Lecture 13: Elimination of Imaginaries

February 23, 2018

Let us now return to the discussion of coherent topoi from Lecture 11. Recall that, if X is a coherent
topos, then we can identify X with Shv(Xcon), where Xeon C X is the full subcategory of coherent objects.
We now note a few closure properties of this subcategory.

Lemma 1. Let X be a coherent topos. Then the collection of coherent objects is closed under finite coproducts.

Proof. Let {X;}:,cr be a collection of coherent objects of X indexed by a finite set I, having coproduct
X = I],c; Xi- Then X is quasi-compact; we claim that it is also quasi-separated. Choose quasi-compact
objects U,V € X with maps U — X «+ V. Foreachi € I, set U; = U xx X; and V; = V xx X;.
Then U xx V can be identified with the coproduct Hie ;Ui xx, Vi. Since U; and V; are quasi-compact
and X; is quasi-separated, the fiber product U; xx, V; is also quasi-compact. It follows that U xx V is
quasi-compact. O

Lemma 2. Let X be a coherent topos. Suppose that we are given an effective epimorphism f : U — X in
X. If U is coherent and the equivalence relation U X x U is quasi-compact, then X is coherent.

Proof. Since X is a quotient of U, it is quasi-compact. We will show that it is quasi-separated by verifying
condition (*) of Lecture 11. Suppose we are given a quasi-compact object Y and a pair of maps g,¢9' : ¥ —
X; we wish to show that the equalizer Eq(Y = X) is quasi-compact. Choose an effective epimorphism
Y' = (UxU) xxxx Y, where Y’ is quasi-compact. Then we have an effective epimorphism

Eq(Y' = X) =Y’ xy Eq(Y = X) = Eq(Y = X).

It will therefore suffice to show that Eq(Y’ = X) is quasi-compact. We may therefore replace Y by Y’
and thereby reduce to the case where g = fog and ¢ = f og for some pair of maps g,¢' : Y — U. In
this case, we have a canonical isomorphism Eq(Y = X) ~ (Y xyxy (U xx U)). Since Y and U xx U are
quasi-compact and U x U is quasi-separated, it follows that Eq(Y = X) is quasi-compact, as desired. O

Proposition 3. Let X be a coherent topos and let Xcon € X be the full subcategory spanned by the coherent
objects. Then Xcon is an (essentially small) pretopos.

Proof. We proved in Lecture 9 that X is a pretopos. In particular, it admits finite limits, finite coproducts,
and every equivalence relation R C U x U can be obtained as the fiber product U x x U, for some effective
epimorphism U — X. We proved in Lecture 11 that the subcategory Xcon € X is closed under the formation
of finite limits, and Lemmas 1 and 2 guarantee that it is also closed finite coproducts, and quotients by
equivalence relations. From this it is easy to see that X is also a pretopos (check this as an exercise), and
we saw in Lecture 11 that it is essentially small. O

Let C be a coherent category. Recall that € can be equipped with a Grothendieck topology, where a
collection of morphisms {u; : U; — X};er is a covering if there exists a finite subset Iy C I such that
X = vz‘elo Im(u;). In Lecture 8, we saw that this Grothendieck topology is subcanonical: that is, the
Yoneda embedding determines a functor h : € — Shv(€). Moreover, it is also finitary, so that Shv(C) is a
coherent topos and the functor h takes values in the subcategory Shv(€)con € Shv(C) of coherent objects.



Exercise 4. Let C and D be coherent categories and let f : € — D be a functor which preserves finite
limits. Show that the following conditions are equivalent:

(1) The functor f is a morphism of coherent categories: that is, it preserves effective epimorphisms and
(finite) joins of subobjects.

(2) The functor f carries each covering {U; — X} in C to a covering {f(U;) — f(X)}ier in D.
Proposition 5. Let C be a coherent category and let h : € — Shv(C) be the Yoneda embedding. Then:

(1) Let & be a coherent object of Shv(C) and let F C & be a coherent subobject. If & belongs to the
essential image of h, then so does F.

(2) If C is a pretopos, then the Yoneda embedding h induces an equivalence of categories € — Shv(C)con-

Proof. We first prove (1). Assume that 4 = hx for some object X € C. Let .% C ¢ be a coherent subobject,
and choose a covering {hy, — % };cr in Shv(€). Since .# is quasi-compact, we can assume that I is finite.
Note that each of the maps hy, — .# can be identified with a map from hy, to hx, and therefore (by
Yoneda’s lemma) arises from a map u; : U; — X in the category C. Since the category € is coherent, we can
form the join Xo = \/;.; Im(u;). Since the functor h preserves images and joins of subobjects (Exercise 4),
it follows that .# ~ hx, belongs to the essential image of h.

We now prove (2). The Yoneda embedding h : € — Shv(C) is a morphism of coherent categories (Exercise
4), and Shv(@) is a pretopos. If € is also a pretopos, then h preserves finite coproducts. Let .% € Shv(C) be
a coherent object, and choose a covering {hx, — .7 }ics. Since Z is quasi-compact, we can assume that I
is finite. Setting X = [[, X; (and noting that h preserves coproducts), we obtain an effective epimorphism
hx — Z. Note that hx X4 hx can be identified with a subobject of hxxx. Using (1), we can write
hx X hx = hg for some subobject R C X x X. Then R is an equivalence relation on X, and our
assumption that € is a pretopos guarantees that we have R = X xy X for some effective epimorphism
X — Y. It then follows that .# ~ hy belongs to the essential image of h. O

It follows from Proposition 5 that the datum of a coherent topos X is equivalent to the datum of an
essentially small pretopos C: from an essentially small pretopos € we can construct a coherent topos Shv(C),
and from a coherent topos X we can extract an essentially small pretopos X.on; these processes are mutually
inverse to one another. Beware, however, that the 2-category of pretopoi (with maps given by morphisms of
coherent categories) is not quite equivalent to the 2-category of coherent topoi (with maps given by geometric
morphisms): see Corollary 7 below.

Proposition 6. Let C be a small coherent category and let X be a topos. Then composition with the Yoneda
embedding h : € — Shv(C) induces a fully faithful embedding

Fun*(Shv(€),X) — Fun(C, X),
whose essential image consists of those functors f : € — X which are morphisms of coherent categories.

Proof. By virtue of the main result of Lecture 12, it will suffice to show that a functor f : € — X is a
morphism of coherent categories if and only if it preserves finite limits and carries coverings in € to coverings
in X. This is a special case of Exercise 4.

O

Corollary 7. Let C be a small coherent category and let D be a small pretopos. Then the category
Fun®®(@, D) of morphisms of coherent categories from € to D can be identified with the full subcategory
of Fun*(Shv (@), Shv(D)) spanned by those geometric morphisms f* : Shv(€) — Shv(D) which carry coherent
objects to coherent objects.



Proof. Set Shv(D). Let us abuse notation by identifying D with the full subcategory Shv(D)¢on of coherent
objects of Shv(D) (Proposition 5). Then Proposition 6 supplies an equivalence Fun*(Shv(€),Shv(D)) ~
Fun®" (€, Shv(D)). It will therefore suffice to show that a morphism of coherent categories f : € — Shv(D)
sends each object of € into Shv(D)eon if and only if the induced geometric morphism F : Shv(€) — Shv(D)
carries each coherent object of Shv(€) into Shv(D)con. The “if” direction is obvious; we leave the converse
as an exercise. 0

Construction 8. Let € be a small coherent category. We let Ceoq denote the full subcategory of Shv(C)
spanned by the coherent objects. Note that the Yoneda embedding h : € — Shv(€) determines a morphism
of coherent categories h : € — Ceq.

Proposition 9. Let C be a small coherent category. Then the functor h: € — Coq exhibits Coq as a pretopos
completion of C, in the sense of Lecture 7.

Proof. Let D be a pretopos; we wish to show that composition with & induces an equivalence Fun®" (Ceq, D) —
Fun®” (@, D). Writing D as a filtered union of small pretopoi, we can reduce to the case where D is essentially
small. Using Proposition 5, we can reduce to the case where D = Yo, where Y is a coherent topos.

Set XX = Shv(€). Then X is a coherent topos, and can therefore be identified with the category of sheaves
Shv(Xeon) = Shv(€Ceq). Let Fun'(X,Y) denote the full subcategory of Fun(X,Y) spanned by those functors
which preserve small colimits, finite limits, and coherent objects. We have restriction functors

Fun’(X,Y) — Fun®"?(Ceq, D) — Fun®"(€, D).

It follows from Corollary 7 that the left map and the composite map are equivalences of categories, so the
right map is an equivalence of categories as well. O

We close this lecture with a (hopefully) illuminating example.

Definition 10. Let € be a category which admits finite limits. A group object of € is an object G € C
equipped with a map m : G x G — G with the following property: for each object C' € €, the induced
multiplication

Home (C, G) x Home(C, G) ~ Home(C, G x G) == Home(C, G)

endows Home(C, G) with the structure of a group. The collection of group objects of € forms a category,
which we will denote by Group(C).

Example 11. In the case € = Set, we will denote Group(€) simply by Group; this is the usual category of
groups.

Remark 12. Let C be a category which admits finite limits and let G be a group object of €. For every
group I' € Group, the construction

(C € €) = Homgroup(I', Home (C, G))

determines a functor from @°P to the category of sets, which we will denote by GT.
Note that if I is given by generators {;};c; and relations {u; = v;};e, then the presheaf G can be

realized as an equalizer
G - H hg = H ha.
icl jeJ

In particular, if T is finitely generated, then the presheaf G is representable by an object of C; we will abuse
notation by identifying this object with G*.



Exercise 13. Let C be a category which admits finite limits and let Groupg, denote the full subcategory of
Group spanned by the finitely presented groups. Show that the construction

(G € Group(C)) — {GF}FEGroupfp

induces a fully faithful embedding
Group(€) — Fun(Groupg?, C).

Moreover, the essential image of this embedding consists of those functors GroupfoéJ — € which preserve finite
limits.

Hint: to go the reverse direction, suppose we are given a functor F' : Group?;: — € which preserves finite
limits. Let (x) ~ Z be the free group on one generator and let (g, ;) be the free group on 2 generators.
Set G = F({(z)), and let

m: G x G~ F({(xg)) x F({x1)) ~ F({(zg, 1)) = F((z)) ~ G
be the map obtained by applying F' to the group homomorphism
(x) = (@0, 1) T~ ToT1.

Show that m exhibits G as a group object of €, and that the construction ' — G is inverse to the construction
(G € Group(€)) = {G" }recroupy, -

Definition 14. Let X = Fun(Groupy,,Set) denote the category of presheaves on Group(ff . We will refer to
X as the classifying topos of groups.

For any topos Y, let Fun*(X,Y) be the category of geometric morphisms from Y to X. The main result
of Lecture 12 shows that composition with the Yoneda embedding h : Group%’ — Fun(Groupfp,Set) =X
induces an equivalence of categories

Fun* (X, Y) ~ Funlex(Grroup?;:7 Y) ~ Group(Y).

In particular, the category of geometric morphisms from Set to X can be identified with the category
Group = Group(8et) of groups.
Note that the topos X is coherent. Applying Proposition 6 to the pretopos X¢on, we obtain equivalences

Mod(Xcon) = FunCOh(DCCOh, Set) ~ Fun™ (X, Set) ~ Group(8et) = Group.
That is, Xopn is a pretopos whose models are groups.

Remark 15. In the above discussion, we can replace groups by other mathematical structures of a formally
similar nature: abelian groups, monoids, rings, commutative rings, Lie algebras, - - -



