
Lecture 12: Geometric Morphisms

February 21, 2018

Definition 1. Let X and Y be topoi. A geometric morphism from X to Y is a functor f∗ : Y → X which
preserves finite limits, effective epimorphisms, and (small) coproducts. We let Fun∗(Y,X) denote the full
subcategory of Fun(Y,X) spanned by the geometric morphisms from X to Y.

Remark 2. The terminology of Definition 1 is motivated by topology. If f : X → Y is a continuous map
of topological spaces, then pullback of sheaves determines a functor f∗ : Shv(Y ) → Shv(X) satisfying the
requirements of Definition 1. Under the mild assumption that Y is sober, this construction establishes a
bijection between the set of continuous maps from X to Y and the set of isomorphism classes of geometric
morphisms from the topos Shv(X) to the topos Shv(Y ). We will return to this point later.

Definition 1 admits several reformulations:

Proposition 3. Let X and Y be topoi and let f∗ : Y → X be a functor which preserves finite limits. The
following conditions are equivalent:

(1) The functor f∗ is a geometric morphism from X to Y: that is, it preserves effective epimorphisms and
coproducts.

(2) The functor f∗ preserves small colimits.

(3) The functor f∗ admits a right adjoint.

Sketch. The equivalence (2)⇔ (3) follows from the adjoint functor theorem and the implication (2)⇒ (1) is
clear. We complete the proof by showing that (1)⇒ (2). Assume that f∗ is a geometric morphism; we wish
to show that f∗ preserves small colimits. By general nonsense, all small colimits can be constructed from
coproducts and coequalizers. It will therefore suffice to show that for every pair of morphisms u, v : U → Y
in Y, the canonical map Coeq(f∗U ⇒ f∗Y )→ f∗ Coeq(U ⇒ Y ) is an isomorphism in X.

Note that the canonical map Y → Coeq(U ⇒ Y ) cannot factor through any proper subobject of Y , and
is therefore an effective epimorphism. We therefore have Coeq(U ⇒ Y ) ' Coeq(R⇒ Y ), where R ⊆ Y × Y
is the equivalence relation Y ×Coeq(U⇒Y ) Y . In this case, we can characterize R as the equivalence relation
generated by U : that is, it is the smallest equivalence relation on Y which contains the image of the map
(u, v) : U → Y ×Y . Similarly, we can identify Coeq(f∗U ⇒ f∗Y ) with the quotient of f∗Y by the equivalence
relation R′ ⊆ f∗(Y )×f∗(Y ) generated by f∗U . It will therefore suffice to show that R′ = f∗R (as subobjects
of f∗Y × f∗Y .

We now describe passage from the object U to the equivalence relation R. Note that R depends only
on the image of the map (u, v) : U → Y × Y . We may therefore replace U by Im(u, v) and thereby reduce
to the case where U is a subobject of Y × Y . Let Uop denote the image of U under the automorphism of
Y × Y given by swapping the factors. Replacing U by the join U ∨ Uop, we can reduce to the case where U
is a symmetric relation on Y . For each n ≥ 0, let Vn denote the n-fold fiber product

Uf ×Y g Uf ×Y g Uf ×Xg · · ·f ×Y g U,

(so that V0 = Y ) and let Un denote the image of Vn in the product Y × Y (under the maps from the
outermost factors of U). The equivalence relation R can then be described as the join

∨
n≥0 Un (Exercise:

Check this.)
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Note that the equivalence relation R was constructed from U by a combination of taking images of
morphisms, fiber products, and joins of subobjects. By assumption, the functor f∗ : Y → X is compatible
with each of these operations. It follows that f∗R agrees with the equivalence relation R′ generated by f∗U ,
as desired.

Remark 4. Let X and Y be topoi and let f∗ : Y→ X be a geometric morphism from X to Y. Proposition 3
implies that f∗ admits a right adjoint, which we will denote by f∗ : X→ Y. In this situation, the functors f∗

and f∗ are equivalent pieces of data: either can be recovered (up to canonical isomorphism) from the other.
We will sometimes abuse terminology by saying that f∗ is a geometric morphism from X to Y.

Our next goal is to understand how to compute the category Fun∗(Y,X) of geometric morphisms in the
case where Y = Shv(C) is described as a category of sheaves.

Theorem 5. Let C be a small category which admits finite limits which is equipped with a Grothendieck
topology, and let j : C → Shv(C) be the composition of the Yoneda embedding h : C → Fun(Cop, Set) with
the sheafification functor L : Fun(Cop, Set) → S. Then, for any topos X, composition with j induces a fully
faithful embedding

Fun∗(Shv(C),X)→ Fun(C,X),

whose essential image consists of those functors f : C→ X which satisfy the following pair of conditions:

(a) The functor f is left exact: that is, it preserves finite limits.

(b) For every covering {Ci → C} in the category C, the maps {f(Ci)→ f(C)} form a covering with respect
to the canonical topology on X.

We begin by proving Theorem 5 in a special case, where we can ignore the topology on C.

Exercise 6. Let C be a small category (which admits finite limits). Show that C admits a Grothendieck
topology where the covering families {fi : Ci → C} are those collections of maps where some fi admits a
section. We will refer to this Grothendieck topology as the trivial topology on C.

Exercise 7. Let C be a small category which admits finite limits. Show that every presheaf on C is a
sheaf with respect to the trivial topology. That is, if we equip C with the trivial topology, then we have
Shv(C) = Fun(Cop, Set).

We first prove Theorem 5 in the case where the topology on C is trivial. We will use the following general
fact about presheaf categories:

Proposition 8. Let C be a small category and let h : C → Fun(Cop, Set) be the Yoneda embedding. Then
h exhibits the Fun(Cop, Set) as the category freely generated by C under small colimits. In other words, if
X is any category which admits small colimits and LFun(Fun(Cop, Set),X) is the category of functors from
Fun(Cop, Set) to X which preserve small colimits, then composition with h induces an equivalence of categories

LFun(Fun(Cop, Set),X)→ Fun(C,X).

Remark 9. The inverse functor θ : Fun(C,X) → LFun(Fun(Cop, Set),X) can be described explicitly as
follows. Let f : C→ X be any functor. Then every object X ∈ X determines a presheaf FX on C, given by
the formula FX(C) = HomX(f(C), X). Then θ(f) : Fun(Cop, Set) → X can be descrbed as the left adjoint
of the functor

X→ Fun(Cop, Set) X 7→ FX .

Proof of Theorem 5 for a trivial topology. Let C be a category which admits finite limits and let X be a
topos. By virtue of Proposition 8, composition with h induces an equivalence

{Functors F : Fun(Cop, Set)→ X preserving colimits} → {All functors f : C→ X}
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We wish to show that this restricts to an equivalence of categories

Fun∗(Fun(Cop, Set),X)→ {Left exact functors f : C→ X}

(note that condition (b) is of Theorem 5 is automatic when the Grothendieck topology on C is trivial). In
other words, we wish to show that if F : Fun(Cop, Set) → X is a functor which preserves small colimits,
then F preserves finite limits if and only if the composition F ◦ h : C→ X preserves finite limits. The “only
if” direction is clear (and does not require the assumption that X is a topos), since the Yoneda embedding
C 7→ hC preserves finite limits.

To prove the converse, assume that f = F ◦h preserves finite limits. Let D ⊆ X be a small full subcategory
which contains a set of generators for X, contains the image of f , and is closed under finite limits. Then the
canonical topology on X determines a Grothendieck topology on D, and we proved in Lecture 10 that X can
be identified with the category of sheaves Shv(D). Let h′ : D → Fun(Dop, Set) be the Yoneda embedding
of D and let L : Fun(Dop, Set) → X be the sheafification functor. Using Proposition 8, we see that the
functor h′ ◦ f : C→ Fun(Dop, Set) admits an essentially unique extension to a functor F ′ : Fun(Cop, Set)→
Fun(Dop, Set) which preserves small colimits. Moreover, the functor L ◦ F ′ : Fun(Cop, Set) → X preserves
small colimits, and L ◦F ′ ◦h ' L ◦h′ ◦ f ' f . Using Proposition 8 again, we can identify L ◦F ′ with F . We
wish to show that F preserves finite limits. Since the sheafification functor L preserves finite limits, we are
reduced to proving that F ′ preserves finite limits. Concretely, the functor F ′ is given by left Kan extension
along the functor fop : Cop → Dop. In particular, if F is a presheaf on C, then F ′(F ) is the presheaf on D

given by the formula
F ′(F )(D) = lim−→

D→f(C)

F (C).

We wish to show that, for each object D ∈ D, the construction F 7→ F ′(F )(D) preserves finite limits. This
follows from the observation that the colimit lim−→D→f(C)

F (C) is indexed by a filtered diagram (in fact, the

category Cop×Dop(DD/)op admits finite colimits, since C has finite limits which are preserved by the functor
f).

Proof of Theorem 5 in general. Now suppose that C is a category which admits finite limits which is equipped
with an arbitrary Grothendieck topology. Let L : Fun(Cop, Set) → Shv(C) be the sheafification functor and
let h : C→ Fun(Cop, Set) be the Yoneda embedding. For any topos X, we have a commutative diagram

Fun∗(Shv(C),X)
◦j //

◦L
��

Fun(C,X)

id

��
Fun∗(Fun(Cop, Set),X)

◦h // Fun(C,X)

The first part of the proof shows that the lower horizontal map is a fully faithful embedding, whose essential
image consists of those functors f : C → X which preserve finite limits. Moreover, the left vertical map
is also fully faithful; its essential image consists of those geometric morphisms F ∗ : Fun(Cop, Set) → X

having the property that the right adjoint F∗ : X → Fun(Cop, Set) factors through the full subcategory
Shv(C) ⊆ Fun(Cop, Set). Using the description of F∗ given in Remark 9, we see that the upper vertical map
induces an equivalence from Fun∗(Shv(C),X) to the full subcategory of Fun(C,X) spanned by those functors
f : C→ Set which satisfy the following pair of conditions:

(a) The functor f preserves finite limits.

(b′) For each object X ∈ X, the functor FX : Cop → Set given by FX(C) = HomX(f(C), X) is a sheaf.

Unwinding the definitions, we can rephrase (b′) as follows:
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(b′′) For each object X ∈ X and each covering {Ci → C} in C, the diagram

HomX(f(C), X)→
∏
i

HomX(f(Ci), X) ⇒
∏
i,j

HomX(f(Ci ×C Cj), X)

is an equalizer.

Allowing X to vary, we can rephrase this as:

(b′′′) For each covering {Ci → C} in C, the diagram∐
i,j

f(Ci ×C Cj) ⇒
∐
i

f(Ci)→ f(C)

is a coequalizer in X.

Assuming (a), we can rewrite the diagram of (b′′′) as∐
i,j

f(Ci)×f(C) f(Cj) ⇒
∐
i

f(Ci)→ f(C),

so that (b′′′) is equivalent to condition (b) of Theorem 5.
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