Lecture 13: Elimination of Imaginaries

February 23, 2018

Let us now return to the discussion of coherent topoi from Lecture 11. Recall that, if \mathcal{X} is a coherent topos, then we can identify \mathcal{X} with $Shv(\mathcal{X}_{coh})$, where $\mathcal{X}_{coh} \subseteq \mathcal{X}$ is the full subcategory of coherent objects. We now note a few closure properties of this subcategory.

Lemma 1. Let X be a coherent topos. Then the collection of coherent objects is closed under finite coproducts.

Proof. Let $\{X_i\}_{i\in I}$ be a collection of coherent objects of $\mathfrak X$ indexed by a finite set I, having coproduct $X=\coprod_{i\in I}X_i$. Then X is quasi-compact; we claim that it is also quasi-separated. Choose quasi-compact objects $U,V\in \mathfrak X$ with maps $U\to X\leftarrow V$. For each $i\in I$, set $U_i=U\times_X X_i$ and $V_i=V\times_X X_i$. Then $U\times_X V$ can be identified with the coproduct $\coprod_{i\in I}U_i\times_{X_i}V_i$. Since U_i and V_i are quasi-compact and V_i is quasi-separated, the fiber product $V_i\times_{X_i}V_i$ is also quasi-compact. It follows that $V_i\times_X V_i$ is quasi-compact.

Lemma 2. Let X be a coherent topos. Suppose that we are given an effective epimorphism $f: U \to X$ in X. If U is coherent and the equivalence relation $U \times_X U$ is quasi-compact, then X is coherent.

Proof. Since X is a quotient of U, it is quasi-compact. We will show that it is quasi-separated by verifying condition (*) of Lecture 11. Suppose we are given a quasi-compact object Y and a pair of maps $g, g': Y \to X$; we wish to show that the equalizer $\text{Eq}(Y \rightrightarrows X)$ is quasi-compact. Choose an effective epimorphism $Y' \to (U \times U) \times_{X \times X} Y$, where Y' is quasi-compact. Then we have an effective epimorphism

$$\operatorname{Eq}(Y' \rightrightarrows X) \simeq Y' \times_Y \operatorname{Eq}(Y \rightrightarrows X) \to \operatorname{Eq}(Y \rightrightarrows X).$$

It will therefore suffice to show that $\operatorname{Eq}(Y' \rightrightarrows X)$ is quasi-compact. We may therefore replace Y by Y' and thereby reduce to the case where $g = f \circ \overline{g}$ and $g' = f \circ \overline{g}'$ for some pair of maps $\overline{g}, \overline{g}' : Y \to U$. In this case, we have a canonical isomorphism $\operatorname{Eq}(Y \rightrightarrows X) \simeq (Y \times_{U \times U} (U \times_X U))$. Since Y and $U \times_X U$ are quasi-compact and $U \times U$ is quasi-separated, it follows that $\operatorname{Eq}(Y \rightrightarrows X)$ is quasi-compact, as desired. \square

Proposition 3. Let X be a coherent topos and let $X_{coh} \subseteq X$ be the full subcategory spanned by the coherent objects. Then X_{coh} is an (essentially small) pretopos.

Proof. We proved in Lecture 9 that \mathcal{X} is a pretopos. In particular, it admits finite limits, finite coproducts, and every equivalence relation $R \subseteq U \times U$ can be obtained as the fiber product $U \times_X U$, for some effective epimorphism $U \to X$. We proved in Lecture 11 that the subcategory $\mathcal{X}_{coh} \subseteq \mathcal{X}$ is closed under the formation of finite limits, and Lemmas 1 and 2 guarantee that it is also closed finite coproducts, and quotients by equivalence relations. From this it is easy to see that \mathcal{X}_{coh} is also a pretopos (check this as an exercise), and we saw in Lecture 11 that it is essentially small.

Let \mathcal{C} be a coherent category. Recall that \mathcal{C} can be equipped with a Grothendieck topology, where a collection of morphisms $\{u_i: U_i \to X\}_{i \in I}$ is a covering if there exists a finite subset $I_0 \subseteq I$ such that $X = \bigvee_{i \in I_0} \operatorname{Im}(u_i)$. In Lecture 8, we saw that this Grothendieck topology is subcanonical: that is, the Yoneda embedding determines a functor $h: \mathcal{C} \to \operatorname{Shv}(\mathcal{C})$. Moreover, it is also finitary, so that $\operatorname{Shv}(\mathcal{C})$ is a coherent topos and the functor h takes values in the subcategory $\operatorname{Shv}(\mathcal{C})_{\operatorname{coh}} \subseteq \operatorname{Shv}(\mathcal{C})$ of coherent objects.

Exercise 4. Let \mathcal{C} and \mathcal{D} be coherent categories and let $f:\mathcal{C}\to\mathcal{D}$ be a functor which preserves finite limits. Show that the following conditions are equivalent:

- (1) The functor f is a morphism of coherent categories: that is, it preserves effective epimorphisms and (finite) joins of subobjects.
- (2) The functor f carries each covering $\{U_i \to X\}$ in \mathcal{C} to a covering $\{f(U_i) \to f(X)\}_{i \in I}$ in \mathcal{D} .

Proposition 5. Let C be a coherent category and let $h: C \to Shv(C)$ be the Yoneda embedding. Then:

- (1) Let \mathscr{G} be a coherent object of $Shv(\mathscr{C})$ and let $\mathscr{F} \subseteq \mathscr{G}$ be a coherent subobject. If \mathscr{G} belongs to the essential image of h, then so does \mathscr{F} .
- (2) If \mathcal{C} is a pretopos, then the Yoneda embedding h induces an equivalence of categories $\mathcal{C} \to \operatorname{Shv}(\mathcal{C})_{\operatorname{coh}}$.

Proof. We first prove (1). Assume that $\mathscr{G} = h_X$ for some object $X \in \mathcal{C}$. Let $\mathscr{F} \subseteq \mathscr{G}$ be a coherent subobject, and choose a covering $\{h_{U_i} \to \mathscr{F}\}_{i \in I}$ in Shv(\mathcal{C}). Since \mathscr{F} is quasi-compact, we can assume that I is finite. Note that each of the maps $h_{U_i} \to \mathscr{F}$ can be identified with a map from h_{U_i} to h_X , and therefore (by Yoneda's lemma) arises from a map $u_i : U_i \to X$ in the category \mathcal{C} . Since the category \mathcal{C} is coherent, we can form the join $X_0 = \bigvee_{i \in I} \operatorname{Im}(u_i)$. Since the functor h preserves images and joins of subobjects (Exercise 4), it follows that $\mathscr{F} \simeq h_{X_0}$ belongs to the essential image of h.

We now prove (2). The Yoneda embedding $h: \mathcal{C} \to \operatorname{Shv}(\mathcal{C})$ is a morphism of coherent categories (Exercise 4), and $\operatorname{Shv}(\mathcal{C})$ is a pretopos. If \mathcal{C} is also a pretopos, then h preserves finite coproducts. Let $\mathscr{F} \in \operatorname{Shv}(\mathcal{C})$ be a coherent object, and choose a covering $\{h_{X_i} \to \mathscr{F}\}_{i \in I}$. Since \mathscr{F} is quasi-compact, we can assume that I is finite. Setting $X = \coprod_i X_i$ (and noting that h preserves coproducts), we obtain an effective epimorphism $h_X \to \mathscr{F}$. Note that $h_X \times_{\mathscr{F}} h_X$ can be identified with a subobject of $h_{X \times X}$. Using (1), we can write $h_X \times_{\mathscr{F}} h_X = h_R$ for some subobject $R \subseteq X \times X$. Then R is an equivalence relation on X, and our assumption that \mathcal{C} is a pretopos guarantees that we have $R = X \times_Y X$ for some effective epimorphism $X \to Y$. It then follows that $\mathscr{F} \simeq h_Y$ belongs to the essential image of h.

It follows from Proposition 5 that the datum of a coherent topos \mathcal{X} is equivalent to the datum of an essentially small pretopos \mathcal{C} : from an essentially small pretopos \mathcal{C} we can construct a coherent topos $\mathrm{Shv}(\mathcal{C})$, and from a coherent topos \mathcal{X} we can extract an essentially small pretopos $\mathcal{X}_{\mathrm{coh}}$; these processes are mutually inverse to one another. Beware, however, that the 2-category of pretopoi (with maps given by morphisms of coherent categories) is not quite equivalent to the 2-category of coherent topoi (with maps given by geometric morphisms): see Corollary 7 below.

Proposition 6. Let C be a small coherent category and let X be a topos. Then composition with the Yoneda embedding $h: C \to Shv(C)$ induces a fully faithful embedding

$$\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}), \mathfrak{X}) \to \operatorname{Fun}(\mathcal{C}, \mathfrak{X}),$$

whose essential image consists of those functors $f: \mathcal{C} \to \mathcal{X}$ which are morphisms of coherent categories.

Proof. By virtue of the main result of Lecture 12, it will suffice to show that a functor $f: \mathcal{C} \to \mathcal{X}$ is a morphism of coherent categories if and only if it preserves finite limits and carries coverings in \mathcal{C} to coverings in \mathcal{X} . This is a special case of Exercise 4.

Corollary 7. Let \mathcal{C} be a small coherent category and let \mathcal{D} be a small pretopos. Then the category $\operatorname{Fun}^{\operatorname{coh}}(\mathcal{C}, \mathcal{D})$ of morphisms of coherent categories from \mathcal{C} to \mathcal{D} can be identified with the full subcategory of $\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}), \operatorname{Shv}(\mathcal{D}))$ spanned by those geometric morphisms $f^*: \operatorname{Shv}(\mathcal{C}) \to \operatorname{Shv}(\mathcal{D})$ which carry coherent objects to coherent objects.

Proof. Set $\operatorname{Shv}(\mathcal{D})$. Let us abuse notation by identifying \mathcal{D} with the full subcategory $\operatorname{Shv}(\mathcal{D})_{\operatorname{coh}}$ of coherent objects of $\operatorname{Shv}(\mathcal{D})$ (Proposition 5). Then Proposition 6 supplies an equivalence $\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}),\operatorname{Shv}(\mathcal{D})) \simeq \operatorname{Fun}^{\operatorname{coh}}(\mathcal{C},\operatorname{Shv}(\mathcal{D}))$. It will therefore suffice to show that a morphism of coherent categories $f:\mathcal{C}\to\operatorname{Shv}(\mathcal{D})$ sends each object of \mathcal{C} into $\operatorname{Shv}(\mathcal{D})_{\operatorname{coh}}$ if and only if the induced geometric morphism $F:\operatorname{Shv}(\mathcal{C})\to\operatorname{Shv}(\mathcal{D})$ carries each coherent object of $\operatorname{Shv}(\mathcal{C})$ into $\operatorname{Shv}(\mathcal{D})_{\operatorname{coh}}$. The "if" direction is obvious; we leave the converse as an exercise.

Construction 8. Let \mathcal{C} be a small coherent category. We let \mathcal{C}_{eq} denote the full subcategory of $Shv(\mathcal{C})$ spanned by the coherent objects. Note that the Yoneda embedding $h: \mathcal{C} \to Shv(\mathcal{C})$ determines a morphism of coherent categories $h: \mathcal{C} \to \mathcal{C}_{eq}$.

Proposition 9. Let C be a small coherent category. Then the functor $h: C \to C_{eq}$ exhibits C_{eq} as a pretopos completion of C, in the sense of Lecture 7.

Proof. Let \mathcal{D} be a pretopos; we wish to show that composition with h induces an equivalence Fun^{coh}($\mathcal{C}_{eq}, \mathcal{D}$) \to Fun^{coh}(\mathcal{C}, \mathcal{D}). Writing \mathcal{D} as a filtered union of small pretopoi, we can reduce to the case where \mathcal{D} is essentially small. Using Proposition 5, we can reduce to the case where $\mathcal{D} = \mathcal{Y}_{coh}$, where \mathcal{Y} is a coherent topos.

Set $\mathcal{X} = \operatorname{Shv}(\mathcal{C})$. Then \mathcal{X} is a coherent topos, and can therefore be identified with the category of sheaves $\operatorname{Shv}(\mathcal{X}_{\operatorname{coh}}) = \operatorname{Shv}(\mathcal{C}_{\operatorname{eq}})$. Let $\operatorname{Fun}'(\mathcal{X}, \mathcal{Y})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{X}, \mathcal{Y})$ spanned by those functors which preserve small colimits, finite limits, and coherent objects. We have restriction functors

$$\operatorname{Fun}'(\mathfrak{X},\mathfrak{Y}) \to \operatorname{Fun}^{\operatorname{coh}}(\mathfrak{C}_{\operatorname{eq}},\mathfrak{D}) \to \operatorname{Fun}^{\operatorname{coh}}(\mathfrak{C},\mathfrak{D}).$$

It follows from Corollary 7 that the left map and the composite map are equivalences of categories, so the right map is an equivalence of categories as well. \Box

We close this lecture with a (hopefully) illuminating example.

Definition 10. Let \mathcal{C} be a category which admits finite limits. A group object of \mathcal{C} is an object $G \in \mathcal{C}$ equipped with a map $m: G \times G \to G$ with the following property: for each object $C \in \mathcal{C}$, the induced multiplication

$$\operatorname{Hom}_{\operatorname{\mathcal C}}(C,G) \times \operatorname{Hom}_{\operatorname{\mathcal C}}(C,G) \simeq \operatorname{Hom}_{\operatorname{\mathcal C}}(C,G \times G) \xrightarrow{m \circ} \operatorname{Hom}_{\operatorname{\mathcal C}}(C,G)$$

endows $\operatorname{Hom}_{\mathfrak{C}}(C,G)$ with the structure of a group. The collection of group objects of \mathfrak{C} forms a category, which we will denote by $\operatorname{Group}(\mathfrak{C})$.

Example 11. In the case $\mathcal{C} = \mathcal{S}et$, we will denote $Group(\mathcal{C})$ simply by Group; this is the usual category of groups.

Remark 12. Let \mathcal{C} be a category which admits finite limits and let G be a group object of \mathcal{C} . For every group $\Gamma \in \text{Group}$, the construction

$$(C \in \mathcal{C}) \mapsto \operatorname{Hom}_{\operatorname{Group}}(\Gamma, \operatorname{Hom}_{\mathcal{C}}(C, G))$$

determines a functor from \mathcal{C}^{op} to the category of sets, which we will denote by G^{Γ} .

Note that if Γ is given by generators $\{x_i\}_{i\in I}$ and relations $\{u_j = v_j\}_{j\in J}$, then the presheaf G^{Γ} can be realized as an equalizer

$$G^{\Gamma} \to \prod_{i \in I} h_G \rightrightarrows \prod_{j \in J} h_G.$$

In particular, if Γ is finitely generated, then the presheaf G^{Γ} is representable by an object of \mathcal{C} ; we will abuse notation by identifying this object with G^{Γ} .

Exercise 13. Let \mathcal{C} be a category which admits finite limits and let $Group_{fp}$ denote the full subcategory of Group spanned by the finitely presented groups. Show that the construction

$$(G \in \operatorname{Group}(\mathfrak{C})) \mapsto \{G^{\Gamma}\}_{\Gamma \in \operatorname{Group}_{\operatorname{fp}}}$$

induces a fully faithful embedding

$$\operatorname{Group}(\mathfrak{C}) \to \operatorname{Fun}(\operatorname{Group_{fn}^{op}}, \mathfrak{C}).$$

Moreover, the essential image of this embedding consists of those functors $\operatorname{Group_{fp}^{op}} \to \mathcal{C}$ which preserve finite limits.

Hint: to go the reverse direction, suppose we are given a functor $F: \text{Group}_{\text{fp}}^{\text{op}} \to \mathcal{C}$ which preserves finite limits. Let $\langle x \rangle \simeq \mathbf{Z}$ be the free group on one generator and let $\langle x_0, x_1 \rangle$ be the free group on 2 generators. Set $G = F(\langle x \rangle)$, and let

$$m: G \times G \simeq F(\langle x_0 \rangle) \times F(\langle x_1 \rangle) \simeq F(\langle x_0, x_1 \rangle) \to F(\langle x \rangle) \simeq G$$

be the map obtained by applying F to the group homomorphism

$$\langle x \rangle \to \langle x_0, x_1 \rangle \qquad x \mapsto x_0 x_1.$$

Show that m exhibits G as a group object of \mathbb{C} , and that the construction $F \mapsto G$ is inverse to the construction $(G \in \operatorname{Group}_{\mathbb{C}}) \mapsto \{G^{\Gamma}\}_{\Gamma \in \operatorname{Group}_{\mathbb{C}}}$.

Definition 14. Let $\mathcal{X} = \operatorname{Fun}(\operatorname{Group}_{\operatorname{fp}}, \operatorname{Set})$ denote the category of presheaves on $\operatorname{Group}_{\operatorname{fp}}^{\operatorname{op}}$. We will refer to \mathcal{X} as the *classifying topos of groups*.

For any topos \mathcal{Y} , let $\operatorname{Fun}^*(\mathcal{X}, \mathcal{Y})$ be the category of geometric morphisms from \mathcal{Y} to \mathcal{X} . The main result of Lecture 12 shows that composition with the Yoneda embedding $h: \operatorname{Group}_{\mathrm{fp}}^{\mathrm{op}} \hookrightarrow \operatorname{Fun}(\operatorname{Group}_{\mathrm{fp}}, \operatorname{Set}) = \mathcal{X}$ induces an equivalence of categories

$$\operatorname{Fun}^*(\mathfrak{X},\mathfrak{Y}) \simeq \operatorname{Fun}^{\operatorname{lex}}(\operatorname{Group}_{\operatorname{fp}}^{\operatorname{op}},\mathfrak{Y}) \simeq \operatorname{Group}(\mathfrak{Y}).$$

In particular, the category of geometric morphisms from Set to X can be identified with the category Group = Group(Set) of groups.

Note that the topos \mathfrak{X} is coherent. Applying Proposition 6 to the pretopos $\mathfrak{X}_{\mathrm{coh}}$, we obtain equivalences

$$\operatorname{Mod}(\mathfrak{X}_{\operatorname{coh}}) = \operatorname{Fun}^{\operatorname{coh}}(\mathfrak{X}_{\operatorname{coh}},\operatorname{Set}) \simeq \operatorname{Fun}^*(\mathfrak{X},\operatorname{Set}) \simeq \operatorname{Group}(\operatorname{Set}) = \operatorname{Group}.$$

That is, \mathcal{X}_{coh} is a pretopos whose models are groups.

Remark 15. In the above discussion, we can replace groups by other mathematical structures of a formally similar nature: abelian groups, monoids, rings, commutative rings, Lie algebras,