Lecture 12: Geometric Morphisms

February 21, 2018

Definition 1. Let X and Y be topoi. A geometric morphism from X to Y is a functor f* : Y — X which
preserves finite limits, effective epimorphisms, and (small) coproducts. We let Fun*(Y,X) denote the full
subcategory of Fun(Y, X) spanned by the geometric morphisms from X to Y.

Remark 2. The terminology of Definition 1 is motivated by topology. If f : X — Y is a continuous map
of topological spaces, then pullback of sheaves determines a functor f* : Shv(Y) — Shv(X) satisfying the
requirements of Definition 1. Under the mild assumption that Y is sober, this construction establishes a
bijection between the set of continuous maps from X to Y and the set of isomorphism classes of geometric
morphisms from the topos Shv(X) to the topos Shv(Y). We will return to this point later.

Definition 1 admits several reformulations:

Proposition 3. Let X and Y be topoi and let f* 1Y — X be a functor which preserves finite limits. The
following conditions are equivalent:

(1) The functor f* is a geometric morphism from X to Y: that is, it preserves effective epimorphisms and
coproducts.

(2) The functor f* preserves small colimits.
(3) The functor f* admits a right adjoint.

Sketch. The equivalence (2) < (3) follows from the adjoint functor theorem and the implication (2) = (1) is
clear. We complete the proof by showing that (1) = (2). Assume that f* is a geometric morphism; we wish
to show that f* preserves small colimits. By general nonsense, all small colimits can be constructed from
coproducts and coequalizers. It will therefore suffice to show that for every pair of morphisms u,v: U — Y
in Y, the canonical map Coeq(f*U = f*Y) — f* Coeq(U = Y) is an isomorphism in X.

Note that the canonical map Y — Coeq(U = Y') cannot factor through any proper subobject of Y, and
is therefore an effective epimorphism. We therefore have Coeq(U = Y) ~ Coeq(R = Y), where RCY XY
is the equivalence relation Y Xcgoeq=y) Y. In this case, we can characterize I as the equivalence relation
generated by U: that is, it is the smallest equivalence relation on Y which contains the image of the map
(u,v) : U = Y xY. Similarly, we can identify Coeq(f*U = f*Y) with the quotient of f*Y by the equivalence
relation R’ C f*(Y) x f*(Y') generated by f*U. It will therefore suffice to show that R’ = f*R (as subobjects
of f*Y x f*Y.

We now describe passage from the object U to the equivalence relation R. Note that R depends only
on the image of the map (u,v) : U — Y x Y. We may therefore replace U by Im(u,v) and thereby reduce
to the case where U is a subobject of Y x Y. Let U°P denote the image of U under the automorphism of
Y x Y given by swapping the factors. Replacing U by the join U V U°P, we can reduce to the case where U
is a symmetric relation on Y. For each n > 0, let V,, denote the n-fold fiber product

Uf Xyyg Uf Xyg Uf XXg f Xyyg U,

(so that Vp = Y) and let U,, denote the image of V;, in the product ¥ x Y (under the maps from the
outermost factors of U). The equivalence relation R can then be described as the join \/, -, U, (Exercise:
Check this.) B



Note that the equivalence relation R was constructed from U by a combination of taking images of
morphisms, fiber products, and joins of subobjects. By assumption, the functor f* : Y — X is compatible
with each of these operations. It follows that f* R agrees with the equivalence relation R’ generated by f*U,
as desired. O

Remark 4. Let X and Y be topoi and let f*:Y — X be a geometric morphism from X to Y. Proposition 3
implies that f* admits a right adjoint, which we will denote by f, : X — Y. In this situation, the functors f*
and f, are equivalent pieces of data: either can be recovered (up to canonical isomorphism) from the other.
We will sometimes abuse terminology by saying that f. is a geometric morphism from X to Y.

Our next goal is to understand how to compute the category Fun*(Y,X) of geometric morphisms in the
case where Y = Shv(C) is described as a category of sheaves.

Theorem 5. Let C be a small category which admits finite limits which is equipped with a Grothendieck
topology, and let j : € — Shv(C) be the composition of the Yoneda embedding h : € — Fun(C°", Set) with
the sheafification functor L : Fun(C°? 8et) — 8. Then, for any topos X, composition with j induces a fully
faithful embedding

Fun*(Shv(€),X) — Fun(C, X),

whose essential image consists of those functors f : C — X which satisfy the following pair of conditions:
(a) The functor f is left exact: that is, it preserves finite limits.

(b) For every covering {C; — C} in the category C, the maps {f(C;) — f(C)} form a covering with respect
to the canonical topology on X.

We begin by proving Theorem 5 in a special case, where we can ignore the topology on C.

Exercise 6. Let C be a small category (which admits finite limits). Show that € admits a Grothendieck
topology where the covering families {f; : C; — C} are those collections of maps where some f; admits a
section. We will refer to this Grothendieck topology as the trivial topology on C.

Exercise 7. Let C be a small category which admits finite limits. Show that every presheaf on C is a
sheaf with respect to the trivial topology. That is, if we equip € with the trivial topology, then we have
Shv(€) = Fun(€°?, Set).

We first prove Theorem 5 in the case where the topology on € is trivial. We will use the following general
fact about presheaf categories:

Proposition 8. Let € be a small category and let h : € — Fun(C°P, S8et) be the Yoneda embedding. Then
h ezhibits the Fun(C°P, Set) as the category freely generated by C under small colimits. In other words, if
X is any category which admits small colimits and LFun(Fun(C°P, 8et), X) is the category of functors from
Fun(€°P, 8et) to X which preserve small colimits, then composition with h induces an equivalence of categories

LFun(Fun(C°?, 8et), X) — Fun(C, X).

Remark 9. The inverse functor 6 : Fun(C,X) — LFun(Fun(C°?,8et),X) can be described explicitly as
follows. Let f: € — X be any functor. Then every object X € X determines a presheaf . x on C, given by
the formula .Z x (C) = Homx (f(C), X). Then 0(f) : Fun(€°?, 8et) — X can be descrbed as the left adjoint
of the functor

X — Fun(€°P, Set) X—Fx.

Proof of Theorem 5 for a trivial topology. Let C be a category which admits finite limits and let X be a
topos. By virtue of Proposition 8, composition with h induces an equivalence

{Functors F : Fun(C°?, Set) — X preserving colimits} — {All functors f : € — X}



We wish to show that this restricts to an equivalence of categories
Fun*(Fun(C°?, 8et), X) — {Left exact functors f : € — X}

(note that condition (b) is of Theorem 5 is automatic when the Grothendieck topology on € is trivial). In
other words, we wish to show that if F' : Fun(C°",8et) — X is a functor which preserves small colimits,
then F preserves finite limits if and only if the composition F o h : € — X preserves finite limits. The “only
if” direction is clear (and does not require the assumption that X is a topos), since the Yoneda embedding
C' +— hg preserves finite limits.

To prove the converse, assume that f = Foh preserves finite limits. Let D C X be a small full subcategory
which contains a set of generators for X, contains the image of f, and is closed under finite limits. Then the
canonical topology on X determines a Grothendieck topology on D, and we proved in Lecture 10 that X can
be identified with the category of sheaves Shv(D). Let A’ : D — Fun(D°P, 8et) be the Yoneda embedding
of D and let L : Fun(D°?,8et) — X be the sheafification functor. Using Proposition 8, we see that the
functor b’ o f : € — Fun(D°?, Set) admits an essentially unique extension to a functor F’ : Fun(C°, Set) —
Fun(D°P, 8et) which preserves small colimits. Moreover, the functor L o F’ : Fun(C°, 8et) — X preserves
small colimits, and Lo F'oh ~ Loh'o f ~ f. Using Proposition 8 again, we can identify L o F’ with F. We
wish to show that F' preserves finite limits. Since the sheafification functor L preserves finite limits, we are
reduced to proving that F’ preserves finite limits. Concretely, the functor F’ is given by left Kan extension
along the functor f°P : C°? — D°P. In particular, if .% is a presheaf on @, then F’(%) is the presheaf on D
given by the formula

F'(Z)(D) = lim F(C).
D—f(C)
We wish to show that, for each object D € D, the construction .# — F'(.F)(D) preserves finite limits. This
follows from the observation that the colimit lim #0) Z(C) is indexed by a filtered diagram (in fact, the

category C° X por (D p,)°P admits finite colimits, since € has finite limits which are preserved by the functor

- O

Proof of Theorem 5 in general. Now suppose that C is a category which admits finite limits which is equipped
with an arbitrary Grothendieck topology. Let L : Fun(C°?,8et) — Shv(C) be the sheafification functor and
let h: € — Fun(C°?, Set) be the Yoneda embedding. For any topos X, we have a commutative diagram

o

Fun*(Shv(€), X) ——— Fun(C, X)

Fun™ (Fun(C°?, Set), X) ok, Fun(€, X)

The first part of the proof shows that the lower horizontal map is a fully faithful embedding, whose essential
image consists of those functors f : € — X which preserve finite limits. Moreover, the left vertical map
is also fully faithful; its essential image consists of those geometric morphisms F* : Fun(C°? 8et) — X
having the property that the right adjoint F, : X — Fun(€°P, 8et) factors through the full subcategory
Shv(€) C Fun(C°P, 8et). Using the description of F given in Remark 9, we see that the upper vertical map
induces an equivalence from Fun®(Shv(C), X) to the full subcategory of Fun(C, X) spanned by those functors
f: € — Set which satisfy the following pair of conditions:

(a) The functor f preserves finite limits.
(t') For each object X € X, the functor & x : C°P — Set given by .# x(C) = Homx (f(C), X) is a sheaf.

Unwinding the definitions, we can rephrase (') as follows:



(") For each object X € X and each covering {C; — C} in C, the diagram

Homy (f(C), X) — HHomx(f(CZ-),X) = [ [ Homa (£(Ci xc Cy), X)

2]
is an equalizer.
Allowing X to vary, we can rephrase this as:

(V") For each covering {C; — C'} in €, the diagram

Hﬂci xc Cy) = L[f(Ci) — f(C)

is a coequalizer in X.

Assuming (a), we can rewrite the diagram of (b"') as

Hf(ci) X (o) [(C)) = Hf(Ci) — f(C),

so that (b"') is equivalent to condition (b) of Theorem 5.



