Lecture 12: Geometric Morphisms

February 21, 2018

Definition 1. Let \mathcal{X} and \mathcal{Y} be topoi. A geometric morphism from \mathcal{X} to \mathcal{Y} is a functor $f^*: \mathcal{Y} \to \mathcal{X}$ which preserves finite limits, effective epimorphisms, and (small) coproducts. We let $\operatorname{Fun}^*(\mathcal{Y}, \mathcal{X})$ denote the full subcategory of $\operatorname{Fun}(\mathcal{Y}, \mathcal{X})$ spanned by the geometric morphisms from \mathcal{X} to \mathcal{Y} .

Remark 2. The terminology of Definition 1 is motivated by topology. If $f: X \to Y$ is a continuous map of topological spaces, then pullback of sheaves determines a functor $f^*: \operatorname{Shv}(Y) \to \operatorname{Shv}(X)$ satisfying the requirements of Definition 1. Under the mild assumption that Y is sober, this construction establishes a bijection between the set of continuous maps from X to Y and the set of isomorphism classes of geometric morphisms from the topos $\operatorname{Shv}(X)$ to the topos $\operatorname{Shv}(Y)$. We will return to this point later.

Definition 1 admits several reformulations:

Proposition 3. Let X and Y be topoi and let $f^*: Y \to X$ be a functor which preserves finite limits. The following conditions are equivalent:

- (1) The functor f^* is a geometric morphism from $\mathfrak X$ to $\mathfrak Y$: that is, it preserves effective epimorphisms and coproducts.
- (2) The functor f^* preserves small colimits.
- (3) The functor f^* admits a right adjoint.

Sketch. The equivalence $(2) \Leftrightarrow (3)$ follows from the adjoint functor theorem and the implication $(2) \Rightarrow (1)$ is clear. We complete the proof by showing that $(1) \Rightarrow (2)$. Assume that f^* is a geometric morphism; we wish to show that f^* preserves small colimits. By general nonsense, all small colimits can be constructed from coproducts and coequalizers. It will therefore suffice to show that for every pair of morphisms $u, v : U \to Y$ in \mathcal{Y} , the canonical map $\text{Coeq}(f^*U \Rightarrow f^*Y) \to f^* \text{Coeq}(U \Rightarrow Y)$ is an isomorphism in \mathcal{X} .

Note that the canonical map $Y \to \operatorname{Coeq}(U \rightrightarrows Y)$ cannot factor through any proper subobject of Y, and is therefore an effective epimorphism. We therefore have $\operatorname{Coeq}(U \rightrightarrows Y) \simeq \operatorname{Coeq}(R \rightrightarrows Y)$, where $R \subseteq Y \times Y$ is the equivalence relation $Y \times_{\operatorname{Coeq}(U \rightrightarrows Y)} Y$. In this case, we can characterize R as the equivalence relation $generated\ by\ U$: that is, it is the smallest equivalence relation on Y which contains the image of the map $(u,v): U \to Y \times Y$. Similarly, we can identify $\operatorname{Coeq}(f^*U \rightrightarrows f^*Y)$ with the quotient of f^*Y by the equivalence relation $R' \subseteq f^*(Y) \times f^*(Y)$ generated by f^*U . It will therefore suffice to show that $R' = f^*R$ (as subobjects of $f^*Y \times f^*Y$.

We now describe passage from the object U to the equivalence relation R. Note that R depends only on the image of the map $(u,v):U\to Y\times Y$. We may therefore replace U by $\mathrm{Im}(u,v)$ and thereby reduce to the case where U is a subobject of $Y\times Y$. Let U^{op} denote the image of U under the automorphism of $Y\times Y$ given by swapping the factors. Replacing U by the join $U\vee U^{\mathrm{op}}$, we can reduce to the case where U is a symmetric relation on Y. For each $n\geq 0$, let V_n denote the n-fold fiber product

$$U_f \times_{Y_q} U_f \times_{Y_q} U_f \times_{X_q} \cdots_f \times_{Y_q} U,$$

(so that $V_0 = Y$) and let U_n denote the image of V_n in the product $Y \times Y$ (under the maps from the outermost factors of U). The equivalence relation R can then be described as the join $\bigvee_{n\geq 0} U_n$ (Exercise: Check this.)

Note that the equivalence relation R was constructed from U by a combination of taking images of morphisms, fiber products, and joins of subobjects. By assumption, the functor $f^*: \mathcal{Y} \to \mathcal{X}$ is compatible with each of these operations. It follows that f^*R agrees with the equivalence relation R' generated by f^*U , as desired.

Remark 4. Let \mathcal{X} and \mathcal{Y} be topoi and let $f^*: \mathcal{Y} \to \mathcal{X}$ be a geometric morphism from \mathcal{X} to \mathcal{Y} . Proposition 3 implies that f^* admits a right adjoint, which we will denote by $f_*: \mathcal{X} \to \mathcal{Y}$. In this situation, the functors f^* and f_* are equivalent pieces of data: either can be recovered (up to canonical isomorphism) from the other. We will sometimes abuse terminology by saying that f_* is a geometric morphism from \mathcal{X} to \mathcal{Y} .

Our next goal is to understand how to compute the category $\operatorname{Fun}^*(\mathcal{Y}, \mathcal{X})$ of geometric morphisms in the case where $\mathcal{Y} = \operatorname{Shv}(\mathcal{C})$ is described as a category of sheaves.

Theorem 5. Let \mathcal{C} be a small category which admits finite limits which is equipped with a Grothendieck topology, and let $j:\mathcal{C} \to \operatorname{Shv}(\mathcal{C})$ be the composition of the Yoneda embedding $h:\mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})$ with the sheafification functor $L:\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set}) \to \mathcal{S}$. Then, for any topos \mathcal{X} , composition with j induces a fully faithful embedding

$$\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}), \mathfrak{X}) \to \operatorname{Fun}(\mathcal{C}, \mathfrak{X}),$$

whose essential image consists of those functors $f: \mathbb{C} \to \mathfrak{X}$ which satisfy the following pair of conditions:

- (a) The functor f is left exact: that is, it preserves finite limits.
- (b) For every covering $\{C_i \to C\}$ in the category \mathfrak{C} , the maps $\{f(C_i) \to f(C)\}$ form a covering with respect to the canonical topology on \mathfrak{X} .

We begin by proving Theorem 5 in a special case, where we can ignore the topology on C.

Exercise 6. Let \mathcal{C} be a small category (which admits finite limits). Show that \mathcal{C} admits a Grothendieck topology where the covering families $\{f_i: C_i \to C\}$ are those collections of maps where some f_i admits a section. We will refer to this Grothendieck topology as the *trivial topology* on \mathcal{C} .

Exercise 7. Let \mathcal{C} be a small category which admits finite limits. Show that every presheaf on \mathcal{C} is a sheaf with respect to the trivial topology. That is, if we equip \mathcal{C} with the trivial topology, then we have $\operatorname{Shv}(\mathcal{C}) = \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set})$.

We first prove Theorem 5 in the case where the topology on C is trivial. We will use the following general fact about presheaf categories:

Proposition 8. Let C be a small category and let $h: C \to \operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set})$ be the Yoneda embedding. Then h exhibits the $\operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set})$ as the category freely generated by C under small colimits. In other words, if X is any category which admits small colimits and $\operatorname{LFun}(\operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set}), X)$ is the category of functors from $\operatorname{Fun}(C^{\operatorname{op}}, \operatorname{Set})$ to X which preserve small colimits, then composition with h induces an equivalence of categories

$$LFun(Fun(\mathcal{C}^{op}, Set), \mathcal{X}) \to Fun(\mathcal{C}, \mathcal{X}).$$

Remark 9. The inverse functor $\theta: \operatorname{Fun}(\mathcal{C}, \mathfrak{X}) \to \operatorname{LFun}(\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}), \mathfrak{X})$ can be described explicitly as follows. Let $f: \mathcal{C} \to \mathfrak{X}$ be any functor. Then every object $X \in \mathfrak{X}$ determines a presheaf \mathscr{F}_X on \mathcal{C} , given by the formula $\mathscr{F}_X(C) = \operatorname{Hom}_{\mathfrak{X}}(f(C), X)$. Then $\theta(f): \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}) \to \mathfrak{X}$ can be described as the left adjoint of the functor

$$\mathfrak{X} \to \operatorname{Fun}(\mathfrak{C}^{\operatorname{op}},\operatorname{Set}) \qquad X \mapsto \mathscr{F}_X$$
.

Proof of Theorem 5 for a trivial topology. Let \mathcal{C} be a category which admits finite limits and let \mathcal{X} be a topos. By virtue of Proposition 8, composition with h induces an equivalence

$$\{\text{Functors } F: \text{Fun}(\mathcal{C}^{\text{op}}, \text{Set}) \to \mathcal{X} \text{ preserving colimits}\} \to \{\text{All functors } f: \mathcal{C} \to \mathcal{X}\}$$

We wish to show that this restricts to an equivalence of categories

$$\operatorname{Fun}^*(\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set}),\mathcal{X}) \to \{\operatorname{Left\ exact\ functors\ } f:\mathcal{C}\to\mathcal{X}\}$$

(note that condition (b) is of Theorem 5 is automatic when the Grothendieck topology on \mathcal{C} is trivial). In other words, we wish to show that if $F: \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set}) \to \mathcal{X}$ is a functor which preserves small colimits, then F preserves finite limits if and only if the composition $F \circ h: \mathcal{C} \to \mathcal{X}$ preserves finite limits. The "only if" direction is clear (and does not require the assumption that \mathcal{X} is a topos), since the Yoneda embedding $C \mapsto h_C$ preserves finite limits.

To prove the converse, assume that $f = F \circ h$ preserves finite limits. Let $\mathcal{D} \subseteq \mathcal{X}$ be a small full subcategory which contains a set of generators for \mathcal{X} , contains the image of f, and is closed under finite limits. Then the canonical topology on \mathcal{X} determines a Grothendieck topology on \mathcal{D} , and we proved in Lecture 10 that \mathcal{X} can be identified with the category of sheaves $\operatorname{Shv}(\mathcal{D})$. Let $h':\mathcal{D}\to\operatorname{Fun}(\mathcal{D}^{\operatorname{op}},\operatorname{Set})$ be the Yoneda embedding of \mathcal{D} and let $L:\operatorname{Fun}(\mathcal{D}^{\operatorname{op}},\operatorname{Set})\to \mathcal{X}$ be the sheafification functor. Using Proposition 8, we see that the functor $h'\circ f:\mathcal{C}\to\operatorname{Fun}(\mathcal{D}^{\operatorname{op}},\operatorname{Set})$ admits an essentially unique extension to a functor $F':\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})\to\operatorname{Fun}(\mathcal{D}^{\operatorname{op}},\operatorname{Set})$ which preserves small colimits. Moreover, the functor $L\circ F':\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})\to \mathcal{X}$ preserves small colimits, and $L\circ F'\circ h\simeq L\circ h'\circ f\simeq f$. Using Proposition 8 again, we can identify $L\circ F'$ with F. We wish to show that F preserves finite limits. Since the sheafification functor L preserves finite limits, we are reduced to proving that F' preserves finite limits. Concretely, the functor F' is given by left Kan extension along the functor $f^{\operatorname{op}}:\mathcal{C}^{\operatorname{op}}\to\mathcal{D}^{\operatorname{op}}$. In particular, if \mathscr{F} is a presheaf on \mathscr{C} , then $F'(\mathscr{F})$ is the presheaf on \mathscr{D} given by the formula

$$F'(\mathscr{F})(D) = \varinjlim_{D \to f(C)} \mathscr{F}(C).$$

We wish to show that, for each object $D \in \mathcal{D}$, the construction $\mathscr{F} \mapsto F'(\mathscr{F})(D)$ preserves finite limits. This follows from the observation that the colimit $\varinjlim_{D \to f(C)} \mathscr{F}(C)$ is indexed by a *filtered* diagram (in fact, the category $\mathcal{C}^{\text{op}} \times_{\mathcal{D}^{\text{op}}} (\mathcal{D}_{D/})^{\text{op}}$ admits finite colimits, since \mathcal{C} has finite limits which are preserved by the functor f).

Proof of Theorem 5 in general. Now suppose that \mathcal{C} is a category which admits finite limits which is equipped with an arbitrary Grothendieck topology. Let $L: \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set}) \to \operatorname{Shv}(\mathcal{C})$ be the sheafification functor and let $h: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})$ be the Yoneda embedding. For any topos \mathfrak{X} , we have a commutative diagram

$$\begin{split} \operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}), \mathfrak{X}) & \stackrel{\circ j}{\longrightarrow} \operatorname{Fun}(\mathcal{C}, \mathfrak{X}) \\ & \hspace{2cm} \hspace{2c$$

The first part of the proof shows that the lower horizontal map is a fully faithful embedding, whose essential image consists of those functors $f: \mathcal{C} \to \mathcal{X}$ which preserve finite limits. Moreover, the left vertical map is also fully faithful; its essential image consists of those geometric morphisms $F^*: \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}) \to \mathcal{X}$ having the property that the right adjoint $F_*: \mathcal{X} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set})$ factors through the full subcategory $\operatorname{Shv}(\mathcal{C}) \subseteq \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set})$. Using the description of F_* given in Remark 9, we see that the upper vertical map induces an equivalence from $\operatorname{Fun}^*(\operatorname{Shv}(\mathcal{C}), \mathcal{X})$ to the full subcategory of $\operatorname{Fun}(\mathcal{C}, \mathcal{X})$ spanned by those functors $f: \mathcal{C} \to \operatorname{Set}$ which satisfy the following pair of conditions:

- (a) The functor f preserves finite limits.
- (b') For each object $X \in \mathfrak{X}$, the functor $\mathscr{F}_X : \mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ given by $\mathscr{F}_X(C) = \mathrm{Hom}_{\mathfrak{X}}(f(C), X)$ is a sheaf. Unwinding the definitions, we can rephrase (b') as follows:

 $(b^{\prime\prime})$ For each object $X\in\mathfrak{X}$ and each covering $\{C_i\to C\}$ in $\mathfrak{C},$ the diagram

$$\operatorname{Hom}_{\mathfrak{X}}(f(C),X) \to \prod_{i} \operatorname{Hom}_{\mathfrak{X}}(f(C_{i}),X) \rightrightarrows \prod_{i,j} \operatorname{Hom}_{\mathfrak{X}}(f(C_{i} \times_{C} C_{j}),X)$$

is an equalizer.

Allowing X to vary, we can rephrase this as:

 $(b^{\prime\prime\prime})$ For each covering $\{C_i \to C\}$ in \mathcal{C} , the diagram

$$\coprod_{i,j} f(C_i \times_C C_j) \rightrightarrows \coprod_i f(C_i) \to f(C)$$

is a coequalizer in \mathfrak{X} .

Assuming (a), we can rewrite the diagram of (b''') as

$$\coprod_{i,j} f(C_i) \times_{f(C)} f(C_j) \rightrightarrows \coprod_i f(C_i) \to f(C),$$

so that (b''') is equivalent to condition (b) of Theorem 5.