Lecture 14X: Pro-Objects

March 19, 2018

Let \mathcal{C} and \mathcal{D} be categories which admit finite limits. We let $\operatorname{Fun}^{\operatorname{lex}}(\mathcal{C}, \mathcal{D})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{C}, \mathcal{D})$ spanned by those functors which are *left exact*: that is, which preserve finite limits.

Definition 1. Let \mathcal{C} be an essentially small category which admits finite limits. We let $\operatorname{Pro}(\mathcal{C})$ denote the category $\operatorname{Fun}^{\operatorname{lex}}(\mathcal{C},\operatorname{Set})^{\operatorname{op}}$. We will refer to the objects of $\operatorname{Pro}(\mathcal{C})$ as $\operatorname{pro-objects}$ of \mathcal{C} , and to $\operatorname{Pro}(\mathcal{C})$ as the category of $\operatorname{pro-objects}$ of \mathcal{C} .

Remark 2. Let \mathcal{C} be a category which admits finite limits. For each object $C \in \mathcal{C}$, the functor $D \mapsto \operatorname{Hom}_{\mathcal{C}}(C,D)$ preserves finite limits, and can therefore be regarded as an object of $\operatorname{Pro}(\mathcal{C})$. The Yoneda embedding $C \mapsto \operatorname{Hom}_{\mathcal{C}}(C,\bullet)$ induces a fully faithful functor $\mathcal{C} \to \operatorname{Pro}(\mathcal{C})$. In what follows, we will generally abuse notation by identifying \mathcal{C} with its essential image in $\operatorname{Pro}(\mathcal{C})$.

Remark 3. In the category of sets, the formation of finite limits commutes with filtered colimits. It follows that the full subcategory $\operatorname{Fun}^{\operatorname{lex}}(\mathcal{C},\operatorname{Set})$ is closed under filtered colimits in $\operatorname{Fun}(\mathcal{C},\operatorname{Set})$. In particular, the category $\operatorname{Fun}^{\operatorname{lex}}(\mathcal{C},\operatorname{Set})$ admits filtered colimits, so that $\operatorname{Pro}(\mathcal{C}) = \operatorname{Fun}^{\operatorname{lex}}(\mathcal{C},\operatorname{Set})^{\operatorname{op}}$ admits filtered limits.

Example 4. Let \mathcal{C} be a small category which admits finite limits. Suppose we are given a diagram $\{C_{\alpha}\}_{{\alpha}\in\mathcal{A}^{\mathrm{op}}}$ indexed by (the opposite of) a filtered category \mathcal{A} . Then we can also regard $\{C_{\alpha}\}$ as a diagram in the category $\mathrm{Pro}(\mathcal{C})$ (via the Yoneda embedding), where we can take the inverse limit. We will abuse notation by denoting this inverse limit also by $\{C_{\alpha}\}$. When viewed as a functor from \mathcal{C} to the category of sets, it is given by the construction $D \mapsto \varinjlim_{\alpha} \mathrm{Hom}_{\mathcal{C}}(C_{\alpha}, D)$.

Remark 5. Let \mathcal{C} be an essentially small category which admits finite limits, and let $F:\mathcal{C}\to \mathcal{S}$ et be a functor. Then F has a canonical presentation

$$\varinjlim_{(C,\eta)\in\mathcal{A}}\mathrm{Hom}_{\mathfrak{C}}(C,\bullet)$$

has a colimit of corepresentable functors, indexed by the category \mathcal{A} whose objects are pairs (C, η) where $C \in \mathcal{C}$ and $\eta \in F(C)$, where

$$\operatorname{Hom}_{\mathcal{A}}((C, \eta), (C', \eta')) = \{ f \in \operatorname{Hom}_{\mathcal{C}}(C', C) : F(f)(\eta') = \eta \}.$$

If the functor F preserves finite limits, then the category \mathcal{A} is filtered. It follows that every object of $Pro(\mathcal{C})$ has a (canonical) presentation as a filtered limit of objects of \mathcal{C} .

Remark 6. Let \mathcal{C} be an essentially small category which admits finite limits. From the above discussion, we see that the category $Pro(\mathcal{C})$ can be described more informally as follows:

- The objects of Pro(\mathcal{C}) are diagrams $\{C_{\alpha}\}$ in \mathcal{C} , indexed by (the opposite of) a small filtered category.
- Given two such diagrams $\{C_{\alpha}\}\$ and $\{D_{\beta}\}\$, we have

$$\operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(\{C_{\alpha}\},\{D_{\beta}\}) = \varprojlim_{\beta} \operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(\{C_{\alpha}\},D_{\beta}) = \varprojlim_{\beta} \varinjlim_{\alpha} \operatorname{Hom}_{\mathfrak{C}}(C_{\alpha},D_{\beta}).$$

Remark 7. The category $\operatorname{Pro}(\mathcal{C})$ can be characterized by a universal property. Let \mathcal{D} be any category which admits small filtered limits, and let $\operatorname{Fun}'(\operatorname{Pro}(\mathcal{C}), \mathcal{D})$ be the full subcategory of $\operatorname{Fun}(\operatorname{Pro}(\mathcal{C}), \mathcal{D})$ spanned by those functors which preserve small filtered limits. Then composition with the inclusion $\mathcal{C} \hookrightarrow \operatorname{Pro}(\mathcal{C})$ induces an equivalence of categories $\operatorname{Fun}'(\operatorname{Pro}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{D})$. In other words, every functor $f: \mathcal{C} \to \mathcal{D}$ admits an essentially unique extension to a functor $F: \operatorname{Pro}(\mathcal{C}) \to \mathcal{D}$ which preserves small filtered limits.

Let \mathcal{C} be an essentially small category which admits finite limits and let \mathcal{I} be any small category. Since $\operatorname{Pro}(\mathcal{C})$ admits small filtered limit, the functor category $\operatorname{Fun}(\mathcal{I},\operatorname{Pro}(\mathcal{C}))$ also admits small filtered limits (which are computed pointwise). Consequently, the inclusion functor $\operatorname{Fun}(\mathcal{I},\mathcal{C}) \hookrightarrow \operatorname{Fun}(\mathcal{I},\operatorname{Pro}(\mathcal{C}))$ admits an essentially unique extension to a functor

$$\operatorname{Pro}(\operatorname{Fun}(\mathfrak{I},\mathfrak{C})) \to \operatorname{Fun}(\mathfrak{I},\operatorname{Pro}(\mathfrak{C}))$$

which preserves small filtered limits. We will use the following standard result:

Proposition 8. Let C be an essentially small category which admits finite limits and let I be a finite poset. Then the map

$$\operatorname{Pro}(\operatorname{Fun}(I,\mathcal{C})) \to \operatorname{Fun}(I,\operatorname{Pro}(\mathcal{C}))$$

is an equivalence of categories. In particular, every diagram $I \to \text{Pro}(\mathfrak{C})$ can be written as a filtered limit of diagrams $I \to \mathfrak{C}$.

Example 9. Applying Proposition 8 in the case $I = \{0 < 1\}$, we see that every morphism $f : C \to D$ in $Pro(\mathcal{C})$ can be obtained as the limit of a filtered diagram of morphisms $\{f_{\alpha} : C_{\alpha} \to D_{\alpha}\}$ between objects of \mathcal{C} .

Corollary 10. Let C be an essentially small category which admits finite limits. Then the category Pro(C) admits finite limits. Moreover, the inclusion $C \hookrightarrow Pro(C)$ preserves finite limits.

Proof. Let $\{C_i\}_{i\in I}$ be a finite diagram in \mathcal{C} having a limit $C\in\mathcal{C}$, and let $\{D_\alpha\}$ be a filtered diagram in \mathcal{C} which we identify with an object of $Pro(\mathcal{C})$. Then

$$\operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(\{D_{\alpha}\}, C) \simeq \varinjlim_{\alpha} \operatorname{Hom}_{\mathfrak{C}}(D_{\alpha}, C)$$

$$\simeq \varinjlim_{\alpha} \varprojlim_{i} \operatorname{Hom}_{\mathfrak{C}}(D_{\alpha}, C_{i})$$

$$\simeq \varprojlim_{i} \varinjlim_{\alpha} \operatorname{Hom}_{\mathfrak{C}}(D_{\alpha}, C_{i})$$

$$\simeq \varprojlim_{i} \operatorname{Hom}_{\operatorname{Pro}(\mathfrak{C})}(\{D_{\alpha}\}, C).$$

where we have invoked the fact that filtered colimits commute with finite limits in the category of sets. This proves that the inclusion $\mathcal{C} \hookrightarrow \operatorname{Pro}(\mathcal{C})$ preserves finite limits. In particular, $\operatorname{Pro}(\mathcal{C})$ has an initial object. To complete the proof, it will suffice to show that every diagram $C \to D \leftarrow E$ in $\operatorname{Pro}(\mathcal{C})$ admits a fiber product. Using Proposition 8, we can realize our diagram as a filtered limit of diagrams $\{C_{\alpha} \to D_{\alpha} \leftarrow E_{\alpha}\}$ in \mathcal{C} . Then the filtered diagram $\{C_{\alpha} \times_{D_{\alpha}} E_{\alpha}\}$ represents a fiber product $C \times_D E$ in the category $\operatorname{Pro}(\mathcal{C})$.

We will be particularly interested in studying $Pro(\mathcal{C})$ in the case where \mathcal{C} is a pretopos.

Proposition 11. Let \mathcal{C} be a category which admits finite limits. Assume that every morphism $f: X \to Z$ in \mathcal{C} factors as a composition $X \xrightarrow{g} Y \xrightarrow{h} Z$, where g is an effective epimorphism and h is a monomorphism. Then every morphism in $\operatorname{Pro}(\mathcal{C})$ factors as a composition $X \xrightarrow{g} Y \xrightarrow{h} Z$, where g is an effective epimorphism and h is a monomorphism.

Proof. Let $f: X \to Z$ be a morphism in $\operatorname{Pro}(\mathcal{C})$, which we can realize as a filtered limit of morphisms $\{f_\alpha: X_\alpha \to Z_\alpha\}$ in \mathcal{C} . Factor each f_α as a composition $X_\alpha \xrightarrow{g_\alpha} Y_\alpha \xrightarrow{h_\alpha} Z_\alpha$, where g_α is an effective epimorphism and h_α is a monomorphism. This factorization is functorial, so we can regard $Y = \{Y_\alpha\}$ as a pro-object of \mathcal{C} equipped with morphisms $g: X \to Y$ and $h: Y \to Z$ with $f = h \circ g$. Note that $Y \times_Z Y \simeq \{Y_\alpha \times_{Z_\alpha} Y_\alpha\} \simeq \{Y_\alpha\} = Y$, so that h is a monomorphism in $\operatorname{Pro}(\mathcal{C})$. We will complete the proof by showing that g is an effective epimorphism in $\operatorname{Pro}(\mathcal{C})$. For this, we wish to show that for each object $C \in \operatorname{Pro}(\mathcal{C})$, the diagram

$$\operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(Y,C) \to \operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X,C) \rightrightarrows \operatorname{Hom}_{\operatorname{Pro}(\mathcal{C})}(X \times_Y X,C)$$

is an equalizer. Writing C as a filtered limit of objects of C, we can assume that $C \in C$. In this case, the diagram above is given by a filtered colimit of diagrams

$$\operatorname{Hom}_{\mathfrak{C}}(Y_{\alpha}, C) \to \operatorname{Hom}_{\mathfrak{C}}(X_{\alpha}, C) \rightrightarrows \operatorname{Hom}_{\mathfrak{C}}(X_{\alpha} \times_{Y_{\alpha}} X_{\alpha}, C).$$

We conclude by observing that each of these diagrams is an equalizer (since g_{α} is an effective epimorphism in \mathcal{C}), and the collection of equalizer diagrams in Set is closed under filtered colimits.

Remark 12. The proof of Proposition 11 shows that a morphism $f: X \to Y$ in Pro(\mathcal{C}) is a monomorphism (effective epimorphism) if and only if it can be realized as a filtered limit of morphisms $\{f_{\alpha}: X_{\alpha} \to Y_{\alpha}\}$ which are monomorphisms (effective epimorphisms) in \mathcal{C} .

Remark 13. In the situation of Proposition 11, suppose that the formation of images in \mathcal{C} is compatible with pullback (or equivalently, the collection of effective epimorphisms is stable under pullback). Then the category $\text{Pro}(\mathcal{C})$ has the same property: any diagram $X \xrightarrow{f} Y \xleftarrow{g} Z$ can be realized as a filtered limit of diagrams $\{X_{\alpha} \xrightarrow{f_{\alpha}} Y_{\alpha} \xleftarrow{g_{\alpha}} Z_{\alpha}\}$, in which case we have

$$\begin{array}{rcl} \operatorname{Im}(X\times_YZ\to Z) & \simeq & \{\operatorname{Im}(X_\alpha\times_{Y_\alpha}Z_\alpha\to Z_\alpha)\\ & \simeq & \{\operatorname{Im}(X_\alpha\to Y_\alpha)\times_{Y_\alpha}Z_\alpha\}\\ & \simeq & \operatorname{Im}(X\to Y)\times_YZ. \end{array}$$

Let \mathcal{C} be an essentially small category which admits finite limits. Then $\operatorname{Fun}^{\operatorname{lex}}(\mathcal{C},\operatorname{Set})$ is closed under limits in Set, and therefore admits small limits. It follows that the category $\operatorname{Pro}(\mathcal{C})$ admits small colimits. Moreover, the inclusion functor $\mathcal{C} \hookrightarrow \operatorname{Pro}(\mathcal{C})$ preserves all colimits which exist in \mathcal{C} (this is immediate from the definitions).

Proposition 14. Let C be an essentially small category which admits finite limits and finite coproducts. Then the category Pro(C) admits finite coproducts, given by the formula

$${C_{\alpha}}\coprod {D_{\beta}} = {C_{\alpha}\coprod D_{\beta}}.$$

Proof. It suffices to observe that for any object $E \in \mathcal{C}$, we have

$$\varinjlim_{\alpha,\beta} \operatorname{Hom}_{\mathfrak{C}}(C_{\alpha} \coprod D_{\beta}, E) \simeq (\varinjlim_{\alpha} \operatorname{Hom}_{\mathfrak{C}}(C_{\alpha}, E)) \times (\varinjlim_{\beta} \operatorname{Hom}_{\mathfrak{C}}(D_{\beta}, E)).$$

Given objects $C, D \in \text{Pro}(\mathcal{C})$, we can use Proposition 8 to write $C = \{C_{\alpha}\}$ and $D = \{D_{\alpha}\}$ as limits of diagrams indexed by the same category. In this case, the coproduct $C \coprod D$ is given by $\{C_{\alpha} \coprod D_{\alpha}\}$.

Remark 15. In the situation of Proposition 14, suppose that the formation of coproducts in \mathcal{C} is preserved by pullback. Then the same is true in $\operatorname{Pro}(\mathcal{C})$. Given morphisms $f: C \to X$, $g: D \to X$, and $h: Y \to X$ in $\operatorname{Pro}(\mathcal{C})$, we can apply Proposition 8 to realize f, g, and h as filtered limits of maps $f_{\alpha}: C_{\alpha} \to X_{\alpha}$, $g_{\alpha}: D_{\alpha} \to X_{\alpha}$, and $h_{\alpha}: Y_{\alpha} \to X_{\alpha}$ (indexed by the same category), so that both $(C \coprod D) \times_X Y$ and $(C \times_X Y) \coprod (D \times_X Y)$ are represented by the diagram

$$\{(C_\alpha \amalg D_\alpha) \times_{X_\alpha} Y_\alpha\} \simeq \{(C_\alpha \times_{X_\alpha} Y_\alpha) \amalg (D_\alpha \times_{X_\alpha} Y_\alpha)\}.$$

Remark 16. In the situation of Proposition 14, suppose that coproducts in \mathcal{C} are disjoint. Then, for every pair of objects $C = \{C_{\alpha}\}$ and $D = \{D_{\alpha}\}$ in \mathcal{C} , we deduce that

$$C \times_{C \coprod D} D \simeq \{C_{\alpha} \coprod_{C_{\alpha} \coprod D_{\alpha}} D_{\alpha}\} = \{\emptyset\}$$

is an initial object of $Pro(\mathcal{C})$: that is, coproducts are disjoint in $Pro(\mathcal{C})$.

Combining the above results, we obtain the following:

Proposition 17. Let C be an essentially small coherent category with disjoint coproducts (for example, a pretopos). Then Pro(C) is also a coherent category with disjoint coproducts.

Warning 18. It is not true that if \mathcal{C} is a pretopos, then $Pro(\mathcal{C})$ is also a pretopos. For example, let \mathcal{C} be the category of finite sets. Then the category $Pro(\mathcal{C})$ of profinite sets can be identified with the category of Stone spaces: that is, the category whose objects are totally disconnected compact Hausdorff spaces, and whose morphisms are continuous maps. Let $C \in Pro(\mathcal{C})$ be the Cantor set, which we identify with the collection of infinite sequences (n_1, n_2, n_3, \ldots) where $n_i \in \{0, 1\}$. The construction

$$(n_1, n_2, n_3, \ldots) \mapsto \sum \frac{n_i}{2^i}$$

defines a continuous surjection $C \to [0,1]$, and the fiber product $R = C \times_{[0,1]} C$ can be regarded as an equivalence relation on C in the category of Stone spaces. However, this equivalence relation is *not* effective: given any Stone space X, a continuous map $C \to X$ which equalizes the two projection maps $R \rightrightarrows C$ must factor through a continuous map $[0,1] \to X$. Such a map is automatically constant (since X is totally disconnected), so that $C \times_X C = C \times C$ is larger than R.