
Lecture 13: Elimination of Imaginaries

February 23, 2018

Let us now return to the discussion of coherent topoi from Lecture 11. Recall that, if X is a coherent
topos, then we can identify X with Shv(Xcoh), where Xcoh ⊆ X is the full subcategory of coherent objects.
We now note a few closure properties of this subcategory.

Lemma 1. Let X be a coherent topos. Then the collection of coherent objects is closed under finite coproducts.

Proof. Let {Xi}i∈I be a collection of coherent objects of X indexed by a finite set I, having coproduct
X =

∐
i∈I Xi. Then X is quasi-compact; we claim that it is also quasi-separated. Choose quasi-compact

objects U, V ∈ X with maps U → X ← V . For each i ∈ I, set Ui = U ×X Xi and Vi = V ×X Xi.
Then U ×X V can be identified with the coproduct

∐
i∈I Ui ×Xi

Vi. Since Ui and Vi are quasi-compact
and Xi is quasi-separated, the fiber product Ui ×Xi

Vi is also quasi-compact. It follows that U ×X V is
quasi-compact.

Lemma 2. Let X be a coherent topos. Suppose that we are given an effective epimorphism f : U → X in
X. If U is coherent and the equivalence relation U ×X U is quasi-compact, then X is coherent.

Proof. Since X is a quotient of U , it is quasi-compact. We will show that it is quasi-separated by verifying
condition (∗) of Lecture 11. Suppose we are given a quasi-compact object Y and a pair of maps g, g′ : Y →
X; we wish to show that the equalizer Eq(Y ⇒ X) is quasi-compact. Choose an effective epimorphism
Y ′ → (U × U)×X×X Y , where Y ′ is quasi-compact. Then we have an effective epimorphism

Eq(Y ′ ⇒ X) ' Y ′ ×Y Eq(Y ⇒ X)→ Eq(Y ⇒ X).

It will therefore suffice to show that Eq(Y ′ ⇒ X) is quasi-compact. We may therefore replace Y by Y ′

and thereby reduce to the case where g = f ◦ g and g′ = f ◦ g′ for some pair of maps g, g′ : Y → U . In
this case, we have a canonical isomorphism Eq(Y ⇒ X) ' (Y ×U×U (U ×X U)). Since Y and U ×X U are
quasi-compact and U × U is quasi-separated, it follows that Eq(Y ⇒ X) is quasi-compact, as desired.

Proposition 3. Let X be a coherent topos and let Xcoh ⊆ X be the full subcategory spanned by the coherent
objects. Then Xcoh is an (essentially small) pretopos.

Proof. We proved in Lecture 9 that X is a pretopos. In particular, it admits finite limits, finite coproducts,
and every equivalence relation R ⊆ U × U can be obtained as the fiber product U ×X U , for some effective
epimorphism U → X. We proved in Lecture 11 that the subcategory Xcoh ⊆ X is closed under the formation
of finite limits, and Lemmas 1 and 2 guarantee that it is also closed finite coproducts, and quotients by
equivalence relations. From this it is easy to see that Xcoh is also a pretopos (check this as an exercise), and
we saw in Lecture 11 that it is essentially small.

Let C be a coherent category. Recall that C can be equipped with a Grothendieck topology, where a
collection of morphisms {ui : Ui → X}i∈I is a covering if there exists a finite subset I0 ⊆ I such that
X =

∨
i∈I0 Im(ui). In Lecture 8, we saw that this Grothendieck topology is subcanonical: that is, the

Yoneda embedding determines a functor h : C → Shv(C). Moreover, it is also finitary, so that Shv(C) is a
coherent topos and the functor h takes values in the subcategory Shv(C)coh ⊆ Shv(C) of coherent objects.
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Exercise 4. Let C and D be coherent categories and let f : C → D be a functor which preserves finite
limits. Show that the following conditions are equivalent:

(1) The functor f is a morphism of coherent categories: that is, it preserves effective epimorphisms and
(finite) joins of subobjects.

(2) The functor f carries each covering {Ui → X} in C to a covering {f(Ui)→ f(X)}i∈I in D.

Proposition 5. Let C be a coherent category and let h : C→ Shv(C) be the Yoneda embedding. Then:

(1) Let G be a coherent object of Shv(C) and let F ⊆ G be a coherent subobject. If G belongs to the
essential image of h, then so does F .

(2) If C is a pretopos, then the Yoneda embedding h induces an equivalence of categories C→ Shv(C)coh.

Proof. We first prove (1). Assume that G = hX for some object X ∈ C. Let F ⊆ G be a coherent subobject,
and choose a covering {hUi → F}i∈I in Shv(C). Since F is quasi-compact, we can assume that I is finite.
Note that each of the maps hUi

→ F can be identified with a map from hUi
to hX , and therefore (by

Yoneda’s lemma) arises from a map ui : Ui → X in the category C. Since the category C is coherent, we can
form the join X0 =

∨
i∈I Im(ui). Since the functor h preserves images and joins of subobjects (Exercise 4),

it follows that F ' hX0
belongs to the essential image of h.

We now prove (2). The Yoneda embedding h : C→ Shv(C) is a morphism of coherent categories (Exercise
4), and Shv(C) is a pretopos. If C is also a pretopos, then h preserves finite coproducts. Let F ∈ Shv(C) be
a coherent object, and choose a covering {hXi

→ F}i∈I . Since F is quasi-compact, we can assume that I
is finite. Setting X =

∐
i Xi (and noting that h preserves coproducts), we obtain an effective epimorphism

hX → F . Note that hX ×F hX can be identified with a subobject of hX×X . Using (1), we can write
hX ×F hX = hR for some subobject R ⊆ X × X. Then R is an equivalence relation on X, and our
assumption that C is a pretopos guarantees that we have R = X ×Y X for some effective epimorphism
X → Y . It then follows that F ' hY belongs to the essential image of h.

It follows from Proposition 5 that the datum of a coherent topos X is equivalent to the datum of an
essentially small pretopos C: from an essentially small pretopos C we can construct a coherent topos Shv(C),
and from a coherent topos X we can extract an essentially small pretopos Xcoh; these processes are mutually
inverse to one another. Beware, however, that the 2-category of pretopoi (with maps given by morphisms of
coherent categories) is not quite equivalent to the 2-category of coherent topoi (with maps given by geometric
morphisms): see Corollary 7 below.

Proposition 6. Let C be a small coherent category and let X be a topos. Then composition with the Yoneda
embedding h : C→ Shv(C) induces a fully faithful embedding

Fun∗(Shv(C),X)→ Fun(C,X),

whose essential image consists of those functors f : C→ X which are morphisms of coherent categories.

Proof. By virtue of the main result of Lecture 12, it will suffice to show that a functor f : C → X is a
morphism of coherent categories if and only if it preserves finite limits and carries coverings in C to coverings
in X. This is a special case of Exercise 4.

Corollary 7. Let C be a small coherent category and let D be a small pretopos. Then the category
Funcoh(C,D) of morphisms of coherent categories from C to D can be identified with the full subcategory
of Fun∗(Shv(C),Shv(D)) spanned by those geometric morphisms f∗ : Shv(C)→ Shv(D) which carry coherent
objects to coherent objects.
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Proof. Set Shv(D). Let us abuse notation by identifying D with the full subcategory Shv(D)coh of coherent
objects of Shv(D) (Proposition 5). Then Proposition 6 supplies an equivalence Fun∗(Shv(C),Shv(D)) '
Funcoh(C,Shv(D)). It will therefore suffice to show that a morphism of coherent categories f : C→ Shv(D)
sends each object of C into Shv(D)coh if and only if the induced geometric morphism F : Shv(C)→ Shv(D)
carries each coherent object of Shv(C) into Shv(D)coh. The “if” direction is obvious; we leave the converse
as an exercise.

Construction 8. Let C be a small coherent category. We let Ceq denote the full subcategory of Shv(C)
spanned by the coherent objects. Note that the Yoneda embedding h : C→ Shv(C) determines a morphism
of coherent categories h : C→ Ceq.

Proposition 9. Let C be a small coherent category. Then the functor h : C→ Ceq exhibits Ceq as a pretopos
completion of C, in the sense of Lecture 7.

Proof. Let D be a pretopos; we wish to show that composition with h induces an equivalence Funcoh(Ceq,D)→
Funcoh(C,D). Writing D as a filtered union of small pretopoi, we can reduce to the case where D is essentially
small. Using Proposition 5, we can reduce to the case where D = Ycoh, where Y is a coherent topos.

Set X = Shv(C). Then X is a coherent topos, and can therefore be identified with the category of sheaves
Shv(Xcoh) = Shv(Ceq). Let Fun′(X,Y) denote the full subcategory of Fun(X,Y) spanned by those functors
which preserve small colimits, finite limits, and coherent objects. We have restriction functors

Fun′(X,Y)→ Funcoh(Ceq,D)→ Funcoh(C,D).

It follows from Corollary 7 that the left map and the composite map are equivalences of categories, so the
right map is an equivalence of categories as well.

We close this lecture with a (hopefully) illuminating example.

Definition 10. Let C be a category which admits finite limits. A group object of C is an object G ∈ C

equipped with a map m : G × G → G with the following property: for each object C ∈ C, the induced
multiplication

HomC(C,G)×HomC(C,G) ' HomC(C,G×G)
m◦−−→ HomC(C,G)

endows HomC(C,G) with the structure of a group. The collection of group objects of C forms a category,
which we will denote by Group(C).

Example 11. In the case C = Set, we will denote Group(C) simply by Group; this is the usual category of
groups.

Remark 12. Let C be a category which admits finite limits and let G be a group object of C. For every
group Γ ∈ Group, the construction

(C ∈ C) 7→ HomGroup(Γ,HomC(C,G))

determines a functor from Cop to the category of sets, which we will denote by GΓ.
Note that if Γ is given by generators {xi}i∈I and relations {uj = vj}j∈J , then the presheaf GΓ can be

realized as an equalizer

GΓ →
∏
i∈I

hG ⇒
∏
j∈J

hG.

In particular, if Γ is finitely generated, then the presheaf GΓ is representable by an object of C; we will abuse
notation by identifying this object with GΓ.
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Exercise 13. Let C be a category which admits finite limits and let Groupfp denote the full subcategory of
Group spanned by the finitely presented groups. Show that the construction

(G ∈ Group(C)) 7→ {GΓ}Γ∈Groupfp

induces a fully faithful embedding
Group(C)→ Fun(Groupop

fp ,C).

Moreover, the essential image of this embedding consists of those functors Groupop
fp → C which preserve finite

limits.
Hint: to go the reverse direction, suppose we are given a functor F : Groupop

fp → C which preserves finite
limits. Let 〈x〉 ' Z be the free group on one generator and let 〈x0, x1〉 be the free group on 2 generators.
Set G = F (〈x〉), and let

m : G×G ' F (〈x0〉)× F (〈x1〉) ' F (〈x0, x1〉)→ F (〈x〉) ' G

be the map obtained by applying F to the group homomorphism

〈x〉 → 〈x0, x1〉 x 7→ x0x1.

Show that m exhibits G as a group object of C, and that the construction F 7→ G is inverse to the construction
(G ∈ Group(C)) 7→ {GΓ}Γ∈Groupfp

.

Definition 14. Let X = Fun(Groupfp, Set) denote the category of presheaves on Groupop
fp . We will refer to

X as the classifying topos of groups.

For any topos Y, let Fun∗(X,Y) be the category of geometric morphisms from Y to X. The main result
of Lecture 12 shows that composition with the Yoneda embedding h : Groupop

fp ↪→ Fun(Groupfp, Set) = X

induces an equivalence of categories

Fun∗(X,Y) ' Funlex(Groupop
fp ,Y) ' Group(Y).

In particular, the category of geometric morphisms from Set to X can be identified with the category
Group = Group(Set) of groups.

Note that the topos X is coherent. Applying Proposition 6 to the pretopos Xcoh, we obtain equivalences

Mod(Xcoh) = Funcoh(Xcoh, Set) ' Fun∗(X, Set) ' Group(Set) = Group .

That is, Xcoh is a pretopos whose models are groups.

Remark 15. In the above discussion, we can replace groups by other mathematical structures of a formally
similar nature: abelian groups, monoids, rings, commutative rings, Lie algebras, · · · .
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