Lecture 10: Giraud’s Theorem

February 12, 2018

In the previous lecture, we showed that every topos X is a pretopos. Our goal in this lecture is to prove
a converse to this assertion, due to Giraud. Roughly speaking, Giraud’s theorem asserts that a pretopos X
is a topos if and only if it has infinite coproducts which are compatible with pullback, and satisfies a mild
set-theoretic condition guaranteeing that it is not “too big” to arise as a category of sheaves on a small
category.

Definition 1. Let X be a pretopos which admits infinite coproducts. We will say that a collection of
morphisms {f; : U; = X}ier is a covering if it induces an effective epimorphism IIU; — X. Equivalently,
{fi : U; — X} is a covering if, for every subobject Xy C X such that each f; factors through Xy, we must
have Xy = X (as subobjects of X).

Warning 2. In Lecture 8, we defined a Grothendieck topology on any coherent category € using a very
similar notion of covering. However, Definition 1 is different because we do not require that every covering
family admits a finite subcover.

Theorem 3. Let X be a category. The following conditions are equivalent:

(1) The category X is a topos: that is, it can be realized as a category of sheaves Shv(C), where € is a small
category with finite limits which is equipped with a Grothendieck topology.

(2) There exists a small category C and a fully faithful embedding X — Fun(C°?, Set) which admits a left
adjoint L : Fun(C°?,8et) — X for which L preserves finite limits.

(3) The category X satisfies Giraud’s axioms:

(G1) The category X admits finite limits.

(G2) Every equivalence relation in X is effective.

(G3) The category X admits small coproducts, and coproducts in X are disjoint.

(G4) The collection of effective epimorphisms in X is closed under pullback.

(G5) The formation of coproducts commutes with pullback: that is, for every morphism f: X —Y in

X, the pullback functor f*: X,y — X,x preserves coproducts.

(G6) There exists a set of objects U of X which generate X in the following sense: for every object
X € X, there exists a covering {U; — X}, where each U; belongs to U.

Remark 4. In the statement of Theorem 3, we do not assume that the category X is small (in practice, this
will only happen in trivial cases). However, we always implicitly assume that it is locally small: that is, the
collection of morphisms Homy (X,Y") forms a set, for every pair of objects X,Y € X. Note that axiom (G6)
would be vacuous if the category X were small (because we could take U to consist of all the objects of X).

Remark 5. In Lecture 8, we defined the notion of Grothendieck topology only under the assumption that
C admits finite limits. If we had given the definition more generally, we could add the following equivalent
characterization to Theorem 3:



(1.5) The category X is equivalent to Shv(€), where € is a small category with a Grothendieck topology.

The implication (1) = (1.5) would then be vacuous, and the implication (1.5) = (2) follows from the
sheafification construction of Lecture 9.

In the previous lecture, we showed that (1) implies (2) and that (2) implies axioms (G1) through (G5).
Let us show that it also implies (G6). Assume for simplicity that X is given as a full subcategory of
Fun(C°?, Set), where € is a small category, and that the inclusion functor admits a left exact left adjoint
L : Fun(C°? 8et) — X. For each object X € €, let hx : C°P — 8Set denote the functor represented by X,
given by the formula hx(Y) = Home(Y, X). We claim that the collection {Lhx }xce is a set of generators
for X. To prove this, we note that every presheaf .# : C°° — Set admits an effective epimorphism

Oxcenezx)hx — F .

If .7 belongs to X, then the induced maps {Lhx — .7 } xce nez(x) are a covering of .% in the category X.

Our goal for the rest of this lecture is to prove the implication (3) = (1) of Theorem 3. Let X be a
category satisfying (G1) through (G6). Using (G6), we can choose a small full subcategory € C X whose
objects generate X, in the sense of (G6). Enlarging C if necessary, we can assume that € is closed under
finite limits (meaning that every finite diagram in € admits a limit in X which also belongs to €). We will
prove the following:

Theorem 6. Let X be a category satisfying azioms (G1) through (G5) and let € C X be a full subcategory
of X which is closed under finite limits and generates X (in the sense of (G6)). Let us say that a family of
morphisms {U; — X} in € is a covering if it is a covering in X (in the sense of Definition 1). Then:

(a) The collection of coverings families determines a Grothendieck topology on C.

(b) For every object Y € X, let hy : CP — 8et denote the functor represented by Y on the subcategory
C, given by the formula hy (X) = Homx(X,Y). Then hy is a sheaf with respect to the Grothendieck

topology of (a).
(¢) The construction Y — hy induces an equivalence of categories X — Shv(C).

Proof. We first prove (a). Suppose first that we are given a collection of morphisms {U; — X} in C and a
morphism ¥ — X in C; we wish to show that the collection of projection maps {U; xx Y — Y} is also a
covering. In other words, we are given that the map IIU; — X is an effective epimorphism in X, and we wish
to show that the induced map II(U; xx Y) — Y is also an effective epimorphism in X. This is clear, since
axioms (G4) and (G5) guarantee that pullback along the map Y — X preserves the formation of coproducts
and the property of being an effective epimorphism.

Now suppose that we are given a covering {U; — X} in € and, for each index 4, a covering {V; ; — U,} in
C. In this case, we would like to show that the composite maps {V;; — X} are also a covering. We proceed
as in proof of the analogous statement for a coherent category. Suppose we are given a subobject Xy C X
(not necessarily in €) such that each of the composite maps V; ; — X factors through Xy. Then, for each
i, the maps V; ; = U; factor through X x x U;. Since the V; ; cover U;, we have X x x U; = U;: that is,
each of the maps U; — X factors through Xy. Since the maps {U; — X} are a cover of X, we deduce that
Xo=X.

To complete the proof that the collection of coverings determines a Grothendieck topology, we should
verify that if a collection of maps {f; : U; — X} is a covering whenever some f; admits a section. This is
clear (in this case, the morphism f; itself is an effective epimorphism in @).

We now prove (b). Fix an object Y € X; we wish to show that the functor hy : C°° — Set is a sheaf.
Choose any covering {U; — X} of an object Y € €; we wish to show that the diagram of sets

hy(X) E— HhY(Uz) p— th(Ul X x U])



is an equalizer. Unwinding the definitions, we can rewrite this diagram as
1‘1011135()(7 Y) —_— HOmx(HiUi, Y) — HOmx(Hi,jUi X x Uj, Y)

Our assumption that {U; — X} is a covering guarantees that the map II;U; — X is an effective epimorphism.
We are therefore reduced to proving that the natural map

Hi,j(Ui Xx Uj) — (HzUz) Xx (H]Uj)

is an isomorphism, which follows from axiom (G5).
To verify (c), we will need the following:

Lemma 7. Let {U; — X}ier be a covering in X (not necessarily between objects of C). Then the induced
map hy, — hx is an effective epimorphism in Shv(C)

Proof. Suppose we are given a section s € hx(C), for some C € €, given by a morphism C — X in the
category X. Since {U; — X} is a covering, the induced map IIU; — X is an effective epimorphism in the
category X. Using (G4) and (G5), we deduce that the collection of maps {U; x x C' — C} is also a covering
in X. Since the objects of € generate X, each U; x x C' admits a covering {V; ; — U; xx C'}, where V; ; € C.
Then the collection of composite maps {V; ; — C} are a covering in the category €. By construction, for each
pair (¢, 7), the image s; ; € hx(V; ;) of s belongs to the image of the map hy, (Vi ;) = hx (Vi ;). Allowing C
and s to vary, we conclude that the maps {hy, — hx} are a covering of hx in the topos Shv(C). O

Our next goal is to show that the functor h : X — Shv(€) is fully faithful: that is, for every pair of
objects X,Y € C, the natural map

Ox : HOIHQC()(7 Y) — HomShv(@)(hX, hy)

is bijective. Let us regard Y as fixed. We will say that X is good if fx is bijective. The argument now
proceeds in several steps:

(i) Every object X € Cis good: this follows from Yoneda’s lemma.

(#7) Suppose that X € X admits a covering {U; — X }icr. If each U; and each fiber product U; x x Uj is
good, then X is good. To prove this, we observe that we have effective epimorphisms

HieIUi—>X Hie[ hUi —)hX

in the categories X and Shv (@), respectively (Lemma 7). Using the fact that both categories satisfy
(G5) (and the observation that h preserves finite limits), we obtain coequalizer diagrams

I jeUs xx Uy =% ;e U; —> X
U; jerhu,x xu; =—= Wierhy, — hx.
It follows that the map 6x fits into a commutative diagram of sets

Homy (X,Y) [[; Homx (U3, Y) ———= 1, ; Homx (U; xx U;,Y)

- | |

Homgpy(e)(hx, by ) — [[; Homx (hy,, hy) == [[; ; Homsny(e) (hv, x < v, hy)

where the rows are equalizer diagrams. Since the vertical maps in the middle and on the right are
isomorphisms, it follows that 6y is also an isomorphism.



(7i1) Let X be an object of € and let U C X be a subobject. Then U is good. To prove this, choose a
covering {U; — U}, where each U; belongs to €. Since C is closed under finite limits, each of the fiber
products U; xy Uj ~ U; x x U; belongs to €. It follows from (4) that the objects U; and U; x x U; are
good, so that U is good by (i2).

(iv) Let X be an arbitrary object of €. Choose a covering {U; — X}, where each U; belongs to €. Then
each fiber product U; x x Uj is a subobject of U; x U; € €, and is therefore good by (iii). Using (i),
we deduce that X is good.

This completes the proof that the functor X — hx is fully faithful. We wish to show that it is essentially
surjective. Note that we have not yet used the full strength of our axioms: specifically, we have not used the
fact that coproducts in X are disjoint, or that equivalence relations in X are effective.

Applying Lemma, 7 in the case where I = (), we deduce that h carries the initial object of X to an initial
object of Shv(C). We claim that h preserves coproducts. Fix a collection of objects {X;} € X with coproduct
X; we wish to show that the canonical map

Q:HhXj %hX

is an isomorphism in €. By virtue of Lemma 7, it is an effective epimorphism. It will therefore suffice to
show that it is also a monomorphism: that is, that the diagonal map

HhXi — (HhX1 Xhx HhXj>

is an isomorphism. Using the fact that Shv(C) satisfies (G5) and that h is right exact, we can rewrite the
codomain of this map as II; jhx,x x,- We are therefore reduced to showing that diagonal maps hx, —
hx,xx, are isomorphisms and that hx,x  x, is an initial object of Shv(C) for ¢ # j. This follows from our
assumption that coproducts in X are disjoint (axiom (G3)).

We now show that the functor h is essentially surjective. Choose an object % € Shv(C); we wish to show
that .# belongs to the essential image of h. We first treat the special case where .% C hx for some object
X € X. Choose an effective epimorphism ITho, — %, where each C; belongs to €. Setting U = II;C;, we
obtain an effective epimorphism hy — % for some U € X. In this case, the composite map hy — % — hx
arises from some morphism v : U — X in X. Since X is a pretopos, the morphism u factors as a composition

U Y X5 X, where o/ is an effective epimorphism and «” is a monomorphism. Note that the induced

map hy — hy is an effective epimorphism in Shv(€) (by virtue of Lemma 7), and the map hy — X is a
monomorphism in Shv(€) (since the functor b is left exact). From the uniqueness of images in the pretopos
Shv(€), we conclude that .Z is isomorphic to hy.

We now treat the general case. Let .# be any sheaf on C. As before, we can choose an effective
epimorphism hy — %, for some U € X. In this case, the fiber product hy X & hy is a sheaf on € which
can be viewed as a subobject of hyy X hy = hyxy. It follows from the analysis above that we can choose an
isomorphism hy X g hyy ~ hg for some object R € X. Note that for any object Y € X, we have a canonical
bijection

Homy (Y, R) ~ Homgpy(e)(hy, hu X7 hy).
From this description, we see that R can be viewed as an equivalence relation on U in the pretopos X. It
follows from (G2) that this equivalence relation is effective: that is, there exists an effective epimorphism
U — X in X with R = U xx U (as subobjects of U x U). Applying Lemma 7 to the covering {U — X}, we
obtain an isomorphism

hx ~ Coeq(hr = hy) ~ Coeq(hy Xz hy = hy) ~ F .



