
1. Introduction

In these notes we shall prove some of the basic facts concerning Hadamard spaces
(metric spaces of non-positive curvature). In particular we shall give a detailed
proof of the Cartan-Hadamard theorem, which applies even to exotic cases such as
non-positively curved orbifolds.

A few remarks about material not covered here. We shall say nothing about
Riemannian manifolds of non-positive curvature. We shall not touch on any results
requiring assumptions about negative (as opposed to non-positive) curvature. And
we shall say very little about groups which act on Hadamard spaces.

2. Basic Definitions

Definition 2.1. A Hadamard space is a nonempty complete metric space (X, d)
with the property that for any pair of points x, y ∈ X, there exists a point m ∈ X
such that

d(z,m)2 +
d(x, y)2

4
≤ d(z, x)2 + d(z, y)2

2
for any z ∈ X.

Applying the definition with z = x, we deduce that d(x,m)2 ≤ d(x,y)2

4 , so that
d(x,m) ≤ d(x,y)

2 . Similarly d(y,m) ≤ d(x,y)
2 . Thus d(x,m) + d(y,m) ≤ d(x, y). By

the triangle inequality, equality must hold, so that d(x,m) = d(y,m) = d(x,y)
2 . We

say that m is the midpoint of x and y. Furthermore, m is uniquely determined
by this property. Indeed, suppose that d(x,m′) = d(y,m′) = d(x,y)

2 . Applying the
definition with z = m′, we deduce that d(m,m′) ≤ 0, so that m = m′.

Let X be any metric space. A geodesic of speed D in X is a map p : [t−, t+] → X
with the property that for any t ∈ [t−, t+], there exists a positive constant ε such
that d(p(s), p(s′)) = D|s− s′| for any s, s′ ∈ [t−, t+] such that t− ε ≤ s, s′ ≤ t+ ε.
We call a map p a geodesic if it is a geodesic of speed D for some D, which is
obviously uniquely determined. If d(p(t−), p(t+)) = D(t+ − t−), then we shall say
that p is a minimizing geodesic.

Proposition 2.2. Let X be a Hadamard space, and let x, y ∈ X with d(x, y) = D.
Then there is a unique minimizing geodesic p : [0, 1] → X of speed D with p(0) = x
and p(1) = y. Furthermore, for any point z and any 0 ≤ t ≤ 1, we have the
inequality d(z, p(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − t(1− t)D2.

Proof. Without loss of generality we may assume D = 1, to simplify our notations.
We first define p on all rational numbers of the form a

2n by induction on n: if a is
odd and n > 0, then we let p( a

2n ) be the midpoint of p(a+1
2n ) and p(a−1

2n ). Of course
we begin by setting f(0) = x and f(1) = y.

Now we claim that p satisfies the stated inequality whenever t is a dyadic rational.
For t = 0 or t = 1 this is obvious; in general we proceed by induction. In establishing
the claim for t = a

2n , we may assume that it holds already for a+1
2n and a−1

2n . Note
that d(f(a+1

2n ), f(a−1
2n )) = 1

2n−1 , by an easy induction.
Then we have the inequalities

d(z, p(
a+ 1
2n

))2 ≤ 2n − a− 1
2n

d(z, x)2 +
a+ 1
2n

d(z, y)2 − 2n − a− 1
2n

a+ 1
2n

1



2

d(z, p(
a− 1
2n

))2 ≤ 2n − a+ 1
2n

d(z, x)2 +
a− 1
2n

d(z, y)2 − 2n − a+ 1
2n

a− 1
2n

By the definition of a Hadamard space we have

d(z, f(
a

2n
))2 ≤

d(z, f(a+1
2n ))2 + d(z, f(a−1

2 ))2

2n
− 1

22n

Combining these inequalities, we obtain the desired result. An easy induction
shows that d(x, p(t)) = t, d(p(t), y) = 1− t for any dyadic rational t. It follows that
d(p(t), p(t′))2 ≤ (1−t)t′2+t(1−t′)2−t(1−t) = (t−t′)2, so that d(f(t), f(t′)) ≤ |t−t′|.
Without loss of generality t ≤ t′, so we get 1 = d(x, y) ≤ d(x, p(t))+d(p(t), p(t′))+
d(p(t′), y) ≤ t + (t′ − t) + (1 − t′) = 1, so we must have equality throughout and
d(p(t), p(t′)) = |t− t′| for all dyadic rationals t, t′ ∈ [0, 1].

In particular, p is uniformly continuous on the dyadic rationals. Since X is
complete, it follows that f admits a unique continuous extension to [0, 1]. By
continuity, it follows that d(p(t), p(t′)) = |t − t′| for all t, t′ ∈ [0, 1], and that the
inequality in the statement of the proposition holds for all t ∈ [0, 1].

The uniqueness is clearly forced by our construction. �

Another formulation of the inequality of the lemma is that if p : [t−, t+] → X is
a minimizing geodesic of speed D and x ∈ X, then the function d(x, p(t))2 − (Dt)2

is a convex function of t; the existence of geodesics with this property characterizes
Hadamard spaces among all complete metric spaces. Note also that the convexity
of this function is independent of the chosen interval of definition [t−, t+], since
replacing this interval with [t− + c, t+ + c] modifies the function d(x, p(t))2− (Dt)2

by an affine function of t.
If x and y are points in a Hadamard space X, we shall denote the minimizing

geodesic joining x to y by pxy.

Remark 2.3. If X is a Hadamard space under a metric d, then it is a Hadamard
space under any metric obtained by multiplying d by a constant (positive) factor.

Remark 2.4. Given any finite collection of Hadamard spaces {Xi}i∈I , the Cartesian
product X = Πi∈IXi is Hadamard, with metric given by

d({xi}, {x′i})2 =
∑
i∈I

dXi(xi, x
′
i)

In particular, a one-point space is Hadamard.

3. Comparison Triangles

Let X be a metric space in which every pair of points may be joined by a unique
minimizing geodesic. For any triple of points x, y, z ∈ X, we let ∆(x, y, z) denote
the Euclidean triangle (homeomorphic to a circle) with side lengths d(x, y), d(y, z),
d(z, x). By hypothesis, there is a natural map φ : ∆(x, y, z) → X which sends the
vertices to x, y, and z, and sends the sides isometrically to the minimizing geodesics
joining x, y, and z. By abuse of notation, we shall generally not distinguish between
points of ∆(x, y, z) and their images in X.

We may regard ∆(x, y, z) as a metric space (via its embedding in the Euclidean
plane); let us denote the metric by d∆. We shall say that x, y, z ∈ X form a
hyperbolic triangle if φ is distance-decreasing.
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Proposition 3.1. A nonempty, complete metric space is Hadamard if and only if
every three points x, y, z ∈ X form a hyperbolic triangle.

Proof. Suppose every three points of X form a hyperbolic triangle. Take any pair
of points x, y ∈ X and join them by a minimizing geodesic; let m be the midpoint
of that geodesic. Then for any point z ∈ X, the square of the distance from z to
m in ∆(x, y, z) is precisely d(z,x)2+d(z,y)2

2 − d(x,y)2

4 . If φ is distance-decreasing then
we deduce that X is Hadamard.

For the converse, we suppose that X is Hadamard. Pick x, y, z ∈ X, and let
a, b ∈ ∆(x, y, z). We must show that d(a, b) ≤ d∆(a, b). This is clear if a and b
lie on the same side of ∆(x, y, z); without loss of generality we may assume that a
lies on the side containing x and y, while b lies on the side containing y and z. Let
d∆′ denote the metric on the Euclidean triangle ∆(a, y, z). Then it suffices to show
that d(a, b) ≤ d∆′(a, b) ≤ d∆(a, b).

The first inequality follows directly from Proposition 2.2, which also shows that
d(a, z) ≤ d∆(a, z). This shows that the angle of ∆(a, y, z) at y is smaller than
the angle of ∆(x, y, z) at y. This in turn implies the second inequality, since the
distance between two points in Euclidean space that are at fixed distances from y
varies monotonically with the angle between the segments joining them to y. �

Corollary 3.2. Let X be a Hadamard space, and let x, y, z ∈ X. Then the distance
from the midpoint of x and y to the midpoint of x and z is less than or equal to
d(y,z)

2 .

Corollary 3.3. Let X be a Hadamard space, and let x, y, x′, y′ ∈ X. Let m be the
midpoint of x and y, m′ the midpoint of x′ and y′. Then d(m,m′) ≤ d(x,x′)+d(y,y′)

2 .

Proof. Let m′′ denote the midpoint of x and y′. Then d(m,m′) ≤ d(m,m′′) +
d(m′′,m). Now apply the previous corollary. �

4. Angles

Let X be a Hadamard space. Let p : [0, s] → X and p′ : [0, s′] → X be geodesics
of speeds D and D′ with p(0) = p′(0) = x. Then for any t ∈ (0, s], t′ ∈ (0, s′], we
let α(t, t′) ∈ [0, π] denote the angle at the vertex x in the triangle ∆(x, f(t), f ′(t′)).
This is determined by the law of cosines:

cos(α(t, t′)) =
(tD)2 + (t′D′)2 − d(p(t), p′(t′))2

2(tD)(t′D′)
If t0 ≤ t and t′0 ≤ t′, then d(p(t0), p′(t′0)) ≤ d∆(p(t0), p′(t0)) = (t0D)2+(t′0D′)2−

2(t0D)(t′0D) cos(α(t, t′)), where the latter equality again follows from the law of
cosines. This in turns implies cos(α(t0, t′0)) ≥ cos(α(t, t′)) so that α(t0, t′0) ≤ α(t, t′).
Thus the angles α(t, t′) must approach some infimum as t, t′ → 0; we refer to this
infimum as the angle between p and p′ at x and denote it by ∠p,p′ .

Remark 4.1. This definition makes sense under much weaker hypotheses. However,
we shall only make use of angles between geodesics in Hadamard spaces, which
enjoy many pleasant properties.

Our first goal is to establish the following “triangle-inequality” for angles:

Theorem 4.2. Let p : [0, s] → X, p′ : [0, s′] → X, p′′ : [0, s′′] → X be three
geodesics with p(0) = p′(0) = p′′(0) = x. Then ∠p,p′′ ≤ ∠p,p′ + ∠p′,p′′ .
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Proof. Without loss of generality we may assume that the geodesics are unit-speed.
We must show that for every ε > 0, there exist t ∈ (0, s] and t′′ ∈ (0, s′′] such that
the vertex angle of ∆(x, p(t), p′′(t′′)) at x is less than or equal to ∠p,p′ +∠p′,p′′ + ε.
Take t and t′′ so small that for any t′ ≤ t+ t′′, the vertex angles of ∆(x, f(t), f ′(t′))
and ∆(x, f ′(t′), f ′′(t′′)) at x are less than ∠p,p′ + ε

2 and ∠p′,p′′ + ε
2 .

If ∠p,p′ +∠p′,p′′ + ε > π there is nothing to prove. Otherwise it suffices to show
the inequality

t2 + t′′2 − 2tt′′ cos(∠p,p′ + ∠p′,p′′ + ε) ≥ d(p(t), p′′(t′′))2

Let ∆ denote the Euclidean triangle having a vertex x with angle ∠p,p′+∠p′, p′′+ε
and adjacent side lengths t, t′′; call the endpoints of these adjacent sides y and
z. Then we wish to show that d(p(t), p′′(t′′)) ≤ d∆(y, z). Let t′ be the length
of the segment from x to the a point w on the side of ∆ opposite to x which
divides the vertex angle at x into pieces of size ∠p, p′ + ε

2 and ∠p′,p′′ + ε
2 . By

the triangle inequality, it suffices to show that d(p(t), p′(t′)) + d(p′(t′), p′′(t′′)) ≤
d∆(y, z) = d∆(y, w) + d∆(w, z). This follows immediately from the inequalities
d(p(t), p′(t′)) ≤ d∆(y, w) and d(p′(t′), p′′(t′′)) ≤ d∆(w, z). �

Proposition 4.3. Let p− : [0, s−] → X and p+ : [0, s+] → X be geodesics of the
same speed D with p−(0) = p+(0). Define p : [−s−, s+] → X by letting p(t) =
p−(−t) for t ≤ 0, p(t) = p+(t) for t ≥ 0. Then p is a geodesic if and only if
∠p−,p+ = π.

Proof. For simplicity of notation, we may take D = 1. Then p is a geodesic (nec-
essarily of speed D) if and only if d(p(t), p(t′)) = |t − t′| for all t sufficiently close
to 0. This inequality clearly holds if t, t′ ≥ 0 or t, t′ ≤ 0. Therefore we may take
t ≤ 0 ≤ t′ without loss of generality. If t and t′ are sufficiently close to zero, then
we do know that d(p(t), p(t′)) ≤ d(p(t), p(0)) + d(p(t′), p(0)) = (−t) + t′. If the
inequality is not strict, then the vertex angle of ∆(p(0), p(t), p(t′)) at p(0) is not
equal to π so that ∠p+,p− < π. The converse follows by the same argument. �

Remark 4.4. LetX be a Hadamard space, and let x, y, z ∈ X. Then the vertex angle
α of the geodesic triangle spanned by x, y, and z in X is ≤ the corresponding angle
in the Euclidean triangle ∆(x, y, z). Consequently we have the “law of cosines”,
which now takes the form of an inequality

d(y, z)2 ≥ d(x, y)2 + d(x, z)2 − 2d(x, y)d(x, z) cos(α)

5. Flat Triangles

Proposition 5.1. Let x, y, z ∈ X, and join x, y, and z by geodesic segments to
form a geodesic triangle. The sum of the vertex angles of this triangle is at most π.

Proof. Each of the vertex angles is less than or equal to the corresponding angle in
∆(x, y, z). �

If x, y, z ∈ X are such that the sum of the vertex angles of the corresponding
geodesic triangle is exactly π, then we shall say that (x, y, z) is in Euclidean position.
This is a very special circumstance, as we shall now demonstrate.



5

Lemma 5.2. Let X be a Hadamard space, let x, y, z ∈ X, and let w lie on the
minimizing geodesic from y to z. If (x, y, z) is in Euclidean position, then (x, y, w)
and (x,w, z) are in Euclidean position.

Proof. By the triangle inequality, the sum of the vertex angles at w in the geodesic
triangles spanned by (x, y, w) and (x,w, z) is at least π. Similarly, the sum of the
vertex angles at x in the triangles spanned by (x, y, w) and (x,w, z) is at least as
great as the vertex angle at x in the triangle spanned by (x, y, z). Since the sum of
the vertex angles in the triangle spanned by (x, y, z) is equal to π, the sum of the
vertex angles in the triangles spanned by (x, y, w) and (x,w, z) is at least 2π. Since
the total angle is at most π for each triangle, equality must hold in both cases. �

Lemma 5.3. Let X be a Hadamard space, let x, y, z ∈ X, and let w lie on the
minimizing geodesic from y to z. Let ∆′ the Euclidean triangle containing y which
is obtained by subdividing ∆(x, y, z) by adding a segment joining x to w. If (x, y, z)
is in Euclidean position, then the natural bijection ∆′ ' ∆(x, y, w) is an isometry.

Proof. The side lengths of the sides containing y in both triangles are the same.
Thus it suffices to show that the vertex angles of these two triangles at y are the
same. But since (x, y, z) and (x, y, w) are both in Euclidean position, the vertex
angles in both of these Euclidean triangles coincides with the angle between the
corresponding geodesics in X. �

Lemma 5.4. Let X be a Hadamard space, and let x, y, z ∈ X be such that (x, y, z)
is in Euclidean position. Then the distance-decreasing map ∆(x, y, z) → X is an
isometry.

Proof. Suppose w,w′ ∈ ∆(x, y, z); we wish to show d(w,w′) = d∆(w,w′). Assume
first that w′ is a vertex. If w lies on an edge containing w′ then the claim is obvious.
If not, then the claim follows immediately from the last lemma.

Now suppose that w′ is not a vertex. Without loss of generality, w′ lies on the
side of ∆(x, y, z) which is opposite x and w lies in the triangle ∆(x, y, w′). By the
preceding lemma, we may replace (x, y, z) by (x, y, w′), thereby reducing to the case
where w′ is a vertex. �

For x, y, z ∈ X, we let ∆(x, y, z) denote the triangle ∆(x, y, z) together with its
interior (homeomorphic to a disk), metrized as a subset of the Euclidean plane.

Theorem 5.5. Let X be a Hadamard space, x, y, z ∈ X. Then (x, y, z) is in Eu-
clidean position if and only if the natural distance-decreasing map φ : ∆(x, y, z) →
X prolongs to an isometry φ : ∆(x, y, z) → X. Such an isometry is automatically
unique.

Proof. The “if” part of the theorem is obvious. The uniqueness is also clear: for
any w ∈ ∆(x, y, z), let w′ ∈ ∆(x, y, z) denote the intersection of the line joining x
and w with the segment joining y and z. Then we must have φ(w) = pxw′( d∆(x,w)

d∆(x,w′) ).
We will use this as our definition of φ; to complete the proof, it suffices to show
that φ is an isometry.

If (x, y, z) is in Euclidean position, then φ is an isometry. It follows easily from
this that φ|∆(x, y, z) = φ. To complete the proof, it suffices to show that φ is an
isometry. Choose u,w ∈ ∆(x, y, z): we must show d∆(u, v) = d(φ(u), φ(v)). We
have seen that there is no harm in subdividing the triangle spanned by (x, y, z).
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Therefore we may replace y and z by u′ and v′. In this case u, v ∈ ∆(x, y, z) and
the result follows from the fact that φ is an isometry. �

6. Convexity

Let X be a Hadamard space. A subset K ⊆ X is convex if K contains the unique
minimizing geodesic joining any two points x, y ∈ K. Note that a subset K ⊆ X is
a Hadamard space in its own right if and only if it is nonempty, closed and convex.

A real-valued function f on a Hadamard space is convex if, for any pair of points
x, y ∈ X and any t ∈ [0, 1], we have f(pxy(t)) ≤ (1 − t)f(x) + tf(y). If f is
continuous, this is equivalent to requiring that f(m) ≤ f(x)+f(y)

2 , where m is the
midpoint of x and y. The convex functions are closed under addition, multiplication
by nonnegative scalars, and formation of pointwise suprema. The following fact will
be needed again and again in the arguments to come:

Lemma 6.1. Let X be a Hadamard space, and let p, p′ : [t−, t+] be minimizing
geodesics. Then d(p(t), p′(t)) is a convex function of t.

Proof. Without loss of generality we may assume t− = 0, t+ = 1, and if suffices to
show d(p(t), p′(t)) ≤ (1− t)d(p(0), p′(0))+ td(p(1), p′(1)). Let p′′ be the minimizing
geodesic joining p(0) to p′(1). Then Theorem 3.1 gives the inequalities

d(p(t), p′′(t)) ≤ p∆(p(0),p′(0),p′(1)(p(t), p′′(t)) = (1− t)d(p(0), p(1))

d(p′′(t), p(t)) ≤ p∆(p(0),p(1),p′(1)(p′′(t), p(t)) = td(p′(0), p′(1))
Adding these inequalities and applying the triangle inequality, we obtain the desired
result. �

Lemma 6.2. Let X be a Hadamard space, and f a real-valued function on X.
Then f is convex if and only if every point of x has a (convex) neighborhood on
which the restriction of f is convex.

In other words, convexity is a local property.

Proof. The “only if” is clear. To prove the “if” direction, it suffices to show that
f is convex when restricted to geodesics in X, so we may assume that X is the
interval [0, 1]. By assumption, [0, 1] has an open covering by sub-intervals on which
f is convex. By compactness, we may assume finitely many subintervals are used.
By induction, we can reduce to the case where only two such sub-intervals are used:
say f is convex on [0, s) and (s′, 1] with s′ < s. Subtracting a linear function if
necessary, we may assume f(0) = f(1) = 0; our goal is to show that f(t) ≤ 0
for all t ∈ [0, 1]. Without loss of generality t ∈ [0, s); suppose f(t) > 0. By
convexity, we get f(t′) > 0 for all t′ ∈ [t, s). Replacing t by some t′ if necessary,
we may assume that t > s′. Now choose t′ ∈ (t, s). The convexity of f |[0, s)
shows that f(t′) ≥ t′

t f(t) > f(x). Similarly, the convexity of f |(s′, 1] shows that
f(t) ≥ 1−t

1−t′ f(t′) > f(t′), a contradiction. �

Theorem 6.3. Let X be a Hadamard space. Then every geodesic in X is mini-
mizing.

Proof. Let p : [0, 1] → X be a geodesic of speed D. Let p′ : [0, 1] → X be the unique
minimizing geodesic joining p(0) to p(1). Consider the function f(t) = d(p(t), p′(t)).
Locally on the interval [0, 1], p is a minimizing geodesic. From Lemma 6.1 it
follows that f is a convex function locally. Thus f is a convex function. Since
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f(0) = f(1) = 0, the nonnegativity of f implies that f is identically zero, so that
p = p′. �

If K is a subset of a metric space X and x ∈ X, we let d(x,K) denote the
infimum of d(x, y) over all y ∈ K.

Proposition 6.4. Let X be a Hadamard space and let K be a convex subset. Then
the function x 7→ d(x,K) is continuous and convex.

Proof. Continuity is obvious. For the convexity, note that if d(x,K) = D and
d(y,K) = D′, then there are points k, k′ ∈ K such that d(x, k) ≤ D + ε, d(y, k′) ≤
D′ + ε for any ε > 0. The function f(t) = d(pxy(t)pkk′(t)) is convex by Lemma 6.1.
Since the image of pkk′ is contained in K, we see immediately that d(pxy(t),K) ≤
(1− t)D+ tD′ + ε. Since this holds for any ε > 0, we obtain the desired result. �

Proposition 6.5. Let X be a Hadamard space, and let K be a closed convex subset
of X. For any x ∈ X, there is a unique point πK(x) ∈ K such that d(x, πK(x)) =
d(x,K).

Proof. Let D = d(x,K). If y, z ∈ K with midpoint m and d(x, y), d(x, z) ≤ D + ε,
then D2 ≤ d(x,m)2 ≤ (D + ε)2 − d(y,z)2

4 . Thus we obtain d(y, z)2 ≤ 8Dε + 4ε2.
This immediately implies the uniqueness of πK(x). It also shows that any sequence
of points yi ∈ K such that d(x, yi) approaches D is necessarily a Cauchy sequence.
Since X is complete and K is closed, this sequence has a limit in K, which is a
point y such that d(x, y) = D. �

Before we reach the main result about the retraction πK , we need a lemma.

Lemma 6.6. Let X be a Hadamard space and K a convex subset; let x ∈ X and
let p : [0, 1] → K be a geodesic with p(0) = πK(x). Let p′ : [0, 1] → X denote the
geodesic joining πK(x) to x. Then ∠p,p′ ≥ π

2 .

Proof. Suppose ∠p, p′ < α < π
2 . Then there exist t, t′ > 0 such that the vertex

angle of the triangle ∆(πK(x), p(ε), p′(t′)) at πK(x) is ≤ α whenever ε < t. Let p
have speed D and p′ speed D′. Then the law of cosines implies that
d(p(ε), p′(t′))2 ≤ (Dε)2 + (D′t′)2 − 2(Dε)(D′t′) cos(α). Taking ε sufficiently

small, we obtain d(p(ε), p′(t′)) < D′t′. Then by the the triangle inequality we get
d(p(ε), x) ≤ d(p(ε), p′(t′)) + d(p′(t′), x) < D′t′ +D′(1 − t′) = D′. This contradicts
the definition of πK(x). �

Proposition 6.7. Let X be a Hadamard space and K a closed convex subset of X.
Then πK is a distance-decreasing retraction X → K.

Proof. Let x, x′ ∈ X; we wish to show that d(πK(x), πK(x′)) ≤ d(x, x′). Let
p : [0, D] → X and p′ : [0, D′] → X be unit speed geodesics joining πK(x) to x
and πK(x′) to x′. Let A = d(πK(x), πK(x′)), and let p′′ denote a geodesic joining
πK(x) to πK(x′).

Lemma 6.6 implies that ∠p,p′′ ,∠p′, p′′ ≤ π
2 .

Choose a small number ε > 0, let q denote the unit speed geodesic joining πK(x)
to p′(εD′), and let α = ∠p,q. Let d(πK(x), p′(εD′)) = A + ε′D′. Note that the
triangle inequality shows |ε′| ≤ ε.

The law of cosines gives
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cos(α) ≥ A2 + (A+ ε′D′)2 − ε2D′2

2A(A+ ε′D′)
Thus α approaches zero as ε approaches zero. Assume that ε is chosen sufficiently

small so that cos(α) ≤ 1− α2

2 and 1
A+ε′D′ ≥ 1

A (1− ε′D
′

A ). Then we deduce

1− α2

2
≥ 2A2 + 2Aε′D′ + (ε′2 − ε2)D′2

2A2
(1− ε′

D′

A
)

= 1− ε′2D′2

2A2
− ε2D′2

2A2
+ (ε′)(ε2 − ε′2)

D′3

2A3

so that
D′2ε2

A2
≥ α2

2
and α ≤ 2D′ε

A .
Now we apply the law of cosines to the triangle spanned by x, p(Dε), and p′(D′ε).

The vertex angle of this triangle is at least π
2 − α, so that

A′2 ≥ (A+ ε′D′)2 + (εD)2 − 2(A+ ε′D′)(εD) cos(
π

2
− α)

where A′ = d(p(Dε), p′(D′ε)). Thus A′2 ≥ A2 +2Aε′D′+δ, where δ is second-order
in ε. Now ε′ ≥ 0 since the angle of ∠p′,p′′ ≥ π

2 . Thus we deduce that A′ ≥ A + δ
for some (other) δ which is second order in ε.

Let f(t) = d(p(Dt), p′(Dt′)). Then f is a convex function. Since f(0) = A, we
deduce f(t) ≥ A+ δ

ε for all t ≥ ε. For fixed t, we may take the limit as ε approaches
zero to deduce f(t) ≥ A. In particular, taking t = 1, we deduce that d(x, x′) ≥ A,
as desired. �

7. Flat Spaces

Let X be a Hilbert space with norm ||, and let d(x, y) = |x − y|. Then X is a
Hadamard space, and in fact we have

d(z,m)2 =
d(z, x)2 + d(z, y)2

2
− d(x, y)

4
whenever m = x+y

2 is the midpoint between x and y. In general, we shall call
a Hadamard space flat if the above equality holds. Clearly, any nonempty closed
convex subset of a flat Hadamard space is flat; hence any nonempty closed convex
subset of a Hilbert space is flat. We shall show that the converse holds. First, we
need a lemma:

Lemma 7.1. Let X be a flat Hadamard space, and let p : [0, 1] → X be a geodesic
of speed D. Then for any point z and any t ∈ [0, 1], we have

d(z, p(t))2 = (1− t)d(z, p(0))2 + td(z, p(1))2 − t(1− t)D2

Proof. By hypothesis, this holds when t = 1
2 . By induction we can establish equality

when t is any dyadic rational. The result for arbitrary t ∈ [0, 1] follows by continuity.
�

Theorem 7.2. Let X be a flat Hadamard space. Then X is isometric to a
(nonempty) closed convex subset of a Hilbert space.
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Proof. Choose an arbitrary base point e ∈ X. Let V (X) denote the free (real)
vector space generated by the elements of X. We define a symmetric bilinear map
b : V (X)×V (X) → R by setting B(x, y) = d(e, x)2+d(e, y)2−d(x, y)2 on generators
and extending by linearity.

The first thing to note is that B is “affine” as a function on X. Namely, Lemma
7.1 implies that if p : [0, 1] → X is a geodesic, then B(y, p(t)) = (1− t)B(y, p(0)) +
tB(y, p(1)) for any y ∈ X, and hence for any y ∈ V (X). In other words, p is an
affine function modulo the kernel of the bilinear form B.

We now claim that B is positive semidefinite. We must show that B(v, v) ≥ 0
for any v ∈ V (X). Write

v =
∑

i

αiyi +
∑

j

βjzj

where the yi and zj are elements of X, each αi ≥ 0, and each βj ≤ 0. If there are
at least two coefficients αi, then we may combine them by replacing αiyi + αi′yi′

by (αi + αi′)yi′′ , where

yi′′ = pyiyi′ (
αi′

αi + αi′
)

Since B is affine, this replacement does not change the value of B. In this manner
we may reduce to the case where v = αy + βz, with α ≥ 0, β ≤ 0.

By the triangle inequality, |d(e, x)−d(e, y)| ≤ d(x, y). Thus (d(e, x)−d(e, y))2 ≤
d(x, y)2. Multiplying by 2αβ, we obtain

2αβd(e, x)2 − 4αβd(e, x)d(e, y) + 2αβd(e, y)2 − 2αβd(y, z)2 ≥ 0

Adding 2(αd(e, x) + βd(e, y))2 ≥ 0, we obtain

B(v, v) = α2B(x, x) + 2αβB(x, y) + β2B(y, y)

= 2α2d(e, y)2 + 2αβd(e, x)2 + 2αβd(e, y)2 − 2αβd(x, y)2) + 2β2d(e, y)2

≥ 0

as desired.
Thus V (X) is a pre-Hilbert space with respect to B. Let V (X) denote its

completion. Our proof will be completed if we show that the natural map φ : X →
V (X) is an isometry (we employ the convention that 2|v|2 = B(v, v)). For this,
note that 2|x− y|2 = B(x− y, x− y) = B(x, x) +B(y, y)− 2B(x, y) = 2d(e, x)2 +
2d(e, y)2 − 2d(e, x)2 − 2d(e, y)2 + 2d(x, y)2 = 2d(x, y)2, so that d(y, z) = |y − z| as
desired. �

Corollary 7.3. Let X be a normed vector space, and set d(x, y) = |x − y|. Then
X is a Hadamard space if and only if it is a Hilbert space.

Proof. It is clear that the only candidate for the midpoint of x and y is x+y
2 . Thus

X is a Hadamard space if and only if it is complete and

|z − x+ y

2
|2 + |x− y

2
|2 ≤ |z − x|2 + |z − y|2

2
Changing variables by setting z = 2a, x = a + b, y = a − b, our inequality may

be rewritten as

|a|2 + |b|2 ≤ |a+ b|2 + |a− b|2

2
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If this inequality holds for all a, b ∈ V , then we deduce also

|a+ b|2 + |a− b|2 ≤ |2a|2 + |2b|2

2
= 2(|a|2 + |b|2)

Thus equality must hold, so thatX is flat. ThusX is isometric to a closed convex
subset of a Hilbert space which contains the origin without loss of generality. The
inclusion of X into this Hilbert space is linear, so that X is a closed subspace of a
Hilbert space and therefore a Hilbert space. �

Let X be an arbitrary Hadamard space. Note that any intersection of closed
convex subsets of X is a closed convex subset of X. Thus every subset K ⊆ X is
contained in a least closed convex subset of X, called the convex hull of K; this set
is nonempty if K is nonempty.

Conjecture 7.4. Let X be a Hadamard space and let K be a nonempty subset of
X. Then the convex hull of K is flat if and only if every triple of points (x, y, z)
belonging to K is in Euclidean position.

????

8. Fixed Points

In this section we prove the Cartan-Tits fixed point theorem. This result was ap-
plied to symmetric spaces of noncompact type to deduce the conjugacy of maximal
compact subgroups of a real reductive Lie group.

Let X be a Hadamard space, and let K be a bounded subset of X. For x ∈ X,
there is a least real number r such that K ⊆ {y ∈ X : d(x, y) ≤ r}. We shall
denote this real number r by r(x); it is the supremum of the distances of x to all
the elements of K. As a supremum of convex functions, r(x) is a convex function
of x. In fact we can say more: if m is the midpoint of x and y, then r(m)2 ≤
r(x)2+r(y)2

2 − d(x,y)2

4
Let R denote the infimum of the values of r(x) over all x ∈ X. Let {xi} be a

sequence of elements of X such that r(xi) approaches R. If we choose i sufficiently
large, so that r(xj)2 ≤ R + ε for all j ≥ i, then the inequality above shows that
d(xj , xk)2 ≤ 4ε for any j, k ≥ i. It follows that the sequence {xi} is Cauchy and
approaches a limit x such that r(x) = R. The inequality above then shows that x
is unique. We say that x is the circumcenter of K and r(x) = R is the circumradius
of K.

The circumcenter of a bounded set K is canonically determined by K. It follows
that any isometry of X which leaves K invariant must also leave its circumcenter
invariant. This immediately implies the following theorem:

Theorem 8.1. Let X be a Hadamard space, and let a group G act on X by
isometries. Suppose that for some x ∈ X, the orbit Gx is bounded. Then the
set XG = {y ∈ X : (∀g ∈ G)[gy = y]} is a Hadamard space.

Proof. It is obvious that XG is closed and convex. The real content of the theorem
is the assertion that XG is nonempty. So consider a point x ∈ X such that the
orbit Gx is bounded. Clearly this orbit is also G-invariant. Thus its circumcenter
is a fixed point for G. �

A typical application occurs if G is a compact group, so that Gx is compact and
therefore bounded for any x ∈ X.
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9. Local Compactness

The goal of this section is to prove the following result:

Theorem 9.1. Let X be a locally compact Hadamard space, and let K be a subset
of X. Then K is compact if and only if it is closed and bounded.

Proof. The “only if” direction is obvious. For the converse, it suffices to show that
for any x ∈ X, the subsets Xr = {x′ ∈ X : d(x, x′) ≤ r} are compact.

We first claim that if Xr is compact for some r ≥ 0, then Xr′ is compact for
some r′ > r. Since X is locally compact, Xr has a compact neighborhood. If this
neighborhood does not contain any Xr′ , then we may select a sequence of points
{xi} such that the distances d(x, xi) converge to r, but the xi do not converge to a
point of Xr. For each i, let ri = d(xi, x), and let pi : [0, ri] → X be a minimizing
geodesic joining x to xi. Without loss of generality we may assume that all xi /∈ Xr,
so that ri > r. Let x′i = pi(r). Then x′i ∈ Xr. Since Xr is compact by assumption,
we may (by passing to a subsequence if necessary) assume that the x′i converge to
a point x′ ∈ Xr. Now d(x′, xi) ≤ d(x′, x′i) + d(x′i, xi) ≤ d(x′, x′i) + (ri − r) which
converges to zero as i increases. It follows that the xi converge to x′ ∈ Xr, contrary
to our assumption.

Now consider the set of all r such that Xr is compact. Clearly this set is closed-
downwards and contains 0. We have just shown that this set is open in [0,∞). We
now invoke the least-upper-bound property of the real numbers. To complete the
proof, it suffices to show that for any r > 0, the compactness of all Xs for s < r
implies the compactness of Xr.

To show that Xr is compact we proceed as follows: consider any sequence {xi}
contained in Xr. Let ri = d(xi, x), and let pi : [0, ri] → X denote the unit speed
geodesic joining x and xi. We may assume without loss of generality that the ri
converge to r. For any rational number 0 < α < 1, the points pi(αri) are contained
in the compact set Xqr. Repeatedly passing to subsequences, we may assume that
for every such rational number α, the points pi(αri) converge to a point p(α).
Now d(p(α), p(α′)) ≤ d(p(α), pi(αri)) + d(pi(αri), pi(α′ri)) + d(pi(α′ri), p(α′)) ≤
d(p(α), pi(αri)) + |α′ − α|r + d(pi(α′ri), p(α′)). Taking the limit as i increases, we
deduce that d(p(α), p(α′)) ≤ |α′ − α|r, so that p is uniformly continuous. Since
X is complete, p prolongs uniquely to a continuous map p : [0, 1] → X. Now one
easily checks that the sequence {xi} converges to p(1). �

A slight variant on this argument can be used to prove that closed, bounded
subsets of complete Riemannian manifolds are compact.

10. Boundary At Infinity

In this section, we show how to construct a natural “compactification” of a
Hadamard space X by adjoining a “sphere at infinity”. However, let us begin very
generally. Let X be an arbitrary metric space (not necessarily complete, or even
separated). One usually constructs the completion of X via equivalence classes of
Cauchy sequences in X. However, there is an alternative construction: let C(X)
denote the collection of all continuous real-valued functions on X, considered as a
Banach space via the supremum norm. Then x 7→ d(x, ) gives a continuous map
ψ : X → C(X), and we have the following:
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Proposition 10.1. The map ψ exhibits the closure of f(X) in C(X) as a comple-
tion of X.

Proof. By the triangle inequality, ψ is distance decreasing. On the other hand,
since |d(x, y)−d(x, x)| = d(x, y), we see that ψ is an isometry onto its image. Since
C(X) is complete, the closure of ψ(X) is complete. �

Now suppose that we wish to compactify a metric space (X, d). Since every
compact metric space is complete, we may regard the above construction as a “first
step” toward the compactification of X. In order to proceed, it is natural to try to
form the closure of X in other function spaces. However, in order to obtain a space
larger than the completion of X, we will have to consider function spaces in which
X does not embed isometrically.

Let C(X ×X) denote the space of continuous real-valued functions on X ×X,
given the topology of convergence on bounded subsets. Note that if X is locally
compact, this coincides with the topology of convergence on compact subsets by
Theorem 9.1. As before we have a natural map φ : X → C(X × X), given by
x 7→ d(x, y)− d(x, z). Let X denote the closure of the image of X, and denote the
map from X to X also by φ. Note that since X ×X is a union of countably many
bounded subsets, the topology on C(X × X) may be defined by countably many
norms and so sequences shall suffice to define the topology on C(X ×X).

Theorem 10.2. If X is locally compact, then X is compact.

Proof. Since |d(x, y)−d(x, z)| ≤ d(y, z) and |(d(x, y)−d(x, z))−(d(x, y′)−d(x, z′))| ≤
d(y, y′) + d(z, z′), we see that φ(X) is bounded and equicontinuous in C(X ×X).
SinceX is locally compact, the topology on C(X×X) is the compact open topology.
The compactness of X now follows from Ascoli’s theorem. �

For the next assertion we will need a lemma.

Lemma 10.3. Let X be a metric space in which any pair of points may be joined
by a minimizing geodesic. Choose a point x ∈ X, and let Br(x) denote the closed
ball of radius r about x. Let U denote the open subset of X consisting of those
functions h satisfying |h(y, z) − d(x, y) + d(x, z)| < 2r for (y, z) ∈ Br(x) × Br(x).
Then φ−1(U) is the open ball of radius r about x.

Proof. It is clear that d(x′, x) < r implies φ(x′) ∈ U . For the converse, let us
suppose that d(x′, y)−d(x′, z) lies in U . If d(x′, x) > r, then we may choose a point
x′′ such that d(x′′, x) = r, d(x′′, x′) = d(x, x′)− r. Applying the definition of U in
the case y = x′′, z = x, we deduce that 2r = |d(x′, x′′)− d(x′, x)− d(x′, x′′)| < 2r,
a contradiction. �

Theorem 10.4. Let X be a metric space in which any two points can be joined by
a minimizing geodesic. Then φ : X → X is a homeomorphism onto its image.

Proof. Choose any x ∈ X and any r > 0; we will produce an open subset U ⊆
C(X × X) whose preimage under φ is contained in a closed ball Br(x) of radius
r about x. It suffices to take for U those functions h with the property that
|h(y, z)− (d(x, y)− d(x, z))| < 2r for (y, z) ∈ Br(x)×Br(x). �

Lemma 10.5. Let K be a compact Hausdorff space, and let U ⊆ K be a dense,
locally compact subset. Then U is open.
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Proof. We will show that U contains a neighborhood of any point x ∈ U . Let V0

be a neighborhood of x in U whose closure V0 in U is compact. It will suffice to
show that V0 is open in K. We know that V0 = V ∩ U for some open V ⊆ K.

Since V0 is compact and K is Hausdorff, V0 is closed in K. Thus V0 is the closure
of V0 in K. Since V ∩ V0 ⊆ V ∩ U = V0, we deduce that V0 is closed in V . Thus
V −V0 is an open set. Since U is dense in K and (V −V0)∩U = ∅, we deduce that
V − V0 = ∅ so that V0 is open in K. This completes the proof. �

Theorem 10.6. Let X be a locally compact metric space in which any two points
can be joined by a unique minimizing geodesic. Then φ : X → X is an open
immersion.

Proof. Since φ is a homeomorphism onto its image, this follows immediately from
Lemma 10.5. �

Suppose a sequence of points {xi} of X is such that {φ(xi)}. converges in X. If
the {xi} belong to a bounded set U , then for any ε we may choose i so large that
|d(xj , y)− d(xj , z)− d(xk, y) + d(xk, z)| ≤ ε for all j, k ≥ i, y, z ∈ U . In particular,
we may take y = xj , z = xk, and we deduce that the sequence {xj} is Cauchy.
Thus, if X is complete, we conclude that any point in the “boundary” X − φ(X)
is the limit of an unbounded sequence of elements of X.

For the remainder of this section we shall assume that X is a Hadamard space.
In this case we may identify X with a subset of X (an open subset if X is locally
compact). Note that for any function h ∈ X, we have h(x, y) + h(y, z) = h(x, z).
It follows that we may write h(x, y) = h′(x) − h′(y) for some continuous function
h′ : X → R, and the function h′ is well-defined up to an additive constant. We
shall call a function h′ : X → R which arises in this way a horofunction on X.

Lemma 10.7. Let X be a Hadamard space, y ∈ X. For every unit speed geodesic
p : [0,∞) → X, the limit d(p(t), y)− t exists as t approaches infinity.

Proof. The t 7→ d(p(t), y)− t is bounded in absolute value by d(x, y). Moreover, it
is decreasing by the triangle inequality. �

We will also need to know that the function d(p(t), y) − t approaches its limit
sufficiently quickly.

Lemma 10.8. Let X be a Hadamard space, K ⊆ X a bounded subset, and x ∈ X
a point. For every constant ε, there exists a constant t0 > 1 such that for every
T > t0 and every unit speed geodesic p : [0, T ] → X with p(0) = x, we have the
inequality d(p(t0), y)− t0 ≤ d(p(T ), y)− T + ε.

Proof. Suppose given t0 > 1, T > t20, and a geodesic p : [0, T ] → X with p(0) = x.
Let h(t) = d(p(t), y) − t. For fixed y, let us apply the fact that the function
d(y, p(t))2 − t2 is convex in t. We get

d(y, p(t0))2 − t20 ≤
T − t0
T

d(x, y)2 +
t0
T

(d(y, p(T ))2 − T 2)

so that

2t0h(t0) ≤ (h(t0) + t0)2 − t20 ≤ d(x, y)2 + h(T )t0(
h(T )
T

+ 2)

. Using the fact that h(t) ≤ d(x, y), we obtain h(t0)− h(T ) ≤ d(x,y)2

t0
. Now if y lies

in a bounded set K, then d(x, y) is bounded and we get the desired result. �



14

Theorem 10.9. Let X be a Hadamard space, and let p : [0,∞) → X be a unit
speed geodesic. Then p(t) approaches a limit in X as t approaches ∞.

Proof. We must show that the function ht(y, z) = d(p(t), y) − d(p(t), z) converges
uniformly on bounded subsets of X×X as t approaches infinity. It suffices to show
that the function h′t(y) = d(p(t), y)− t converges uniformly on bounded subsets of
X as t approaches infinity. This follows immediately from Lemma 10.8. �

Theorem 10.10. Let X be a Hadamard space, x ∈ X, and let {xi} be an unbounded
sequence in X. Let pi : [0, ti] → X denote unit speed geodesic joining x to xi. Then
the following are equivalent:

• The pi converge uniformly on each interval [0, t]. (Since the sequence {xi}
is unbounded, pi is defined on [0, t] for all but finitely many values of i.)

• The sequence {xi} approaches a limit in X.

Proof. Suppose that the pi converge uniformly on each interval [0, t]. Let p :
[0,∞) → X denote their limit. We see immediately that p is a unit speed geodesic,
hence p(t) approaches some limit h ∈ X. We shall show that h is a limit of the
sequence {xi} in X. For this, it suffices to show that the functions y 7→ d(xi, y)− ti
converge uniformly on bounded subsets to the limiting value Cy of y 7→ d(p(t), y)−t.

Fix a bounded set K ⊆ X and ε > 0. Then there exists a constant t′ such that
d(xi, y)− ti ≤ d(pi(t′), y)− t′ ≤ d(xi, y)− ti + ε and Cy ≤ d(p(t′), y)− t′ ≤ Cy + ε
for almost every i and all y ∈ K. Choosing i sufficiently large, we may ensure that
d(pi(t′), p(t′)) ≤ ε. Then we get |d(pi(t′), y)− t′ − Cy| ≤ 3ε, as desired.

For the converse, let us assume that the sequence {xi} converges in X. We will
fix T > 0 and show that the geodesics pi|[0, T ] converge uniformly. Since the pi

are unit speed geodesics, the images of all pi|[0, T ] are contained in a closed ball
BT (x) of radius T about x. The convergence of the xi in X shows that for every
ε > 0, there exists an integer i such that |d(xj , y) − tj − (d(xk, y) − tk))| ≤ ε for
all j, k > i and all y ∈ BT (x). In particular, taking y = pj(t) for t < T , we get
d(xk, pj(t)) ≤ tk − t + ε. On the other hand, we have d(x, pj(t)) = t. Thus we
obtain

d(pk(t), pj(t))2 ≤
tk − t

tk
t2 +

t

tk
(tk − t+ ε)2 − t(tk − t)

= 2tε+
tε2 − 2t2ε

tk
≤ 2Tε+ ε2

The desired result follows. �

Corollary 10.11. Let X be a Hadamard space, x ∈ X, and x′ ∈ X − X. Then
there exists a unique unit-speed geodesic p : [0,∞) → X such that p(0) = x and p(t)
approaches x′ as t approaches infinity.

Proof. The theorem establishes the existence. For the uniqueness, suppose that
two geodesics p, p′ : [0,∞) satisfy p(0) = p′(0) and both approach the same limit
in X. Then the sequence of points p(1), p′(2), p(3), . . . approaches the same limit
in X. It follows that the sequence of geodesics p|[0, 1], p′|[0, 2], p|[0, 3], . . . converge
uniformly on any interval [0, t]. This implies that p|[0, t] = p′|[0, t]. Since this is
true for all t, we get p = p′. �

Thus X may be thought of as constructed from X by adjoining endpoints to all
geodesics originating at a given point of X. Of course, our definition of X does
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not presuppose the choice of such a point. This raises the question of when two
geodesics p and q with different points of origin have the same limit in X. We
now show that this is true if and only if p and p′ are asympotic, meaning that the
d(p(t), p′(t)) is bounded as t approaches infinity.

Theorem 10.12. Let X be a Hadamard space, and let p, p′ : [0,∞) → X be two
unit speed geodesics. Then p and p′ have the same limit in X if and only if p and
p′ are asymptotic.

Proof. First suppose that p and p′ have the same limit in X. Let pi denote the
unit speed geodesic joining p(0) to p′(i). Then since the p′(i) converge in X, the
geodesic segments pi converge uniformly on compact subsets to a geodesic with the
same limit in X. By uniqueness, we deduce that the pi converge uniformly to p.
The function d(pi(t), p′(t)) is convex and vanishes for t = i, so it is bounded by
d(p(0), p′(0)) for all t. Taking i sufficiently large, we deduce that d(p(t), p′(t)) ≤
d(p(0), p′(0)), and so p is asymptotic to p′.

Now suppose that p is asymptotic to p′. Let p′′ : [0,∞) → X be a unit speed
geodesic with p′′(0) = p(0), such that p′′ and p′ approach the same limit in X. Then
p′′ is asymptotic to p′, so p′′ is asymptotic to p. The function t 7→ d(p(t), p′′(t)) is
convex, bounded, and vanishes for t = 0. It follows that this function is identically
zero, so that p = p′′. Thus p and p′ approach the same limit in X. �

To conclude this section, we shall give a nice characterization of the horofunctions
on a Hadamard space X.

Theorem 10.13. Let X be a Hadamard space, and let h be a real-valued function
on X. Then h is a horofunction if and only if the following conditions are satisfied:

• The function h is convex.
• The inequality h(x) ≤ d(x, y) + h(y) is satisfied for all x, y ∈ X.
• For any x ∈ X and any r > 0, the function h attains its infimum on Br(x)

at a unique point y, and h(y) = h(x)− r.

Proof. First suppose that h is a horofunction. Choose any point x0 ∈ X. Adding a
constant to h if necessary, we may assume that h(z) = h′(z, x) for some h′ ∈ X−X.
Thus there is an unbounded sequence of points {ai} in X such that the functions
z 7→ d(ai, z) − d(ai, x0) converge uniformly to h on bounded subsets of X. From
this, the first two properties follow immediately.

To verify the third property, we may assume that the horofunction h is associated
to a unit speed geodesic p : [0,∞) → X with f(0) = x. If we normalize h so that
h(x) = 0, it is evident that h(p(t)) = −t for every t. Moreover, the inequality
|h(x) − h(y)| ≤ d(x, y) shows that h(y) ≥ −r for all y ∈ Br(X). So it suffices to
show that h(y) = −r implies that y = p(r). Indeed, choose ε > 0. Then for large t,
we have d(y, p(t)) ≤ t− r + ε. Thus

d(y, p(r))2 ≤ t− r

t
d(y, x)2 +

r

t
(t− r + ε)2 − r(t− r) ≤ 2ε+

rε2 − 2rε
t

which becomes arbitrarily small as ε approaches zero.
Now let us prove the converse: any function h satisfying the above conditions

is a horofunction. Pick any point x ∈ X. For every t ≥ −h(x), let px(t) denote
the point of Bt+h(x)(x) where h achieves its infimum −t. Then px(−h(x)) = x.
We first claim that px : [−h(x),∞) → X is a geodesic. For this, it suffices to
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show that px|[−h(x), T ] is the minimizing geodesic joining x to px(T ). For we have
d(px(t), px(T )) = T − t, so h(p(t)) ≤ h(px(T ))+T − t = −t. Since p(t) ∈ Bt(x), we
deduce p(t) = px(t). Note that px(t) is also equal to the projection of x into the
“horoball” Xr = {y : h(y) ≤ −t}.

Fix x ∈ X; we may assume that h normalized so that h(x) = 0. The proof will
be completed if we show that h is the horofunction associated to the geodesic f .
In other words, we must show that for each y ∈ X, h(y) is the limit of ht(y) =
d(fx(t), y)− t as t approaches infinity. Since ht(y) = d(fx(t), y) + h(fx(t)), we get
h(y) ≤ ht(y) for every value of t. We will obtain the reverse inequality in the limit
by a more subtle argument.

Choose t ≥ 0,−h(y). Then py|[−h(y), t] is a geodesic joining y to its projection
πXt(y). Since projections decrease distances, we get d(py(t), px(t)) ≤ d(x, y), which
is therefore bounded as t approaches infinity. On the other hand, the distances
d(x, px(t)) = t, d(y, py(t)) = t + h(y), and d(y, px(t)) ≥ t − d(x, y) grow without
bound as t approaches infinity. It follows that the vertex angle at px(t) of the
geodesic triangle spanned by (x, y, px(t)) approaches zero as t approaches infinity.
On the other hand, the vertex angle at fx(t) of the geodesic triangle (x, fx(t), fy(t))
is at least π

2 . It follows from the triangle inequality that for any ε > 0, the vertex
angle αt at px(t) of (y, px(t), py(t)) satisfies αt ≥ π

2 − ε for t sufficiently large. On
the other hand, the vertex angle βt of (y, pt(x), pt(y)) at pt(y) is at least π

2 . Since
the sum of the angles of a geodesic triangle in X can be at most π, we deduce that

|βt −
π

2
|, |αt −

π

2
| ≤ ε

for t sufficiently large.
Now, applying the law of cosines, we obtain

d(y, px(t))2 ≥ d(py(t), px(t))2 + d(y, py(t))2 − 2d(py(t), px(t))d(y, py(t)) cos(βt)

(ht(y) + t)2 ≥ (t+ h(y))2 − 2d(py(t), px(t))(t+ h(y)) cos(βt)

2ht(y) +
ht(y)2

t
≥ 2h(y) +

h(y)2

t
− 2d(fy(t), fx(t))(1 +

h(y)
t

) cos(βt)

Taking the limit as t approaches infinity, we obtain the desired inequality. �

Example 10.14. Let X be a Hilbert space. Then X is the “oriented projective
space” obtained by adjoining to X a point at infinity for every equivalence class of
geodesic rays in X. Two geodesics are asymptotic if and only if they are parallel.
The horofunctions are precisely the linear functionals on X.

11. A Characterization of Hadamard Spaces

Our goal for the remainder of these notes is the proof of the Cartan-Hadamard
theorem. Roughly speaking, this asserts that if a space satisfies non-positive curva-
ture conditions locally, then its universal cover has non-positive curvature globally.

In this section, we shall begin our work by proving a very weak version of the
Cartan-Hadamard theorem. Later, we will do some hard work to show that the
hypotheses of this weak version are satisfied, and thereby deduce that certain metric
spaces are Hadamard.

Theorem 11.1. Let (X, d) be a complete, nonempty metric space with the following
properties:
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• For each x ∈ X, there exists a continuous function gx : X× [0, 1] → X such
that for each y ∈ X, gx|{y} × [0, 1] is a geodesic of speed d(x, y) joining x
to y.

• Every point x ∈ X contains a closed neighborhood which is a Hadamard
space.

Then X is a Hadamard space.

The proof will occupy the rest of this section. First, note that since X is
Hadamard in a neighborhood of each point, the angle between any two geodesics
originating from a point is well-defined and has the usual properties.

By a geodesic triangle in X we shall mean a collection of three vertices and three
geodesic segments joining the vertices pairwise. We have not yet shown that such a
triangle is determined by its vertices, but for simplicity of notation we shall simply
denote such a triangle by the triple of vertices (x, y, z) ∈ X3.

Definition 11.2. A geodesic triangle ∆ in X is good if each of its vertex angles is
≤ the corresponding angle of a Euclidean triangle with the same side lengths.

Theorem 11.3. Let ∆ = (x, y, z) be a geodesic triangle in X, and let w be a point
on the segment joining y to z. Choose a geodesic joining x to w. If the triangles
(x, y, w) and (x,w, z) are both good, then (x, y, z) is good.

Proof. Let ∆0 denote a Euclidean triangle with the same side lengths as the triangle
(x, y, w), ∆1 a Euclidean triangle with the same side lengths as (x,w, z). The vertex
angles of ∆0 and ∆1 are both larger than that of their counterparts in X, whose
sum is ≥ π by the triangle inequality. Let Q denote the plane quadrilateral obtained
by joining ∆0 and ∆1 on opposide sides of the segment xw. Then by assumption
(and the triangle inequality in the case of the vertex x), the angles of the geodesic
triangle (x, y, z) are majorized by the corresponding angles of the quadrilateral
Q. The Euclidean triangle ∆ with the same side lengths as (x, y, z) may also be
obtained from the quadrilateral Q by “straightening” the angle at w. Since the
quadrilateral is concave at w, elementary plane geometry shows that the other
angles are only increased by this “straightening”. �

Theorem 11.4. Let x, y, z ∈ X, and assume that y and z are joined by a geodesic
segment p : [0, 1] → X. Join x to y and z using the geodesic segments t 7→ gx(y, t)
and t 7→ gx(z, t). Then the triangle (x, y, z) is good.

Proof. Consider the function h : [0, 1] × [0, 1] → X given by h(t, s) = gx(p(t), s).
Then the image of h is compact, so there exists ε > 0 such that the closed ball of
radius ε around any point in the image of h is a Hadamard space. Choose δ so that
d(h(t, s), h(t′, s′)) ≤ ε whenever |t − t′|, |s − s′| ≤ δ, and choose a large integer n
such that 1

n ≤ δ.
Let ∆i,j denote the triangle spanned by (h( i

n ,
j
n ), h( i

n ,
j+1
n ), h( i+1

n , j+1
n )) and let

∆′
i,j denote the triangle spanned by (h( i

n ,
j
n ), h( i+1

n , j
n ), h( i+1

n , j+1
n )). The vertices

of each of these triangles are contained in Hadamard ε-balls of X, hence there exist
unique minimizing geodesics joining them. Since each of these triangles is contained
in a Hadamard space, each is good. Now the triangle (x, y, z) is obtained by gluing
these triangles together. Thus (x, y, z) is good by repeated application of Theorem
11.3. �

We can now give a proof of Theorem 11.1.
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Proof. Since X is nonempty and complete, it suffices to show that every pair of
points y, z ∈ X possess a midpoint with the appropriate properties. Join y and z
by a geodesic p : [0, 1] → X, and let m = p( 1

2 ). To complete the proof, we must

show that d(x,m)2 ≤ d(x,y)2

2 + d(x,z)2

2 − d(y,z)2

4 .
Using the function gx, we obtain geodesic triangles (x, y,m) and (x,m, z) which

share a common side joining x to m. By Theorem 11.4, each of these triangles is
hyperbolic. Let α and β denote the vertex angles of (x, y,m) and (x,m, z) at the
vertex m. Then by the law of cosines we obtain the inequality

d(x, y)2 ≥ d(x,m)2 + d(y,m)2 − 2d(x,m)d(y,m) cos(α)
d(x, z)2 ≥ d(x,m)2 + d(z,m)2 − 2d(x,m)d(z,m) cos(β)

By the triangle inequality, we have α+ β ≥ π, so that

2d(x,m)d(y,m) cos(α)+2d(x,m)d(z,m) cos(β) = d(x,m)(b−a)(cos(α)+cos(β)) ≤ 0

Adding this to the above inequalities, we obtain the desired result. �

12. Metrized Topoi

We now introduce the rather strange notion of a metric topos. The reader who
does not like the theory of topoi is invited to replace “topos” by “space” throughout
our discussion. In this case, many of our arguments become quite a bit simpler,
both technically and psychologically. However, the extra generality afforded by the
notion of a metric topos will allow our version of the Cartan-Hadamard theorem to
be applied to orbifolds and other exotic beasts.

Let us emphasize that the definition of a metric topos is not intended to be a
useful general notion. It is simply a nice way of encoding the relevant structure of a
topos which is “locally Hadamard” (and it is these topoi that we shall be interested
in).

Let X be a (Grothendieck) topos. By a metric on X we shall mean a process
which associates to each geometric morphism p : [t−, t+] → X of an interval into
X, a length L(f) ∈ [0,∞], subject to the following conditions:

• Let p : [t−, t+] → X and p′ : [t′−, t
′
+] → X be two geometric morphisms. If

there is a homeomorphism q : [t−, t+] ' [t′−, t
′
+] such that p ' p′ ◦ q, then

L(p) = L(p′).
• If p : [t0, tn] → X is a geometric morphism and t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn,

then L(p) = L(p|[t0, t1]) + . . .+ L(p|[tn−1, tn]).
In the statement above we understand that a sum of terms is infinite if any

individual term is infinite.
Note that given any geometric morphism X → Y , a metric on Y induces by

composition a metric on X. In particular, given any morphism E → E′ of sheaves
on X and any metric on the “slice topos” XE′ , we obtain by composition a metric
on XE . Thus we obtain a presheaf on X which associates to each object E in X
the collection of all metrics on XE . (Strictly speaking, we should worry that this
collection may not be a set. We shall ignore this issue.)

Theorem 12.1. For any topos X, the presheaf of metrics on X is a sheaf.

Proof. It is clear that to specify a metric on a disjoint union of topoi is equivalent
to specifying a metric on each topos individually. Thus it suffices to check that for
any epimorphism j : E → E′ in X, we obtain a bijection from the collection of



19

metrics on XE′ to the collection of metrics XE for which the pair of “restrictions”
to XE×E′E agree. Replacing X by XE′ , we may assume that E′ is the terminal
object of X (to simplify notations).

To show that the natural map is injective, we must show that any metric L on
X is determined by its restriction to XE . Indeed, given any geometric morphism
p : [t−, t+] → X, we obtain a sheaf p∗(E) on [t−, t+] with nonempty stalks. Then
we may subdivide [t−, t+] into intervals [t0, t1], . . ., [tn−1, tn] over which the sheaf
p∗E admits sections. Then L(f) is determined by L(p|[ti, ti+1], which is in turn
determined by the metric on XE since p|[ti, ti+1] factors through XE .

To show surjectivity, we must show that any metric LE on XE whose “restric-
tions” to XE×E agree is the “restriction” of a metric on X. We define a met-
ric L on X as follows: given a geometric morphism f : [t−, t+] → X, we may
subdivide [t−, t+] into subintervals [t0, t1], . . . , [tn−1, tn] such that p|[ti, ti+1] fac-
tors through a geometric morphism pi : [ti, ti+1] → XE . We then set L(f) =
LE(p0)+ . . .+LE(pn−1). The compatibility condition on LE guarantees that L(f)
does not depend on the factorizations chosen. One checks easily that L(f) does not
depend on the subdivision chosen, and is a metric on X. �

Let X be a metric topos, and let p : [t−, t+) → X be a geometric morphism.
Then we define L(p) to be the supremum of L(p|[t−, t]) as t ranges over (t−, t+).

Remark 12.2. For any space Y , the collection of geometric morphisms from Y into
a topos X form a category. In general, morphisms in this category need not be
isomorphisms. However, we shall have no need for this feature, and shall consider
only invertible transformations between geometric morphisms.

Definition 12.3. Let X be a topos with a metric L. Let Hom≤D([0, 1], X) de-
note the groupoid of geometric morphisms from [0, 1] to X having length ≤ D.
Similarly, let Hom≤D([0, 1), X) denote the groupoid of geometric morphisms f
from [0, 1) to X such that L(f) ≤ D. There is a natural “restriction” functor
T : Hom≤D([0, 1], X) Hom≤D([0, 1), X).

We shall say that X is

• weakly separated if T is faithful for every D ≥ 0.
• separated if T is fully faithful for every D ≥ 0.
• complete if T is an equivalence of categories for every D ≥ 0.

Lemma 12.4. Let X be a weakly separated (separated, complete) metrized topos,
and let E be a locally constant sheaf on X. Then XE is weakly separated (separated,
complete). If E surjects onto the terminal sheaf, then the converse holds.

Proof. For any morphism p : [0, 1] → X or p : [0, 1) → X, the pullback p∗E is
locally constant, hence constant. Let M(p) denote its constant value (for example,
we may take M(p) to be the stalk of this sheaf at zero); then M induces functors
from Homb([0, 1], X) and Homb([0, 1), X) to the category of sets. The category
Homb([0, 1], XE) has as objects pairs p ∈ Homb([0, 1], X) and m ∈ M(p), and
we have a similar description for Homb([0, 1), XE). Moreover it is clear that for
f : [0, 1] → X, M(p|[0, 1)) ' M(p). From this description it is clear that the
induced functor TE : Homb([0, 1], X) → Homb([0, 1), X) is faithful (fully faithful,
an equivalence) if T is. The converse follows also, noting that if E surjects onto
the terminal sheaf then M(p) is nonempty for any p. �
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The fundamental examples of metric topoi are those which are associated to met-
ric spaces (X, d). For any metric space (X, d), we may consider X as a topological
space, and the category of sheaves on X is a topos which we shall denote also by
X. The topos X has a natural metric, which may be described as follows:

Given a continuous map p : [t−, t+] → X , we define the length L(f) of f to be
the supremum over all subdivisions t− = t0 < t1 < . . . < tn = t+ of [t−, t+ of the
quantity d(p(t0), p(t1)) + . . .+ d(p(tn−1), p(tn)).

Remark 12.5. In view of the triangle inequality, this sum will only increase as we
pass to finer subdivisions of [t−, t+]. Thus the supremum exists in a strong sense.

Let us now investigate the possibility of obtaining metric spaces from metric
topoi. LetX be a metric topos. We will let |X| denote the collection of isomorphism
classes of points of X. We shall assume that this collection forms a set (this will
be automatic in all cases of interest). We define a function d : |X| × |X| → [0,∞]
as follows: d(x, y) is the infimum of L(p), where f ranges over the collection of all
paths p : [0, 1] → X with p|{0} ' x and p|{1} ' y. Then it is clear that d has the
following properties:

• For all x ∈ |X|, d(x, x) = 0.
• For all x, y, z ∈ |X|, d(x, z) ≤ d(x, y) + d(y, z).

Thus d defines a (pseudo)-metric on |X|; we will consider |X| as a topological
space with the induced topology.

Lemma 12.6. Let X be a metric topos. Then:

• The pseudo-metric d on |X| is interior. That is, d(x, y) is the infimum of
the d-length of all continuous paths from x to y, for any x, y ∈ |X|.

• If X is complete, then (|X|, d) is complete (but not necessarily separated).

Proof. Let x, y ∈ |X|, and let D be the infimum of the length of all paths from x to
y. Then we obviously have d(x, y) ≤ D. The reverse inequality follows since d(x, y)
is the infimum of the length of all paths joining x and y in X, and any such path
yields a path in |X| having the same length.

Now suppose that X is complete. Let {xi} be a Cauchy sequence in |X|. Passing
to a subsequence if necessary, we may assume that d(xi, xi+1) ≤ 1

2i+1 . It follows that
we can find a path pi : [1− 1

2i+1 , 1− 1
2i ] → X of length ≤ 1

2i . with pi|{1− 1
2i } ' xi,

pi|{1 − 1
2i+1 } ' xi+1 for each i. Concatenating, we get a path p : [0, 1) → X of

bounded length. Since X is complete, we may extend this (up to isomorphism) to
a map from [0, 1] to X having the same length; then p|{1} is a limit of the Cauchy
sequence {xi} in |X|. �

Example 12.7. Suppose (X, d) is a metric space. Then we may consider X as a
metric topos. The space |X| is equal to X as a set. However, the metric is different;
the distance between two points in |X| is the infimum of the length of all continuous
paths joining them in X. This is at least as great as the distance between the two
points in X, and is in general larger. However, if X has the property that any two
points can be joined by a minimizing geodesic, then the two metrics agree.

We define a map p : [t−, t+] → X into a metric topos to be a geodesic of speed
D if L(p|[t, s]) = D(s− t) for all t ≤ s, t, s ∈ [t−, t+]. In case X is the metric topos
associated to a metric space, this is a slightly weaker condition than the usual
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definition of a geodesic, which is equivalent in all cases of interest (for example, if
X is Hadamard).

A closed geodesic is a geodesic p : [t−, t+] → X together with an isomorphism
φ : p|{t−} ' p|{t+}. A closed geodesic is trivial if t+ = t− and φ is the identity.

13. Locally Metric Topoi

We can say very little about metric topoi in general. However, we can say much
more about metric topoi which are associated to metric spaces. In this section, we
will investigate metric topoi which are of this nature locally.

Definition 13.1. A metric space X is convex if any two points of X can be joined
by a minimizing geodesic, and for any pair of geodesics p, p′ : [0, 1] → X, the
function d(p(t), p′(t)) is convex. A metric space X is locally complete if for every
point x ∈ X, there exists r > 0 such that the closed ball Br(x) is complete.

Note that in a convex metric space, an open ball around any point is also convex.
The only tricky point is to show that a minimizing geodesic p whose endpoints lie
in the ball is entirely contained in the ball, and this follows from the convexity
statement in the degenerate case where p′ is the “constant” geodesic at the center
of the ball. It follows that a convex metric space has a basis for its topology
consisting of open subsets which themselves convex.

Definition 13.2. A metric topos X is locally convex (locally complete) if the ter-
minal object of X admits a covering by sheaves {Eα} such that each metric topos
XEα is associated to a convex (locally complete) metric space.

Remark 13.3. Since convex (locally complete) metric spaces admit bases for their
topology consisting of convex (locally complete) open sets, it follows that a locally
convex (locally complete) metric topos possesses a set of generators {Eα} such that
each XEα

is isomorphic to a metric topos associated to a convex (locally complete)
metric space.

Remark 13.4. Since the property of local completeness for metric spaces is a local
property, a metric topos is locally complete if and only if it satisfies the following
two conditions:

• There is cover of the terminal object by sheaves {Eα} such that each XEα

is a metric topos associated to a metric space.
• For any metric space V and any etale isometry π : V → X, V is locally

complete.
In particular, if a metric topos is both locally convex and locally complete, then

it is covered by etale isometries π : Vα → X where Vα are convex, locally complete
metric spaces.

Lemma 13.5. Let X be a separated metric topos, let V be a metric space, let
π : V → X be an etale isometry. Suppose x ∈ V is such that the closed ball Br(x)
of radius r about x is complete. Then for any path p : [0, 1] → X with L(p) ≤ r
and any isomorphism α0 : p|{0} ' π|{x}, there exists a path p′ : [0, 1] → V with
p′(0) = x and an isomorphism α : p ' π ◦ p′ which prolongs α.

Proof. Let E be the sheaf on X which classifies the etale map π. Constructing
the pair (p′, α) is equivalent to finding a global section of the sheaf p∗(E). The
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isomorphism α0 provides us with an element s0 of the stalk of this sheaf at 0. We
need to show that s0 can be extended to a global section of p∗(E).

Consider the collection of all pairs (U, sU ), where U ⊆ [0, 1] is closed downwards
and sU is a section of p∗(E) over U whose germ at 0 is s0. This collection is
partially ordered: let (U, sU ) ≤ (V, sV ) mean that U ⊆ V and sV |U = sU . It
is clear that this collection satisfies the hypotheses of Zorn’s lemma, so it has a
maximal element (U, sU ). If U = [0, 1], then we are done (with the existence half
of the proof). Otherwise, U is either of the form [0, t) or [0, t] for some t ≤ 1.
The latter case is impossible, since a section of a sheaf over [0, t] can always be
extended to a section over an open neighborhood of [0, t]. Therefore U = [0, t) and
sU classifies a map p′<t : [0, t) → V . Since p has length ≤ r, so does p′<t. Then,
since the closed ball Br(x) is complete, it follows that p′<t can be extended to a
map p′≤t : [0, t] → X having the same length. Since X is separated, it follows that
the isomorphism p|[0, t) ' π ◦ p′<t can be extended uniquely to an isomorphism
p|[0, t] ' π ◦ p′≤t. This contradicts the maximality of U and completes the proof of
the existence.

For the uniqueness, suppose we are given two global sections s, s′ of p∗(E) which
have the same germ at 0. If s 6= s′, then there is a maximal open interval [0, t) over
which s and s′ agree. Since V is Hausdorff, the agreement of the maps [0, t) → V
corresponding to s and s′ forces the agreement of these maps on [0, t]. Then the
fact that X is weakly separated implies that s|[0, t] = s′|[0, t], a contradiction. �

Theorem 13.6. Let X be a metric topos which admits an etale covering by metric
spaces. Then there exists a unique (up to unique isomorphism) geometric morphism
φ : X → |X| with the property that for any x ∈ |X|, the composite map {x} →
X → |X| is the identity.

Proof. Let {Eα} be a collection of generators for X such that each XEα
is isomor-

phic to a metric topos associated to a convex metric space Vα. Then we obtain a
map Vα → |X| which sends a point x ∈ Vα to the isomorphism class of the point x.
This map decreases distances, so it is continuous. Consequently we get a canonical
geometric morphism πα : XEα

→ |X|. This construction is completely natural in
Eα; hence by descent we obtain a map π : X → |X| with the desired property. �

Theorem 13.7. Let X be a separated, locally convex, locally complete metric topos.
Assume that X has no nontrivial closed geodesics. Then φ : X → |X| is an iso-
morphism of metric topoi.

Proof. We will first show that φ is an etale isometry. Since X admits an etale
covering by maps π : V → X with V a convex, locally complete metric space, it
suffices to show that for any such π, the map φ◦π is an etale isometry. Choose any
point x ∈ V , and choose r > 0 such that the closed ball B3r(x) of radius 3r about
x is complete. We get an induced map of open balls π′ : B<r(x) → B<r(π(x)); it
suffices to show that π′ is an isometry.

First we show that π′ is surjective. Choose y ∈ |X| with d(π(u), x) < r. Then
there exists a path p : [0, 1] → X with p|{0} ' π(x), p|{1} ' y, and L(f) < r. By
Lemma 13.5, we deduce that p factors through Br(U), which shows that y lies in
the image of π′.

We now show that π′ preserves distances. It is obvious that π′ is a contraction.
Choose y, z ∈ V . To show that d(π′(y), π′(z)) ≥ d(y, z), it suffices to show that
for every ε < r, we have d(π′(y), π′(z)) + ε ≥ d(y, z). Now there exists a path
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p : [0, 1] → X with p|{0} ' y, p|{1} ' z, and L(p) ≤ d(π′(x), π′(y)) + ε. Since
d(π′(x), π′(y)) ≤ d(x, y) ≤ 2r, we have L(f) ≤ 3r. Applying Lemma 13.5, we
deduce that p factors as π ◦ p′ for some map p′ : [0, 1] → V with p′(0) = y. If
p′(1) = z, then L(f) ≥ d(y, z) and we are done. Otherwise, we may join p′(1) to
z by a geodesic p′′ : [0, 1] → X. Since π′(p′(1)) = π′(1), there is an isomorphism
π ◦ p′′|{0} ' π ◦ p′′|{1}, so that π ◦ p′′ is a nontrivial closed geodesic in X, a
contradiction.

Now we claim that φ is an isomorphism. We have established that φ is an
etale isometry, so that φ exhibits X as the total space of some stack on |X|. Any
nontrivial automorphism of a point of X yields a nontrivial closed geodesic. Thus
the automorphism group of any point of X is trivial, so that φ exhibits X as the
total space of some sheaf on |X|. Since φ is bijective on points by construction, it
is an isomorphism. �

From this, we see that if X is separated, locally convex, locally complete, and
has no nontrivial closed geodesics, then (|X|, d) is a separated pseudo-metric space.
Indeed, suppose x, y ∈ |X| satisfy d(x, y) = 0. Then any open set in |X| which
contains x also contains y. Since |X| and X are isometric, we may ensure that such
an open ball is actually a metric space, hence separated.

14. The Main Step

In this section, we shall establish a technical result which is the key step in the
proof of the Cartan-Hadamard theorem.

Let 0 = t0 < t1 < . . . < tn = 1 be a partition of the interval [0, 1]. Suppose that
for 0 ≤ i < n, we are given metric spaces Vi which are convex and locally complete,
together with convex open subsets V +

i ⊆ Vi for 0 ≤ i < n − 1 and V −
i ⊆ Vi for

0 < i < n, and isometries γi : V +
i → V −

i+1 for 0 ≤ i ≤ n− 1. We shall suppose this
data fixed throughout this section.

Suppose given an interval [s−, s+] ⊆ [0, 1] and a collection of paths pi : [s−, s+]∩
[ti, ti+1] → Vi for 0 ≤ i < n. We shall say that p = {pi} is a broken geodesic of
speed D if the following conditions hold:

• Each pi is a geodesic of speed D.
• For 0 < i < n such that ti ∈ [s−, s+], there exists a real number δ > 0 and

a geodesic qi : [ti − δ, ti + δ] → V +
i−1 of speed D such that qi|[ti − δ, ti] =

pi|[ti − δ, ti] and γi ◦ qi|[ti, ti + δ] = pi+1|[ti, ti + δ].
Note that the functions qi are uniquely determined; their existence means simply

that pi+1 picks up where pi left off, and continues as a geodesic.

Lemma 14.1. Let p and p′ be broken geodesics defined on [s−, s+]. Let f : [s−, s+]
be given by f(t) = d(pi(t), p′i(t)), where t ∈ [ti, ti+1]. Then f is a well-defined,
convex function of t.

Proof. Since convexity is a local property, it suffices to work locally near each
t ∈ [s−, s+]. If t = ti, then we check the well-definedness and convexity using the
functions qi, q′i asserted to exist in the definition of a broken geodesic. For other
values of t, the result is immediate. �

Theorem 14.2. Let p be a broken geodesic of speed D defined on [0, 1]. Then there
exists a constant ε such that for any pair of points x ∈ V0, y ∈ Vn−1 such that
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d(x, p0(0)), d(y, pn−1(1)) ≤ ε, there is a broken geodesic defined on [0, 1] joining x
to y.

Proof. Choose ε so that the closed ball of radius 2ε about pi(t) is complete for
t ∈ [ti, ti+1], and this ball is contained in V +

i for t = ti+1 if i < n, and contained in
V −

i for t = ti if i > 0.
Now consider the following assertion Q(k) concerning a real number k:

• For any interval [s−, s+] ⊆ [0, 1] with s+ − s− ≤ k, s− ∈ [ti, ti+1], s+ ∈
[tj , tj+1], and any pair of points x ∈ Vi, y ∈ Vj with

d(x, pi(s−)), d(y, pj(s+)) < ε

there exists a broken geodesic joining x and y defined on [s−, s+].

Choose δ so that Dδ < ε and δ < |ti+1− ti| for each i, then we claim Q(δ) holds.
For suppose c+ − c− ≤ δ, with c− ∈ [ti, ti+1] and c+ ∈ [tj , tj+1]. If i = j, then we
can just choose a geodesic joining x to y in Vi. Otherwise, we must have j = i+ 1.
Then d(y, pj(tj)) ≤ d(y, pj(c+))+d(pj(c+), pj(tj)) ≤ 2ε, so that pj(tj) ∈ V −

j . Then
we may join x to γ−1

i (y) by a geodesic, which uniquely determines a broken geodesic
from x to y.

We have thus shown that there is a positive constant k such that Q(k) holds. If
we show that Q(1) holds, then the theorem will be proved. To complete the proof,
we shall show that Q(k) implies Q( 3k

2 ) for all k. So assume that Q(k) holds, and let
[s−, s+] ⊆ [0, 1] with s+− s− ≤ 3k

2 , and let x, y be as above. Let s = 2s−
3 + s+

3 and
s′ = s−

3 + 2s+
3 . Let us suppose that s− ∈ [ti, ti+1], s ∈ [tj , tj+1], s′ ∈ [tk, tk+1], s+ ∈

[tl, tl+1]. We construct a sequence of auxiliary points {am}m≥0 in Vj and {bm}m≥0

in Vk, such that d(am, pj(s)) ≤ ε, d(bm, pk(s′)) ≤ ε. Let a0 = pj(s), b0 = pk(s′).
Assuming that an and bn have been constructed, the assumption Q(k) enables us to
construct broken geodesics qn defined on [s−, s′] joining x to bn, and rn defined on
[s, s+] joining an to y. We let an+1 = (qn)j(s), bn+1 = (rn)j(s′). Since the distance
between qn and p is bounded by ε at its endpoints, it is bounded by ε everywhere
by Lemma 14.1 and hence d(an+1, pj(s)) ≤ ε, and similarly d(bn+1, pk(s′)) ≤ ε.

Now we claim that d(an, an+1) ≤ ε
2n+1 and d(bn, bn+1) ≤ ε

2n+1 . This is proven
simultaneously by induction on n. For n = 0, we apply Lemma 14.1 to the
geodesics q0 and p|[s−, s′] to deduce d(a0, a1) ≤ d(x,pi(s−))+d(b0,b0)

2 ≤ ε
2 , and simi-

larly d(b0, b1) ≤ ε
2 . In the general case, we apply the same argument to the pair of

geodesics qn and qn−1 to deduce the inequality d(an, an+1) ≤ ε
2n+1 , and to rn and

rn−1 to deduce the inequality d(bn, bn+1) ≤ ε
2n+1 .

It follows that the sequences {an} and {bn} converge to points a ∈ Vj , b ∈ Vk. A
convexity argument using Lemma 14.1 now shows that the broken geodesics {qn}
and {rn} converge uniformly to broken geodesics q joining x to b, and r joining a
to y. Moreover, continuity forces qj(s) = a, rk(s′) = b. It follows that q|[s, s′] and
r|[s, s′] are both broken geodesics joining a to b. Using Lemma 14.1 once again, we
deduce that q|[s, s′] = r|[s, s′]. Thus we can glue q and r along [s, s′], and thereby
obtain a broken geodesic joining x to y. This completes the proof. �

Lemma 14.3. Let p and p′ be broken geodesics of speed D and D′ with p0(0) =
p′0(0). Then D′ ≤ D + d(pn−1(1), p′n−1(1).
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Proof. By convexity, we have d(p0(ε), p′0(ε)) ≤ εd(pn−1(1), p′n−1(1) for ε ≤ t1. Thus
it suffices to show that D′ε ≤ Dε + d(p0(ε), p′0(ε)). This follows immediately from
the triangle inequality since D′ε = d(p′0(ε), p

′
0(0)) and Dε = d(p0(ε), p0(0)). �

Lemma 14.4. Let p be a broken geodesic, and let ε denote the constant of Theorem
14.2. Let p′, p′′ be broken geodesics of speeds D′ and D′′ with

d(p0(0), p′0(0)), d(p0(0), p′′0(0)), d(pn−1(1), p′n−1(1)), d(pn−1(1), p′′n−1(1)) ≤ ε

Then |D′ −D′′| ≤ d(p′0(0), p′′0(0)) + d(p′n−1(1), p′′n−1(1)).

Proof. Theorem 14.2 implies that there exists a broken geodesic q of speedD joining
p′0(0) to p′′n−1(0). Then Lemma 14.3 yields the inequalities

D′ ≤ D + d(p′n−1(1), p′′n−1(1))

D ≤ D′′ + d(p′0(0), p′′0(0))

Adding these inequalities, we obtainD′ ≤ D′′+d(p′0(0), p′′0(0))+d(p′n−1(1), p′′n−1(1)).
The reverse inequality is proved in the same way. �

We now want to establish a version of Theorem 14.2 which implies that the
geodesics depend continuously on their endpoints. First we must formulate the
meaning of this statement. Let Y be a topological space. A broken Y -geodesic shall
mean a collection of continuous maps Pi : Y × [ti, ti+1] → Vi such that for each
y ∈ Y , the restriction {Pi|{y × [ti, ti+1]}} is a broken geodesic.

Lemma 14.1 shows that a broken geodesic defined on [0, 1] is uniquely determined
by its endpoints. Hence any Y -geodesic P is uniquely determined by the restrictions
P0|Y × {0} and Pn−1|Y × {1}. We are interested in the following question: given
two maps ψ0 : Y → V0 and ψ1 : Y → Vn−1, when can they be joined by a broken
Y -geodesic?

Theorem 14.5. Let Y be a topological space, let ψ0 : Y → V0 and ψ1 : Y → Vn−1

be two continuous maps. Suppose that there is a broken geodesic p joining ψ0(y)
and ψ1(y) for some point y ∈ Y . Then there is an open neighborhood U of y and a
broken U -geodesic joining ψ0|U and ψ1|U .

Proof. Let ε be the constant of Theorem 14.2. We now take U to be any neigh-
borhood of y such that ψj(U) is contained in an ε ball around ψj(y) for j = 0, 1.
Then Theorem 14.2 allows us to define, for each u ∈ U , a broken geodesic pu

joining ψ0(u) to ψ1(u). We now define Pi : U × [ti, ti+1] → Vi by the for-
mula Pi(u, t) = pu

i (t). The only thing that requires proof is that Pi is con-
tinuous. By Lemma 14.4, each pu has speed at most D + 2ε, where D is the
speed of p. Moreover, by convexity, we see that the distance between Pi(u, t) and
Pi(u′, t) is bounded by the larger of d(ψ0(u), ψ0(u′)) and d(ψ1(u), ψ1(u′)). Thus
d(Pi(u, t), Pi(u′, t′)) ≤ d(ψ0(u), ψ0(u′)) + d(ψ1(u), ψ1(u′)) + |t − t′|(D + 2ε). This
shows that Pi is continuous and completes the proof. �

15. Sheaves of Geodesics

Our goal now is to find conditions which will guarantee that a metric topos is
free of nontrivial closed geodesics. Closed geodesic are a global phenomenon; in
order to investigate them using local hypotheses we shall need to consider other
geodesics as well. That is the goal of this section.
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Let X be a metric topos, Y a topological space, and let φ0, φ1 : Y → X be
two geometric morphisms. We let FY denote the stack on Y which assigns to
each open set U ⊆ Y the groupoid whose objects consist of geometric morphisms
Φ : U × [0, 1] → X together with isomorphisms α0 : Φ|U × {0} ' φ0|U and
α1 : Φ|U × {1} ' φ1|U , such that Φ|{y} × [0, 1] is a geodesic for all y ∈ U . Note
that FY depends on the morphisms φ0 and φ1 as well as on the space Y , but for
simplicity we shall neglect this fact in our notation.

Lemma 15.1. Let X be a metric topos which admits an etale covering by metric
spaces, let f : Y → X be a geometric morphisms from a topological space Y , and let
α : f ' f be an automorphism of f . If α|{y} is the identity for some point y ∈ Y ,
then α|U is the identity for some neighborhood U of y.

Proof. Choose an etale isometry π : V → X where V metric space ball in some
Hadamard space and f |{y} lifts to V . Shrinking Y if necessary, we may assume
that f factors through a map f ′ : Y → V . Then to give an automorphism of f is
precisely to give a lifting of f × f along the map V ×X V → V × V . Such a lifting
is determined by the corresponding map Y → V ×X V , where the latter space is
etale over V . It follows that if such two such automorphisms agree at a point of Y ,
then they agree in a neighborhood of that point. �

Lemma 15.2. Let X be a separated metric topos which admits an etale covering
by metric spaces, and let f : [0, 1] → X be a geometric morphism of finite length.
Suppose given an automorphism α : f ' f . If α induces the identity at any point
of [0, 1], then α is the identity.

Proof. The automorphisms of f form a sheaf on [0, 1]. Thus there exists a maximal
open set U over which α is the identity. Since X is assumed separated, we see
that U is closed. Since [0, 1] is connected, it suffices to prove that U is nonempty.
This follows immediately from the preceeding lemma, since α is the identity when
restricted to some point. �

Theorem 15.3. For every pair of geometric morphisms φ0, φ1 : Y → X, the stack
FY is a sheaf.

Proof. We must show that objects of FY (U) have no nontrivial automorphisms. If
Φ is such an object, then an automorphism α of Φ consists of a natural transfor-
mation from Φ∗ to itself satisfying certain conditions. Thus α is determined by its
restrictions to the intervals {y} × [0, 1] for y ∈ U . Since we must have α|{y} × {0}
the identity, it follows from Lemma 15.2 that α is the identity. �

Note that given a map f : Y ′ → Y , composition with f induces a natural map
of sheaves f∗FY → FY ′ .

Lemma 15.4. Let X be a locally complete, locally convex metric topos, and let
φ0, φ1 : Y → X be two geometric morphisms, where Y is topological space. For any
y ∈ Y , the natural map k : (FY )y → F{y} is bijective.

Proof. Let us examine an element s ∈ F{y}. This consists of a geodesic p : [0, 1] →
X of some speed D which joins φ0(y) to φ1(y). For some subdivision 0 = t0 ≤ t1 ≤
. . . ≤ tn = 1 of the interval [0, 1], we may find etale isometries πi : V → X such that
there are isomorphisms βi : p|[ti, ti+1] ' πi ◦ pi for some map pi : [ti, ti+1] → Vi,
where Vi is a convex, locally complete metric space. The isomorphisms βi and
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βi+1 compose to give an isomorphism πi ◦ pi|{ti+1} ' πi+1 ◦ pi+1|{ti+1}, which
corresponds to a point zi of Vi×X Vi+1 lying over (pi(ti+1), pi+1(ti+1). Since Vi×X

Vi+1 is etale over Vi and Vi+1, we can find an open neighborhood of zi which maps
isomorphically to convex open subsets V +

i ⊆ Vi and V −
i+1 ⊆ Vi+1. Let γi : V +

i →
V −

i+1 denote the induced isometry.
In the terminology of the last section, p determines a broken geodesic. Moreover,

replacing Y by a neighborhood of Y , we may assume that there are isomorphisms
φ0 ◦ π0 ◦ ψ0 and φ1 = πn−1 ◦ ψ1 for some continuous maps ψ0 : Y → V0, ψ1 : Y →
Vn−1. Then by Theorem 14.5, we can after shrinking Y further assume that there
is a broken Y -geodesic joining ψ0 to ψ1. This obviously determines a section of FY

which restricts to the element of F{y} that we started with. This proves that k is
surjective.

Let us now prove that k is injective. Shrinking Y if necessary, it suffices to
show that any two sections of S, S′ ∈ FY which restrict to s ∈ F{y} agree in some
neighborhood of Y .

Suppose we are given any global section of FY represented by a geometric mor-
phism Φ : Y × [0, 1] → X and isomorphisms αi : Φ|Y × {i} ' φi (i = 0, 1). Let
us define a rigidification of (Φ, α0, α1) to be a collection of continuous Pi : Y ×
[ti, ti+1] → Vi with γi ◦Pi|Y ×{ti+1} = Pi+1|Y ×{ti+1} such that P0|Y ×{0} = ψ0,
Pn−1|Y ×{1} = ψ1, together with isomorphisms πi ◦Pi ' Φ|Y × [ti, ti+1] which are
compatible with the isomorphisms γi. One checks easily that the rigidifications of
S and S′ on {y} extend to rigidifications in a neighborhood of {y}. Replacing Y by
this neighborhood, we may represent S and S′ by broken Y -geodesics joining ψ0 to
ψ1. A convexity argument shows that these broken Y -geodesics must coincide, so
that S = S′. �

Theorem 15.5. Let X be a separated, locally complete, locally convex metric topos,
and let φ : Y → X be a geometric morphism. For any map f : Y ′ → Y , the natural
map f∗FY → FY ′ is an isomorphism.

Proof. It suffices to check on stalks, and then we can use Lemma 15.4. �

16. FY is Hausdorff

In this section, we shall prove that FY is a Hausdorff sheaf. Recall that this
means that for any U ⊆ Y and any pair of sections in FY (U), the maximal open
subset of U on which the sections agree is also closed in U . First, we shall need a
number of lemmas.

Lemma 16.1. Let V be an convex metric space, and let π : V ′ → V be an etale
map. Suppose that given any path p : [0, 1) → V ′ of finite length, there is at most
one extension of p to [0, 1]. Then V ′ is Hausdorff.

Proof. We must show that any two distinct points of x, y ∈ V ′ have disjoint open
neighborhoods. If π(x) 6= π(y) we are done. Otherwise, since π is etale, there
exists a neighborhood U of π(x) = π(y) and neighborhoods Ux, Uy of x and y
such that π|Ux → U and π|Uy → U are isomorphisms. Shrinking U , we may
assume that U is a convex metric space. It now suffices to show that Ux and Uy

are disjoint. For suppose z ∈ Ux ∩ Uy. Let p : [0, 1] → V be a path of finite length
joining π(z) to π(x) = π(y), and let px and py denote its lifts to Ux and Uy. Since
px(1) = x 6= y = py(1), px and py are not identically equal. On the other hand, we
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do have px(0) = z = py(z). Since π is etale and π ◦ px = p = π ◦ py, there is some
maximal open interval [0, t) on which px = py. But then the hypothesis shows that
px(t) = py(t), a contradiction. �

Lemma 16.2. Let X be a weakly separated locally convex metric topos, and let
π : V → X and π′ : V ′ → X be etale maps where V and V ′ are convex metric
spaces. Then V ×X V ′ is a Hausdorff topological space.

Proof. We first note that V ×X V ′ is a topological space. Indeed, it is etale over
V , so it is the total space of some stack on V . But points of V ×X V ′ have no
automorphisms, so that stack is a sheaf.

It now suffices to show that a path p : [0, 1) → V ×X V admits at most one
extension to [0, 1]. If such an extension is to exist, the composite map [0, 1) → V ×V
must admit an extension to [0, 1]. Then we have two maps p0, p1 : [0, 1] → V ,
and an isomorphism of π ◦ f0 ' π ◦ f1 over [0, 1). We need to show that this
isomorphism admits a unique extension over [0, 1], which follows immediately from
the assumption that X is weakly separated. �

Lemma 16.3. Let X be a weakly separated, locally convex metric topos. Let f, g :
Y → X be two geometric morphisms, let α, β : f ' g be two isomorphisms, and
suppose that α|U = β|U for some dense subset U ⊆ Y . Then α = β.

Proof. Using the isomorphism β : f ' g, we can reduce to the case where f = g
and β is the identity. The assertion is local on Y , so we may assume that f factors
as a composite of a map f ′ : Y → V and some etale map ψ : V → X, where V is a
convex metric space. Then to give an automorphism of f is to give a lifting of the
map f ′ × f ′ : Y → V × V to the space V ×X V , which is etale over V . To prove
the lemma, it suffices to know that V ×X V is Hausdorff, so that two morphisms
to V ×X V which agree on a dense subset agree everywhere. �

The analogous statement for separatedness is much more subtle. We shall prove
only a weak version of it.

Lemma 16.4. Let V0 and V1 be convex metric spaces, and let V be a Hausdorff
space admitting etale projections π0 : V → V0 and π1 : V → V1 so that the induced
metrics agree. Suppose that for each map p : [0, 1) → V having bounded length, if
π0 ◦ p and π1 ◦ p both extend continuously to [0, 1], then p extends continuously to
[0, 1].

Let Y be any space, and let φ0 : Y × [0, 1] → V0, φ1 : Y × [0, 1] → V1 and ψ : Y →
V be continuous maps such that πiψ = φi|Y × {0}, and such that φi|{y} × [0, 1]
have finite length. Let U be a dense subset of Y , and suppose φ : U × [0, 1] → V is
a continuous map such that πi ◦φ = φi|U × [0, 1], φ|U ×{0} = ψ|U . Then φ admits
a continuous extension to Y × [0, 1] having the same properties.

Proof. Since V is Hausdorff, it suffices to show the existence of an extension of φ
to Y × [0, 1]. The compatibility conditions then follow immediately since they are
known over the dense subset U × [0, 1]. Let Fi denote the sheaf on Y × [0, 1] which
classifies factorizations of φi through πi. Then each Fi is a Hausdorff sheaf and
we are given sections of these sheaves over the dense subset U × [0, 1]. Thus there
is some largest open set U ′ of Y × [0, 1] over which these sections extend; U ′ is
independent of i because it may also be characterized as the largest open subset to
which φ continuously extends. We shall denote this maximal extension of φ by φ′.
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Let U ′′ = {(y, t) : {y} × [0, t] ⊆ U ′}. Note that U ′′ is open and contains
U × [0, 1]. If U ′′ = Y × [0, 1], we are done. Otherwise, choose some y ∈ Y such
that {y} × [0, 1] is not contained in U ′, and let t be the largest value such that
{y} × [0, t) ⊆ U ′. The path φ′|{y} × [0, t) satisfy the conditions stated in the
hypotheses, hence φ′|{y} × [0, t) extends to {y} × [0, t]. Thus we obtain a section
of the sheaf Fi over the set {y} × [0, t]. Let us denote the germ at (y, t) by sy,t;
this germ extends to a section s over some open neighborhood W × [t − ε, t + ε]
of (y, t). Shrinking W if necessary, we may assume that W × {t − ε} ⊆ U ′′. Now
we claim that, for W sufficiently small, the section s and the map φ′|U ′′ agree on
U ′′ ∩ (W × [t − ε, t + ε]). Every point (w, t′) of this intersection can be joined to
(w, t− ε) by a path contained in the intersection. Since F0 is a Hausdorff sheaf, it
suffices to show that the two sections coincide over W × {t− ε}. By construction,
they coincide at the point (y, t − ε); thus they coincide on a neighborhood of this
point. Replacing W by a smaller neighborhood of y, we obtain the desired result.

Now we can glue the section s and the map φ′|U ′′, so as to obtain a section of F0

over the open set U ′′∪(W×(t−ε, t+ε)). By the maximality of U ′, this implies that
W × (t− ε, t+ ε) is contained in U ′. But then {y}× [0, t] ⊆ U ′, a contradiction. �

Lemma 16.5. Let X be a separated, locally convex metric topos. Let Y be a
topological space, U a dense subspace, Φ,Φ′ : Y ×[0, 1]×X two geometric morphisms
whose restrictions to any y × [0, 1] have bounded length, and α0 : Φ|Y × {0} '
Φ′|Y ×{0} an isomorphism. Suppose that αU is an isomorphism between Φ|U×[0, 1]
and Φ|U × [0, 1] such that αU |U × {0} = α0|U × {0}. Then αU can be extended
uniquely to an isomorphism α : Φ ' φ′ such that α|Y × {0} = α0.

Proof. The uniqueness is automatic by Lemma 16.3. In view of the uniqueness, it
suffices to prove the result locally on Y . Thus we may find a natural number n
and etale maps ψi : Vi → X, ψ′i : V ′

i → X for 0 ≤ i < n such that Vi and V ′
i

are convex metric spaces and there are isomorphisms βi : Φ|Y × [ i
n ,

i+1
n ] ' ψi ◦Φi,

β′i : Φ′|Y ×[ i
n ,

i+1
n ] ' ψ′i◦Φ′

i where Φi : Y ×[ i
n ,

i+1
n ] → Vi and Φi : Y ×[ i

n ,
i+1
n ] → V ′

i

are continuous maps.
We will construct the isomorphism αi = α|[0, i

n ] by induction on i. The isomor-
phism α0 is given to us from the start. Assuming that αi−1 has been constructed
for i ≤ n, we see that αi−1 induces an isomorphism between ψi ◦ Φi|Y × { i

n} and
ψ′i ◦ Φ′

i|Y × { i
n}. Moreover, the existence of αU gives an extension of this isomor-

phism to U × [ i
n ,

i+1
n . The result now follows from Lemma 16.4, applied to the sets

Vi, V ′
i , and Vi ×X V ′

i . �

Theorem 16.6. Let X be a separated locally convex metric topos, and let φ0, φ1 :
Y → X be a geometric morphisms. Then FY is a Hausdorff sheaf.

Proof. Replacing Y by an open subset if necessary, it suffices to show that the
maximal open subset U of Y on which two global sections s, s′ ∈ FY (U) agree is
closed. In view of Lemma 15.5, we may replace Y by the closure of U , thereby
reducing to the case where U is dense. Represent s and s′ by morphisms Φ,Φ′ :
Y × [0, 1] → X. Then Φ|Y ×{0} ' φ0 ' Φ′|Y ×{0}, and this isomorphism extends
over all of U × [0, 1]. By Lemma 16.5, this isomorphism extends uniquely over all of
Y × [0, 1]. Moreover, Lemma 16.3 shows that this isomorphism is compatible with
the isomorphisms Φ|Y × {1} ' φ1 ' Φ′|Y × {1}, since this compatibility is known
over the dense subset U . It follows that s = s′ and we are done. �
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17. The Sheaf FY is Extendable

We wish to show that the sheaves FY are locally constant. In order to prove
this, we first establish the following special case:

Theorem 17.1. Let X be a complete, locally convex, locally complete metric topos.
Let Y = [0, 1], and let φ0, φ1 : Y → X be geometric morphisms of finite length.
Then any section of FY over [0, 1) can be extended to a global section.

This in turn will rest on the following lemma:

Lemma 17.2. Let F be a Hausdorff sheaf on [0, 1]× [0, 1]. Suppose that any germ
of F at a point (0, t) can be extended to a section of F over [0, 1]× {t}. Then any
section of of F over 0× [0, 1] can be extended to a global section of F .

Proof. Let s0 be a section of F over 0× [0, 1]. If s0 cannot be extended to a global
section of F , then there is some maximal interval [0, t) such that s0 can be extended
to a section st of F over [0, t)× [0, 1]. For each y ∈ [0, 1], let s′y denote the (unique)
section of F over [0, 1]× {y} which agrees with s0 at (0, y), and let s′t,y denote the
stalk of s′y at the point (t, y). Consider for each y an open ball Vy containing (t, y)
and a section s′′y of F over Vy which agrees with s′t,y at (t, y). We claim that the
sections st and {s′′y}y∈Y glue to give a section of F over an open set containing
[0, t]× [0, 1], which will be a contradiction.

First, we show that st and s′′y have the same restriction to ([0, t) × [0, 1]) ∩ Vy.
Since the intersection is convex and F is Hausdorff, suffices to prove that the stalks
agree at a single point. We may take for that point (t − ε, y) for any sufficiently
small ε.

Now we show that s′′y and s′′y′ have the same restriction to Vy ∩ Vy′ . If the
intersection is empty there is nothing to prove. If not, then the intersection is
convex, and again it suffices to demonstrate agreement at a single point. But this
is clear from what we proved above since the intersection Vy ∩ Vy′ ∩ ([0, t)× [0, 1])
is nonempty. �

Now we give the proof of Theorem 17.2.

Proof. Represent a section of FY over [0, 1) by a geometric morphism Φ : [0, 1) ×
[0, 1] → X, together with the required isomorphisms α0 : Φ|[0, 1) × {0} ' φ0 and
α : Φ|[0, 1) × {1} → φ1. It will suffice to prove that Φ can be extended, up to
isomorphism, to a geometric morphism defined on [0, 1] × [0, 1]. For then α0 and
α1 extend uniquely due to the assumption that X is separated, and Φ|{1} × [0, 1]
is a geodesic by continuity.

An easy convexity argument shows that for each t ∈ [0, 1], the restriction of Φ
to [0, 1) × {t} has length bounded by the maximum of L(φ0) and L(φ1). Since
X is complete, this restriction extends uniquely (up to unique isomorphism) to a
geodesic φt : [0, 1] → X. Then there is an etale morphism πt : Vt → X such that
φt|[1−εt, 1] factors as πt◦ψt for some continuous map ψt : [1−εt, 1] → Vt, where Vt is
a locally complete convex metric space and εt > 0. Choose r so that the closed ball
of radius 2r about ψt(1) in Vt is complete. Shrinking εt if necessary, we may assume
εtL(φ) < r. Let Ut be an open subset of [0, 1] so that Φ|{1 − εt} × Ut has length
< r. Let F denote the sheaf on [1− ε, 1)× Ut corresponding to liftings of Φ along
πt : Vt → X. Then F is a Hausdorff sheaf, and φt supplies an element of the stalk
F(1−εt,t). Using Lemma 13.5, we can lift this to a section of F along {1− εt} ×Ut.
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The same lemma shows that the hypotheses of Lemma 17.2 are satisfied, so that
(applying that lemma countably many times) this section extends to a global section
of F . In other words, the restriction of Φ to [1− εt, 1)×Ut lifts to Vt; moreover the
image of the corresponding map Φt : [1− εt, 1)×Ut → Vt is contained in the closed
ball of radius 2r about φt(1−ε). If we endow [1−ε, 1]×Ut with the metric given by
d((y0, t0), (y1, t1)) = L(φ|[y0, y1]) + |t0− t1|L(Φ|{1− εt}× [0, 1]) (for y0 ≤ y1), then
one may easily check that the map Φt is a contraction, hence uniformly continuous.
Therefore Φt extends continuously to [1− εt, 1]× Ut.

To complete the proof, it suffices to show that for different choices of t ∈ [0, 1],
the extensions Φt : [1− εt]× Ut → X are canonically isomorphic on their overlaps.
For this, we apply Lemma 17.2 to the sheaf of isomorphisms between them, where
the hypotheses are verified using the fact that X is separated. �

18. The Sheaf FY is Locally Constant

Lemma 18.1. Let Y be a connected topological space, F a Hausdorff sheaf on Y .
Suppose that for any y ∈ Y , any germ of F at y can be extended to the entire space
Y . Then F is a constant sheaf.

Proof. Let M be the collection of global sections of F . Clearly every continuous
function from an open set U ⊆ Y to M (considered as a discrete set) determines
a section of F over U . We will show that the corresponding map of sheaves is an
isomorphism.

Given two continuous functions f, g : U → M , and consider any u ∈ U . If
the sections of F associated to f and g agree, then f(u) and g(u) must have the
same stalk at u. Since F is Hausdorff, f(u) and g(u) agree on a set which is both
closed and open. Since this set is nonempty and Y is connected, we conclude that
f(u) = g(u). As this holds for every u ∈ U , we get f = g.

For the reverse surjectivity, consider any section s ∈ F(U). For each u ∈ U , let
f(u) be an element of M whose stalk at u coincides with the stalk of s at u. It will
suffice to show that f is a continuous function. For this, it suffices to show that for
each u ∈ U , the set Vu = {v ∈ U : f(u) = f(v)} is closed and open in U . For this,
it suffices to show that Vu is open subset of U on which s and f(u) agree. For if s
and f(u) agree at a point v, then f(v) and f(u) agree at v, hence everywhere on
Y ; the converse is obvious. �

Let us now consider the following situation: let V be a convex metric space, let
F be a Hausdorff sheaf on V . Assume that for any continuous path p : [0, 1] → Y
having finite length, any section of p∗F over [0, 1) can be extended to a section
over [0, 1]. It follows by an easy argument that for such a sheaf, p∗F is constant on
[0, 1]. Thus, we get an induced bijection p∗ : Fp(0) → Ff(1).

Lemma 18.2. If p : [0, 1] → V and p′ : [0, 1] → V are two paths having finite
length with p(0) = p′(0) = x, p(1) = p′(1) = y, then p∗ = p′∗ : Fx → Fy.

Proof. Define h : [0, 1] × [0, 1] → V so that h(s, t) is a geodesic (of some speed)
joining p(t) to p′(t). The convexity of the metric of V shows that h is continuous.

Consider any germ sx ∈ Fx. Then we may consider sx as an element of the
stalk (h∗F)(0,0). The local constancy of f∗F allows us to extend sx to {0} × [0, 1].
Applying Lemma 17.2, we deduce the existence of an extension s of sx to [0, 1] ×
[0, 1]. Since F is Hausdorff, this extension is unique. Moreover, we see that f∗(sx)
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is the stalk of s at the point (0, 1), and g∗(sx) is the stalk of s at (1, 1), which
implies the desired result. �

Theorem 18.3. The sheaf F is constant on V .

Proof. We must show that any element of a stalk can be extended to a global
section. Pick y ∈ Y and an element sy of the stalk Fy. We will show that sy

can be extended to a global section of F . Consider the partially ordered set whose
elements are pairs (U, sU ), where U is a connected open subset of Y containing y
and sU a section of F over U whose germ at y is sy. This partial order is obviously
nonempty and inductive, so by Zorn’s lemma it has a maximal element (U, sU ).
Suppose U 6= Y . Pick a point x ∈ Y , x /∈ U , and let p : [0, 1] → Y be a path
joining y to x having finite length. Let t be the smallest element of [0, 1] such that
p(t) /∈ U . Replacing x by p(t) and reparametrizing p, we may assume p([0, 1)) ⊆ U .
Let sx = p∗sy, and choose an open ball U ′ around x such that sx lifts to a section
sU ′ on U ′. We claim that sU and sU ′ agree on U ∩ U ′. This will contradict the
maximality of U and proves the theorem.

To show that sU |U ∩U ′ = sU ′ |U ∩U ′, it suffices to show that they agree at every
point z ∈ U ∩ U ′. Then we may choose paths q : [0, 1] → X, q′ : [0, 1] → X such
that q is a path of finite length joining y to z in U , and q′ is a path of finite length
joining x to z in V . Then we see that (sU )z = q∗sy, (sV )z = q′∗sx = q′∗p∗sy = q′′∗sy,
where q′′ is the path obtained by concatenating p and q′. Then Lemma 18.2 implies
that (sV )z = (sU )z, as desired. �

Theorem 18.4. Let X be a complete, locally complete, locally convex metric topos,
and let φ0, φ1 : Y → X be a geometric morphism from a topological space Y into
X. Then the sheaf FY is locally constant.

Proof. The assertion is local on Y , so without loss of generality we may assume
that φ : Y → X factors through an etale map ψ : V → X, where V is a convex
metric space. Since the formation of FY is compatible with base change, it suffices
to prove this result when Y = V . By Theorem 16.6, the sheaf FY is Hausdorff, and
by Theorem 17.2 it verifies the conditions required for the above discussion. Thus
Theorem 18.3 proves the desired result. �

19. Consequences

Lemma 19.1. Let X be a complete, locally convex, locally complete metric topos.
Suppose that X is simply connected. Then every closed geodesic in X is trivial.

Proof. Fix a point x : {∗} → X. For any topological geometric morphism φ0 :
Y → X, let FY denote the sheaf corresponding to the pair of geometric morphisms
(φ0, φ1), where φ1 is the composite of x with the constant map Y → {∗}.

Since X admits a covering family of topological spaces, we obtain by descent a
sheaf FX on X. By Theorem 18.4, FX is a locally constant sheaf on X. Since X is
simply connected, F is a constant sheaf. The stalk of this sheaf at the point x is, by
Lemma 15.5, the set of isomorphism classes of closed geodesics at x. In particular,
taking the trivial closed geodesic at x, we obtain a canonical global section s of FX .

Now let Y = [0, 1], and let p : Y → X denote a closed geodesic with p|{0} ' x '
p|{1}. There is a natural section s′ ∈ FY (Y ) over Y , which associates to each point
t ∈ [0, 1] the geodesic obtained from p|[0, t] by reparametrization. The germ of this
section at the point 0 ∈ Y is determined by the restriction p|{0} which coincides
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with the inclusion of the point x. It follows that s′ = p∗s in a neighborhood of
a. Since FY is locally constant, we get s′ = p∗s everywhere. Now restrict to the
point 1 ∈ Y ; we deduce that the closed geodesic p is isomorphic to the trivial closed
geodesic at x. �

Theorem 19.2. Let X be a complete, locally convex, locally complete metric topos.
Then X is the metric topos associated to a complete metric space.

Proof. This follows immediately by combining Theorem 13.7 and Lemma 19.1. �

Remark 19.3. If X is a locally convex metric topos, then X is locally isomorphic
to a simply connected (even contractible) topological space. It follows that X is a
disjoint union of its connected components, each of which admits a universal cover.
If, in addition, X is complete and locally complete, then its universal cover shares
those properties so that Theorem 19.2 can be applied.

Before proceeding to the Hadamard case, there is one more loose end to tie up.
The constancy of the sheaves FY proves the existence of many geodesics. However,
it does not immediately guarantee that these geodesics are length-minimizing. But
this is indeed the case.

Lemma 19.4. Let X be a complete, locally complete, locally convex metric topos.
Let p : [0, 1] → X be path in X. Then there exists a geodesic p′ : [0, 1] → X with
p′(0) ' p(0), p′(1) ' p(1), and L(p′) ≤ L(p).

Proof. Let x = p|{0}, Y = [0, 1], φ0 = p, and φ1 be the constant map with value
x. Let FY denote the associated sheaf on Y . We have shown that FY is locally
constant and that its stalk at 0 consists of the closed geodesics joining x to itself.
The trivial closed geodesic lifts uniquely to a global of FY , which we can think
of as a continuous family of geodesics p′s : [0, 1] → X joining p(s) to p(0). Let
A = {s ∈ [0, 1] : L(p′s) ≤ L(p|[0, s])}. Clearly 0 ∈ A, and to prove the lemma
it suffices to show that 1 ∈ A. Since L(p′s) and L(p|[0, s]) are both continuous
functions of s, the set A is closed. Since the interval [0, 1] is connected, it suffices
to show that A is open.

Suppose s ∈ A. Then there exists a decomposition 0 = t0 < t1 < . . . < tn = s,
a collection of etale isometries πi : Vi → X, and convex open subsets V +

i ⊆ Vi and
V −

i+1 ⊆ Vi+1, together with isomorphisms πi|V +
i ' πi+1V

−
i+1 such that p′s comes

from a broken geodesic. Then, as in the proof of Lemma 15.4, we see that p′s′
comes from a broken geodesic for all s′ sufficiently close to s. Now Lemma 14.4
implies that L(p′s′) ≤ L(p′s)+ δs,s′ , where δs,s′ is the the local distance between the
endpoints of p′s and p′s′ . This in turn is bounded above by the length of p|[s, s′].
Combining this with the inequality L(p′s) ≤ L(p|[0, s]), we obtain the desired result
(even with room to spare if s′ < s). �

Definition 19.5. A metric topos X is locally Hadamard if it admits an etale cover
by metric spaces which are isomorphic to open balls in Hadamard spaces.

Since Hadamard spaces are convex and locally complete, it follows that a locally
Hadamard metric topos is locally convex and locally complete.

Theorem 19.6. Let X be a complete, simply connected, locally Hadamard metric
topos. Then X is the metric topos associated to a Hadamard space.
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Proof. We have seen that π : X → |X| is an isomorphism. Thus it suffices to
show that the metric space |X| is a Hadamard space. Since X is connected, |X| is
nonempty. Since X is complete, |X| is complete.

Fix a point x of X, and consider the sheaf FX corresponding to the pair of maps
φ0, φ1 : X → X where φ0 is the identity and φ1 has the constant value x. The
stalk of the sheaf FX at x consists of all closed geodesics joining x to itself. Since
we have seen that these are all trivial, we deduce that FX is the terminal sheaf.
Thus it has a unique global section s. This supplies the function gx required for
Theorem 11.1. The only tricky point is that we need to show that the geodesics
supplied by gx are minimizing. By construction, the distance between two points
x, y ∈ |X| is the infimum of the lengths of all paths joining x to y. Hence it suffices
to show that this infimum is achieved by the geodesic which joins x and y. This
follows easily from 19.4. �

It follows that any complete, connected, locally Hadamard metric topos has a
Hadamard space as its universal cover. In particular, any complete, connected
metric space which is locally isometric to a Hadamard space has a Hadamard space
as its universal cover. This applies, for example, to complete, connected Riemannian
manifolds of non-positive sectional curvatures: this is the original formulation of
the Hadamard-Cartan theorem.


