a small filtered category.

e Given two such diagrams {C,} and {Dg}, we have

HOIrlprO((g)({C'a}7 {Dlg}) = %i?mHompro(@)({Ca}, Dﬂ) = L%HH_I)HHOHI@(CQ, DB).



Remark 7. The category Pro(C) can be characterized by a universal property. Let D be any category which
admits small filtered limits, and let Fun'(Pro(€), D) be the full subcategory of Fun(Pro(€), D) spanned by
those functors which preserve small filtered limits. Then composition with the inclusion € < Pro(€) induces
an equivalence of categories Fun’(Pro(€), D) — Fun(€, D). In other words, every functor f : ¢ — D admits
an essentially unique extension to a functor F': Pro(€) — D which preserves small filtered limits.

Let € be an essentially small category which admits finite limits and let J be any small category. Since
Pro(€) admits small filtered limit, the functor category Fun(J,Pro(C)) also admits small filtered limits
(which are computed pointwise). Consequently, the inclusion functor Fun(J, €) — Fun(J, Pro(€)) admits an
essentially unique extension to a functor

Pro(Fun(J, €)) — Fun(J, Pro(C))
which preserves small filtered limits. We will use the following standard result:

Proposition 8. Let C be an essentially small category which admits finite limits and let I be a finite poset.
Then the map
Pro(Fun(7, €)) — Fun(I, Pro(C))

is an equivalence of categories. In particular, every diagram I — Pro(C) can be written as a filtered limit of
diagrams I — C.

Example 9. Applying Proposition 8 in the case I = {0 < 1}, we see that every morphism f : C' — D in
Pro(C) can be obtained as the limit of a filtered diagram of morphisms {f, : C,, = D4} between objects of
C.

Corollary 10. Let C be an essentially small category which admits finite limits. Then the category Pro(C)
admits finite limits. Moreover, the inclusion € < Pro(C) preserves finite limits.

Proof. Let {C;}icr be a finite diagram in € having a limit C' € €, and let {D,} be a filtered diagram in C
which we identify with an object of Pro(€). Then
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where we have invoked the fact that filtered colimits commute with finite limits in the category of sets. This
proves that the inclusion € < Pro(€) preserves finite limits. In particular, Pro(€) has an initial object. To
complete the proof, it will suffice to show that every diagram C — D <« E in Pro(€) admits a fiber product.
Using Proposition 8, we can realize our diagram as a filtered limit of diagrams {C, — D, + E,} in C.
Then the filtered diagram {C,, X p_ F,} represents a fiber product C xp E in the category Pro(C). O

We will be particularly interested in studying Pro(C) in the case where C is a pretopos.

Proposition 11. Let C be a category which admits finite limits. Assume that every morphism f: X — Z
in C factors as a composition X Sy Z, where g is an effective epimorphism and h is a monomorphism.

Then every morphism in Pro(C) factors as a composition X Ly n Z, where g is an effective epimorphism
and h is a monomorphism.



Proof. Let f : X — Z be a morphism in Pro(€), which we can realize as a filtered limit of morphisms

{fa : Xoa — Z4} in C. Factor each f, as a composition X, gy, LN Z, where g, is an effective
epimorphism and h, is a monomorphism. This factorization is functorial, so we can regard ¥ = {Y,}
as a pro-object of € equipped with morphisms g : X — Y and h : Y — Z with f = hog. Note that
Y xzY ~{Y, xz, Yo} ~{Y,} =Y, so that h is a monomorphism in Pro(€). We will complete the proof
by showing that g is an effective epimorphism in Pro(€). For this, we wish to show that for each object
C € Pro(@), the diagram

HomPro(C) (K C) - HomPro(C) (Xa C) = HomPro(C) (X xy X, C)

is an equalizer. Writing C' as a filtered limit of objects of C, we can assume that C' € C. In this case, the
diagram above is given by a filtered colimit of diagrams

Home (Y, C) — Home (X, C) =% Home (X, Xy, Xa, C).

We conclude by observing that each of these diagrams is an equalizer (since g, is an effective epimorphism
in @), and the collection of equalizer diagrams in Set is closed under filtered colimits. O

Remark 12. The proof of Proposition 11 shows that a morphism f : X — Y in Pro(C) is a monomorphism
(effective epimorphism) if and only if it can be realized as a filtered limit of morphisms {f, : X, — Ya.}
which are monomorphisms (effective epimorphisms) in C.

Remark 13. In the situation of Proposition 11, suppose that the formation of images in C is compatible
with pullback (or equivalently, the collection of effective epimorphisms is stable under pullback). Then the
category Pro(C) has the same property: any diagram X 1y v & Z can be realized as a filtered limit of
diagrams {X,, ECN y, &> Zu}, in which case we have

Im(X Xy 4 — Z) ~ {Im(Xa Xy, o — Za)
{Im(Xy — Ya) Xv, Za}
Im(X - Y) xy Z.
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Let C be an essentially small category which admits finite limits. Then FunleX(G,Set) is closed under
limits in Set, and therefore admits small limits. It follows that the category Pro(C) admits small colimits.
Moreover, the inclusion functor € < Pro(C) preserves all colimits which exist in € (this is immediate from
the definitions).

Proposition 14. Let C be an essentially small category which admits finite limits and finite coproducts.
Then the category Pro(C) admits finite coproducts, given by the formula

{Ca} [T{Ds} = {Ca ]| Ds}-

Proof. Tt suffices to observe that for any object E € C, we have
lim Home (Co [ [ Ds, E) = (lig Home(Ca, E)) x (lim Home (Dg, E)).
a,f « B

O

Given objects C, D € Pro(C), we can use Proposition 8 to write C' = {C,} and D = {D,} as limits of
diagrams indexed by the same category. In this case, the coproduct C'II D is given by {C, II D, }.



Remark 15. In the situation of Proposition 14, suppose that the formation of coproducts in € is preserved
by pullback. Then the same is true in Pro(€). Given morphisms f:C - X, g: D — X, and h: Y —» X
in Pro(€), we can apply Proposition 8 to realize f, g, and h as filtered limits of maps f, : Co — Xa,
go : Do = X, and hy : Y, — X, (indexed by the same category), so that both (C II D) xx Y and
(CxxY)II (D xxY) are represented by the diagram

{(Co I Dy) xx, Yot =2{(Co xx, Yo) I (Dy xx, Yao)}

Remark 16. In the situation of Proposition 14, suppose that coproducts in € are disjoint. Then, for every
pair of objects C = {Cy,} and D = {D,} in €, we deduce that

C xcnup D ~{Cq lc,up, Da} = {0}
is an initial object of Pro(C): that is, coproducts are disjoint in Pro(C).
Combining the above results, we obtain the following:

Proposition 17. Let C be an essentially small coherent category with disjoint coproducts (for example, a
pretopos). Then Pro(C) is also a coherent category with disjoint coproducts.

Warning 18. It is not true that if € is a pretopos, then Pro(C) is also a pretopos. For example, let € be the
category of finite sets. Then the category Pro(C) of profinite sets can be identified with the category of Stone
spaces: that is, the category whose objects are totally disconnected compact Hausdorff spaces, and whose
morphisms are continuous maps. Let C' € Pro(€) be the Cantor set, which we identify with the collection of
infinite sequences (n1,n2,ng,...) where n; € {0,1}. The construction

n:
(n1,n2,m3,...) — ZQ—Z

defines a continuous surjection C' — [0,1], and the fiber product R = C X[ 1) C can be regarded as an
equivalence relation on C' in the category of Stone spaces. However, this equivalence relation is not effective:
given any Stone space X, a continuous map C' — X which equalizes the two projection maps R = C' must
factor through a continuous map [0,1] — X. Such a map is automatically constant (since X is totally
disconnected), so that C x x C' = C x C is larger than R.



