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Introduction: Bezout’s Theorem

Let C,C’ C P? be two smooth algebraic curves of degrees m and n in the complex projective plane P2. If
C and C’ meet transversely, then the classical theorem of Bezout (see for example [4]) asserts that C' N C’
has precisely mn points.

We may reformulate the above statement using the language of cohomology. The curves C' and C’ have
fundamental classes [C], [C’] € H*(P?;Z). If C and C’ meet transversely, then we have the formula

[Clulc]=[cnc,

where the fundamental class [C' N C’] € H*(P?;Z) ~ Z of the intersection C' N C’ simply counts the number
of points where C' and C” meet. Of course, this should not be surprising: the cup product on cohomology
classes is defined so as to encode the operation of intersection. However, it would be a mistake to regard the
equation [C]U[C'] = [C N '] as obvious, because it is not always true. For example, if the curves C and C’
meet nontransversely (but still in a finite number of points), then we always have a strict inequality

[CluC’] > [C N

if the right hand side is again interpreted as counting the number of points in the set-theoretic intersection
of C' and C".

If we want a formula which is valid for non-transverse intersections, then we must alter the definition
of [C' N C’] so that it reflects the appropriate intersection multiplicities. Determination of these intersection
multiplicities requires knowledge of the intersection C'N C’ as a scheme, rather than simply as a set. This
is one of the classic arguments that nonreduced scheme structures carry useful information: the intersection
number [C]U[C’] € Z, which is defined a priori by perturbing the curves so that they meet transversally, can
also be computed directly (without perturbation) if one is willing to contemplate a potentially non-reduced
scheme structure on the intersection.

In more complicated situations, the appropriate intersection multiplicities cannot always be determined
from the scheme-theoretic intersection alone. Suppose that C and C’ are smooth subvarieties of P™ of
complementary dimension, having a zero-dimensional intersection. In this case, the appropriate intersection
number associated to a point p € C'N C” is not always given by the complex dimension of the local ring

Ocnerp = O0cp ®opn, Ocr p -

The reason for this is easy to understand from the point of view of homological algebra. Since the tensor
product functor ®e, , is not exact, it does not have good properties when considered alone. According to
Serre’s intersection formula, the correct intersection multiplicity is instead the Euler characteristic

Z(—l)idim Toriopn‘p (Ocp, Ocr p)-

This Euler characteristic contains the dimension of the local ring of the scheme-theoretic intersection as its
leading term, but also higher-order corrections. We refer the reader to [15] for further discussion of this
formula for the intersection multiplicity.

If we would like the equation [C] U [C'] = [C' N C'] to remain valid in the more complicated situations
described above, then we will need to interpret the intersection C' N C’ in some way which remembers not
only the tensor product O¢,p ®opn , Oc’ p, but the higher Tor groups. Moreover, we should not interpret
these Tor-groups separately, but rather should think of the total derived functor O¢ ®épn ) Oc¢p as a kind
of generalized ring. '

These considerations lead us naturally to the subject of derived algebraic geometry. Using an appropriate
notion of “generalized ring”, we will mimic the constructions of classical scheme theory to obtain a theory of
derived schemes in which a version of the formula [C]U[C’] = [CNC’] can be shown to hold with (essentially)
no hypotheses on C' and C’. Here, we must interpret the intersection C NC” in the sense of derived schemes,



and we must take great care to give the proper definition for the fundamental classes (the so-called virtual
fundamental classes of [1]).

What sort of objects should our generalized rings be? To answer this question, we begin by considering
the simplest case of Bezout’s theorem, in which C' and C' are lines in the projective plane P2. In this case,
we know that [C] U [C'] is the cohomology class of a point, and that C intersects C’ transversely in one
point so long as C' and C’ are distinct. However, when the equality C' = C’ holds, the scheme-theoretic
intersection C' N C’ does not even have the correct dimension.

Let us now try to formulate a theory of intersections which will handle the degenerate situation where
C = C'. To simplify the discussion, we will consider only lines in the affine plane A? C P2, with coordinate
ring C[z,y]. Two distinct lines in A? may be given (without loss of generality) by the equations x = 0 and
y = 0. The scheme-theoretic intersection of these two lines is the spectrum of the ring Clz,y]/(z,y) ~ C,
obtained from C[z,y] by enforcing the defining equations of both lines. This ring has Krull dimension 0
because C[z, y] has Krull dimension 2 and we have imposed 2 independent conditions.

Now suppose that instead of C' and C’ being two distinct lines, they are actually two identical lines, both
of which are defined by the equation x = 0. In this case, the affine ring of the scheme theoretic intersection
is given by Clz,y]/(z,z) ~ Cly]. This ring has Krull dimension 1, rather than the expected dimension 0,
because the two equations are not independent: setting x equal to zero twice has the same effect as setting
x equal to zero once. To obtain the theory we are looking for, we need a notion of generalized ring which
remembers not only whether or not z is equal to 0, but how many different ways z is equal to 0.

One way to obtain such a formalism is by categorifying the notion of a commutative ring. That is, in place
of ordinary commutative rings, we consider categories equipped with addition and multiplication operations
(which are encoded by functors, rather than ordinary functions). For purposes of the present discussion, let
us call such an object a categorical ring. We will not give a precise axiomatization of this notion; this turns
out to be somewhat complicated (see [7], for example).

Example 0.0.1. Let Z>o denote the semiring of nonnegative integers. We note that Z> arises in nature
through the process of decategorification. The nonnegative integers were originally introduced in order to
count: in other words, in order to measure the size of finite sets. To make this statement more precise, let
us denote by Fin the category whose objects are finite sets, and whose morphisms are isomorphisms of finite
sets. Then we can identify Z>q with the set of isomorphism classes of objects in Fin. The addition and
multiplication operations on Zxq are induced by functors Fin x Fin — JFin, given by the formation of disjoint
union and Cartesian product. Moreover, all of the axioms for a commutative semiring have analogues that
hold at the categorical level: for example, the distributive law zy+xz = x(y+ z) translates into the existence
of a canonical isomorphism

Xx][[xx2)~x x(V]]2)

for every triple of objects X,Y,Z € Fin. (In order to complete the analogy with the above discussion, we
should “complete” the category Fin by formally adjoining inverses, to obtain a categorical ring rather than
a categorical semiring, but we will ignore this point for the time being.)

To simplify the discussion, we will consider only categorical rings which are groupoids: that is, every
morphism in the underlying category is an isomorphism. If € is a categorical ring, then the collection of
isomorphism classes of objects in € forms an ordinary commutative ring, which we will denote by 7y €. Every
commutative ring R arises in this way: for example, we may take € to be a category whose objects are the
elements of R and which contains only identity maps for morphisms. The categorical rings which arise in
this way are very special: their objects have no nontrivial automorphisms. For a given commutative ring R,
there are usually many other ways to realize an isomorphism of R with the collection of isomorphism classes
of objects in a categorical ring €. Although C is not uniquely determined by R, there is often a natural
choice for € which is dictated by the manner in which R is constructed.

As an example, let us suppose that the commutative ring R is given as a quotient R'/(x — y), where R’
is some other commutative ring and z,y € R’ are two elements. Suppose that the ring R’ has already been
“categorified” in the sense that we have selected some categorical ring €' and an identification of R’ with



7o @', To this data, we wish to associate some “categorification” € of R. Roughly, the idea is to think of z
and y as objects of €, and to impose the relation z = y at the categorical level. However, it is extremely
unnatural to ask that two objects in a category be equal; instead one should ask that they be isomorphic.
In other words, the quotient category € should not be obtained from € by identifying the objects z and y.
Instead we should construct € by enlarging € so that it includes an isomorphism o : z ~ y. Since we want €
to be a categorical ring, the formation of this enlargement is a somewhat complicated business: in addition
to the new isomorphism «, we must also adjoin other isomorphisms which can be obtained from « through
addition, multiplication, and composition (and new relations, which may cause distinct isomorphisms in €’
to have the same image in C).

To make the connection with our previous discussion, let us note that the construction of € from €’
described in the preceding paragraph is interesting even in the situation where x = y. In this case, z and y
are already isomorphic when thought of as objects of €'. However, in € we get a new isomorphism a between
2 and y, which usually does not lie in the image of the map Home (z,y) — Home(z,y). Consequently,
even though the quotient map R’ — R is an isomorphism, the underlying functor €' — € need not be an
equivalence of categories. Imposing the new relation x = y does not change the collection of isomorphism
classes of objects, but often does change the automorphism groups of the objects. Consequently, if we begin
with any objects x and y, we can iterate the above construction two or more times to obtain a categorical
ring € equipped with multiple isomorphisms x ~ y. These isomorphisms are (in general) distinct from one
another, so that the categorical ring € “knows” how many times x and y have been identified.

We have now succeeded in finding a formalism which is sensitive to redundant information: we just need
to replace ordinary commutative rings with categorical rings. The next question to ask is whether or not this
formalism is of any use. For example, can we carry out computations in this kind of formalism? Suppose
that € is a categorical ring containing a pair of objects z,y € €' as above, and we form a new categorical
ring @ by adjoining an isomorphism « : x — y. For simplicity, we will suppose that €' is a discrete category
(having no nonidentity morphisms), which we may identify with an ordinary commutative ring R’ = m, C'.
The commutative ring R = 7o € is easy to compute: it can be identified with the cokernel of the map

é:R "SR

It turns out that the automorphism groups of objects of € are also readily computable: for every object
x € C, there is a canonical isomorphism Home (2, z) ~ ker(¢).

Let us return to geometry for a moment, and suppose that R’ is the affine ring of a curve (possibly
nonreduced) in A% = Spec C[z,y]. Let R” = C[z,y]/(z — y) denote the affine ring of the diagonal. Then
the cokernel and kernel of ¢ may be naturally identified with ToroC (-] (R',R") and Torf[z’y](R’ ,R"). In
other words, just as the leading term in Serre’s intersection formula has an interpretation in terms of tensor
constructions with ordinary commutative rings, the second term has a geometric interpretation in terms of
categorical rings.

Unfortunately, this is far as categorical rings will take us. In order to interpret the next term in Serre’s
intersection formula, we need to take categorification one step further and consider ring structures on 2-
groupoids. To understand the entire formula, we need to consider commutative ring structures on oo-
groupoids, which we may think of as topological spaces or as simplicial sets. There are (at least) two
essentially different ways to make this idea precise. The first is to work with topological spaces (or better
yet, simplicial sets) which have a commutative ring structure, where the addition and multiplication are
given by continuous maps; here we require the axioms of a commutative ring to be satisfied “on the nose”.
The collection of all such topological rings can be organized into an oo-category SCR which we will study
in §4.1. There is also a more sophisticated theory of commutative ring structures on co-groupoids, in which
the commutative ring axioms are only required to hold up to (coherent) homotopy. This leads to the theory
of (connective) Eo-rings which we studied in [10] (see also [2]).

Remark 0.0.2. We should emphasize that when studying a topological ring A, we are much more interested
in the homotopy type of A than we are in the topology of A. In other words, we regard the topology on A as
a mechanism which allows us to discuss paths, homotopies between paths, and so forth. Consequently, most



of the topological rings which arise naturally in mathematics are quite uninteresting from our point of view.
For example, any ring which is a topological vector space over R is contractible, and thus equivalent to the
zero ring. On the other hand, any p-adically topologized ring has no nontrivial paths, and is thus equivalent
to a discrete ring from our point of view. The topological rings which do arise in derived algebraic geometry
are generally obtained from discrete rings by applying various categorical constructions, and are difficult to
describe directly.

We now have two reasonable candidates for our theory of “generalized rings”: E..-ring spectra and
simplicial commutative rings. Which is the better notion? The answer depends, of course, on what we want
to do. Roughly speaking, the theory of simplicial commutative rings can be regarded as a mechanism for
applying ideas from algebraic topology to the study of commutative algebra. If we take the point of view
that our ultimate interest is in ordinary commutative rings, then simplicial commutative rings arise naturally
because certain constructions (such as left derived tensor products) force us to consider more general objects
(as in our discussion of Bezout’s theorem above). By contrast, the theory of E.-rings can be thought of
as a mechanism for applying ideas from commutative algebra to algebraic topology (more specifically, to
stable homotopy theory). For example, we might observe that for every compact topological space X, the
complex K-theory K (X) has the structure of a commutative ring; we would then like to summarize this fact
by saying that, in some sense, K-theory itself is a commutative ring. The theory of E-ring spectra provides
the correct language for describing the situation: K-theory and many other generalized cohomology theories
of interest may be endowed with E.,-structures.

We are now in a position to describe (at least informally) the theory of derived schemes which we will
introduce in this paper. Just as an ordinary scheme is defined to be “something which looks locally like
Spec A where A is a commutative ring”, a derived scheme can be described as “something which looks
locally like Spec A where A is a simplicial commutative ring”. Of course, many variations on this basic idea
are possible. In this paper, we are concerned with laying the foundations for the theory of derived algebraic
geometry, rather than any particular application (such the generalization of Bezout’s theorem described
above). Many of the ideas involved can be fruitfully exported to other contexts (such as complex analytic
geometry), so it seems worthwhile to establish the foundations of the theory in a very general form. To this
end, we will introduce the notion of a geometry. Given a geometry G and a topological space X, there is an
associated theory of G-structures on X. Roughly speaking, a G-structure on a topological space X is a sheaf
Ox endowed with some operations, whose exact nature depends on §. By choosing G appropriately, we can
recover the classical theory of ringed and locally ringed spaces. However, we can also obtain variations on
this classical theory, where the structure sheaf Ox takes values not in the ordinary category of commutative
rings, but in the co-category SCR of simplicial commutative rings (see §4.2). Another possibility is to work
with the oco-category of E..-rings. This leads naturally to the subject of spectral algebraic geometry, which
we will take up in a sequel to this paper.

Overview

Let us now outline the contents of this paper. First it is convenient to recall a few definitions from classical
scheme theory. A ringed space is a pair (X,0Ox), where X is a topological space and Oy is a sheaf of
commutative rings on X. We say that (X, Ox) is locally ringed if, for every point € X, the stalk Ox ,
is a local ring. The collection of locally ringed spaces can be organized into a category, where a map of
locally ringed spaces (X,0x) — (Y,0y) is given by a continuous map f : X — Y, together with a map
of sheaves f* Oy — Ox satisfying the following locality condition: for every point z € X, the induced ring
homomorphism Oy, ¢y — Ox, is local. We say that a locally ringed space (X,0x) is a scheme if it is
locally isomorphic to a locally ringed space of the form (Spec A, Ogpec4), where A is a commutative ring
and Spec A is the usual Zariski spectrum of prime ideals in the ring A. A map of schemes is simply a map
of the underlying locally ringed spaces, so we can regard the category of schemes as a full subcategory of the
category of locally ringed spaces.

We wish to build a theory of derived algebraic geometry following the above outline. However, our theory
will be different in several respects:



(a) We are ultimately interested in studying moduli problems in derived algebraic geometry. We will
therefore need not only a theory of schemes, but also a theory of Deligne-Mumford stacks. For this,
we will need to work with the étale topology in addition to the Zariski topology.

(b) Let A be a commutative ring. There exists a good theory of étale sheaves on Spec A, but the category
of such sheaves is not equivalent to the category of sheaves on any topological space. For this reason, the
theory of ringed spaces (X, Ox) needs to be replaced by the more sophisticated theory of ringed topoi
(X, Ox). Here X denotes a (Grothendieck) topos, and Oy a commutative ring object of X. Actually,
it will be convenient to go even further: we will allow X to be an arbitrary co-topos, as defined in [9].
Though the additional generality makes little difference in practice (see Theorem 2.3.13), it is quite
convenient in setting up the foundations of the theory.

(¢) The structure sheaves Oy that we consider will not take values in the category of ordinary commutative
rings, but instead the oo-category SCR of simplicial commutative rings (see Definition 4.1.1) or some
other variation, such as the oo-category of E o-rings.

We will begin in §1 by introducing the definition of a geometry. Given a geometry § and an oco-topos X,
there is an associated theory of G-structures on X. We can think of a G-structure on X as a sheaf on X with
some additional structures, whose exact nature depends on the choice of geometry G. If X is an oo-topos
and Oy a G-structure on X, then we will refer to the pair (X, Ox) as a G-structured co-topos: these will play
the role of locally ringed spaces in our formalism.

To any G-structured oo-topos (X, Ox), we can associate its global sections I'(X,Ox) € Ind(G°"). In §2,
we will prove that the functor

(DC, Ox) — F(DC, Ox)

admits a right adjoint, which we denote by Spec’. We will say that a G-structured oo-topos (X, Oy) is
an affine G-scheme if it belongs to the essential image of Specg. More generally, we say that (X, Ox) is a
G-scheme if it is equivalent to an affine G-scheme, locally on X.

By construction, our theory of G-schemes bears a formal analogy to the usual theory of schemes. In §2.5
and §2.6 will show that this analogy can be extended to a dictionary. Namely, for an appropriate choice
for the geometry G (and after restricting the class of co-topoi that we consider), our theory of G-schemes
reduces to the usual theory of schemes. By varying G, we can recover other classical notions as well, such as
the theory of Deligne-Mumford stacks.

Of course, our primary goal is to develop a language for describing the derived algebraic geometry sketched
in the introduction. To describe the passage from classical to derived algebraic geometry, we will introduce
in §3 the notion of a pregeometry T. To every pregeometry T and every 0 < n < oo, we can associate a
geometry G which we call the n-truncated geometric envelope of T. We then refer to §-schemes as n-truncated
T-schemes. We will consider some examples in §4; in particular, we will describe a pregeometry Tz,, whose
scheme theory interpolates between classical algebraic geometry (associated to n = 0) and derived algebraic
geometry (associated to n = o).

The theory of derived algebraic geometry presented here is not new. For another very general foundational
approach (of a rather different flavor from ours), we refer the reader to [19] and [20].

Notation and Terminology

For an introduction to the language of higher category theory (from the point of view taken in this paper),
we refer the reader to [9] and [10]. For convenience, we will adopt the following reference conventions:

(T") We will indicate references to [9] using the letter T.

(A) We will indicate references to [10] using the letter A.



For example, Theorem T.6.1.0.6 refers to Theorem 6.1.0.6 of [9].

If @ and D are oo-categories which admit finite limits, we let Fun'® (€, D) denote the full subcategory
of Fun(C, D) spanned by those functor which are left exzact: that is, those functors which preserve finite
limits. If instead € and D admits finite colimits, we let Fun'(€, D) = Fun'*(C°", D°?)°? denote the full
subcategory of Fun(C, D) spanned by the right ezact functors: that is, those functors which preserve finite
colimits.

If € is a small co-category, we let Pro(€) denote the co-category Ind(C°?)°P. We will refer to Pro(C) as
the oco-category of pro-objects of €. We will view Pro(C) as a full subcategory of Fun(@, §)°P. If C admits
finite limits, then this identification reduces to an equality Pro(€) = Fun'®*(€, 8)??. Note that the Yoneda
embedding j : € — P(C) determines functors

Ind(€) + € — Pro(C);

we will abuse terminology by referring to either of these functors also as the Yoneda embedding.

For every small co-category C, the co-category Ind(C) admits small filtered colimits, and the co-category
Pro(€) admits small filtered limits. According to Proposition T.5.3.5.10, the co-categories Ind(€) and Pro(C)
can be characterized by the following universal properties:

(a) Let D be an oo-category which admits small filtered colimits, and let Fun’(Ind(C), D) denote the full
subcategory of Fun(Ind(€), D) spanned by those functors which preserve small filtered colimits. Then
composition with the Yoneda embedding induces an equivalence

Fun’(Ind(€), D) — Fun(€, D).

(b) Let D be an oo-category which admits small filtered limits, and let Fun’(Pro(C), D) denote the full
subcategory of Fun(Pro(€), D) spanned by those functors which preserve small filtered limits. Then
composition with the Yoneda embedding induces an equivalence

Fun’(Pro(€), D) — Fun(€, D).

These properties characterize Ind(€) and Pro(€) up to equivalence. If we assume only that C is essentially
small, then there still exists a maps
¢ «—ec—ce

satisfying the analogues (a) and (b) (where € admits small filtered colimits and €” admits small filtered
limits). We will then abuse notation by writing ¢’ = Ind(C) and €” = Pro(€) (so that Ind-objects and
Pro-objects are defined for all essentially small co-categories). (It is not difficult to extend this definition to
oo-categories which are not assumed to be essentially small, but we will refrain from doing so.)

We will say that a functor f: € — D between oco-categories is left cofinal if, for every object D € D, the
oo-category € xp Dp, is weakly contractible (in [9], we referred to a functor with this property as cofinal;
see Theorem T.4.1.3.1). We will say that f is right cofinal if the induced map C°” — D? is left cofinal, so
that f is right cofinal if and only if the co-category € xp D, p is weakly contractible for each D € D.

1 Structure Sheaves

Let X be a topological space. Our goal in this section is to develop a general theory of “sheaves with
structure” F on X (or, more generally, on any oco-topos X). With an eye towards future applications, we
would like to be as open-minded as possible regarding the exact nature of this structure. For example, we
want to include as a possibility each of the following examples:

(a) The space X is the underlying topological space of a scheme and F = O is the structure sheaf of X
(taking values in the category of commutative rings).



(b) The space X is the underlying topological space of a scheme and F is a quasi-coherent sheaf of O x-
modules on X.

(¢) The space X is the underlying topological space of a scheme and F is an object of the derived category
of quasi-coherent sheaves on X: this can be regarded as a sheaf on X taking values in a suitable
oo-category of module spectra.

(d) The “space” X is the underlying étale topos of a Deligne-Mumford stack, and the sheaf F is of a nature
described by (a), (b), or (c).

(e) The space X is a smooth manifold, and F is the sheaf of smooth real-valued functions on X. Then
F is a sheaf of commutative rings, but also has additional structure: for example, any smooth map
f : R — R induces, by composition, a map from F to itself.

(f) The space X is the underlying topological space of a derived scheme, and F = Ox is the structure
sheaf of X (taking values in the oo-category of simplicial commutative rings).

We begin in §1.1 by studying the co-category Shve (X ), where C is an arbitrary co-category. We can define
Shve(X) as a full subcategory of the co-category of C-valued presheaves on X: namely, the full subcategory
spanned by those objects which satisfy a suitable descent condition. Here it becomes extremely convenient
to work with oo-topoi, rather than with topological spaces: if X is an co-topos, then we can formulate the
descent condition simply by saying that we have a functor X°? — € which preserves small limits.

The theory of §1.1 can be used to provide a perfectly adequate theory of ringed spaces (or, more generally,
ringed co-topot). However, in classical algebraic geometry, a more prominent role is played by the theory of
locally ringed spaces: that is, ringed spaces (X, Ox) for which the stalk O , is a local ring, for every point
x € X. To formulate an analogous locality condition on the oco-category of C-valued sheaves, we need some
additional structure on C. In §1.2 we introduce a formalism for describing this additional structure, using
the language of geometries. Roughly speaking, a geometry G is a small co-category with some additional
data, which will enable us to develop a good theory of local Ind(G°P)-valued sheaves on an arbitrary space
(or co-topos) X. We will refer to these local sheaves as G-structures on X; they can be organized into an
oo-category which we denote by Strg(X).

The category RingSpace!®® of locally ringed spaces is not a full subcategory of the RingSpace category
of ringed spaces: a morphism f : (X,0x) — (Y,0y) in RingSpace between objects of RingSpace!°® is a
morphism of RingSpace!®® only if, for every point z, the induced map on stalks Ov,f(z) — Ox,¢ is a local
homomorphism. To describe the situation in more detail, it is convenient to introduce a bit of terminology.
Let us say that a map of commutative rings 8 : B — C'is local if « carries noninvertible elements of B to
noninvertible elements of C'. At the other extreme, we can consider the class of localizing homomorphisms
a: A — B: that is, homomorphisms which induce an isomorphism A[S™!] ~ B, where S is some collection
of elements of A. An arbitrary ring homomorphism v : A — C admits an essentially unique factorization

A8 B

where « is localizing and 3 is local: namely, we can take B = A[S~!], where S is the collection of all elements
a € A such that v(a) is invertible in C. We can summarize the situation by saying that the collections of
local and localizing morphisms form a factorization system on the category of commutative rings. In fact,
this is a general phenomenon: in §1.3, we will see that if G is a geometry and X is an co-topos, then there is a
canonical factorization system on the oco-category Strg(X) of G-structures on X, which depends functorially
on X.

For every geometry G, there exists a universal example of a G-structure. More precisely, in §1.4 we will
prove that there exists an oco-topos K and a G-structure on X with the following universal property: for
every oo-topos X, the co-category Strg(X) of G-structures on X is (canonically) equivalent to the oo-category
Fun*(X,X) of geometric morphisms from X to X. It follows that the entire theory of G-structures can
be reformulated in terms of X, without ever making direct reference to §; in particular, the factorization



systems on Strg(X) determine some additional structure on X, which we refer to as a geometric structure.
This suggests the possibility of developing a still more general theory of “structure sheaves”, based on co-
topoi with geometric structure rather than on geometries. This additional generality costs us little so long
as we confine our study to very formal aspects of the theory of G-structures, which we consider in §1.5.
However, it does not seem to interact well with the scheme theory of §2, so our attention in this paper will
remain primarily focused on the theory of geometries.

1.1 C-Valued Sheaves

Let us begin by reviewing the classical notion of a sheaf of commutative rings on a topological space X.
Let CRing denote the category of commutative rings, and let Shvgei(X) denote the (ordinary) category of
sheaves of sets on X. A sheaf of commutative rings Ox on X can be defined in many different ways:

(a) We can view Ox as a sheaf on X taking values in the category of commutative rings. From this point
of view, Ox is a functor U(X)°? — CRing, which satisfies the usual sheaf axioms; here U(X) denotes
the partially ordered set of open subsets of X.

(b) A sheaf of commutative rings O x on X can be evaluated not only on open subsets of X, but on arbitrary
sheaves of sets I on X: namely, we can define Ox (J) to be the commutative ring Homgyy, (x)(F, Ox).
From this point of view, we can view Ox as representing a functor S8hvse;(X)°? — CRing. The
advantage of this point of view, when compared with (a), is that the sheaf axiom is easier to state: it
merely asserts that the functor Ox carries colimits in Shvget(X) to limits in CRing.

(¢) Another point of view is to consider Ox as a single object in the category Shvgei(X) of sheaves
of sets on X, equipped with some additional structure: namely, addition and multiplication maps
Ox x Ox — Ox that satisfy the usual axioms defining the notion of a commutative ring. In other
words, Ox is a commutative ring object in the category Shvgei(X).

(d) Given a commutative ring object Ox in Shvge;(X), we can define a functor F : CRing” — Shvge(X)
as follows. For every commutative ring R, we let F(R) denote the “sheaf of maps from R to Ox”.
More precisely, for every open subset U C X, we let F(R)(U) denote the set of ring homomorphisms
Homcring (R, Ox(U)). It is clear that F(R)(U) depends functorially on R and U, and defines a functor
F : CRing® — 8hvge;(X) as indicated above. By construction, F' carries colimits of commutative
rings to limits in the category Shvget(X).

The functor F' determines the sheaf Ox, together with its ring structure. For example, we have a
canonical isomorphism (as sheaves of sets) Ox ~ F(Z[z]). More generally, F(Z[x1,...,x,]) can be
identified with the nth power O%. We recover the commutative ring structure Ox using the fact that
F is a functor; for example, the multiplication map Ox x Ox — Ox is obtained by applying F' to the
ring homomorphism

Z[l‘] — Z[.Tl,xz]

T+ T1T2.

Consequently, we can define a sheaf of commutative rings on X to be a limit-preserving functor
CRing” — Shvget(X).

(e) In the preceding discussion, we did not need to use the entire category of commutative rings; we can
recover the ring structure on Ox knowing only the restriction of the functor F' to the category of
finitely generated commutative rings (in fact, it is sufficient to use polynomial rings; we will exploit this
observation in §4). Let CRing™ denote the category of finitely generated commutative rings (these are
the same as finitely presented commutative rings, since the ring Z is Noetherian). We can then define
a sheaf of commutative rings on X to be a functor F' : (CRing™)?% — Shvset(X) which preserves
finite limits. The equivalence of this definition with (b) follows from the equivalence of categories
CRing ~ Ind(CRing™).



(f) We can identify CRing™ with the opposite of the category A of affine schemes of finite type over
Z. By abstract nonsense, any functor F' : A — Shvge(X) can be extended uniquely (up to unique
isomorphism) to a colimit-preserving functor 7* : P(A) — Shvge (X ), where P(A) denotes the category
of presheaves of sets on A. Moreover, 7* preserves finite limits if and only if F' preserves finite limits.
In view of (e), we obtain yet another definition of a sheaf of commutative rings on X: namely, a functor
P(A) — Shvget(X) which preserves small colimits and finite limits.

(g) In the situation of (f), the functor 7* admits a right adjoint 7, and the adjunction

?(A):ﬁsmsm (X)
is a geometric morphism of topoi from Shvget(X) to P(A). We can summarize the situation as follows:

the topos P(A) is a classifying topos for sheaves of commutative rings. For any topological space X,

sheaves of commutative rings on X can be identified with geometric morphisms from Shvget(X) to
P(A).

These definitions are all equivalent to one another, but are not always equally useful in practice. Our
goal in this section is to adapt some of the above picture to an oo-categorical setting: we will replace
the topological space X by an oo-topos, and the category CRing of commutative rings with an arbitrary
compactly generated oco-category. We will focus on the analogues of the equivalences of (a) through (e),
reserving the discussion of definitions (f) and (g) for §1.4. We begin with a review of some definitions from

[9].

Notation 1.1.1. Let € and D be co-categories. We let Fun™ (@, D) denote the full subcategory of Fun(€, D)
spanned by those functors which admit right adjoints, and Fun™(€, D) C Fun(@, D) the full subcategory
spanned by those functors which admit left adjoints. In view of Proposition T.5.2.6.2, the formation of
adjoint functors gives rise to an equivalence

Fun®(€, D) ~ Fun™(D, €)°P,
which is well-defined up to homotopy.

Remark 1.1.2. Let € and D be co-categories. Using the evident isomorphism
Fun®(€%, D) ~ Fun"(C, D7)P,

we can formulate the equivalence of Notation 1.1.1 in the following more symmetric form:
Fun®(€%?, D) ~ Fun® (D", @).

Definition 1.1.3. Let € be an arbitrary co-category, and let X be an oo-topos. A C-valued sheaf on X is
a functor X’ — € which preserves small limits. We let Shve(X) denote the full subcategory of Fun(X, C)
spanned by the C-valued sheaves on X.

Remark 1.1.4. Let € and D be presentable co-categories. Using Corollary T.5.5.2.9 and Remark T.5.5.2.10,
we deduce that a functor D’ — € admits a left adjoint if and only if it preserves small limits. Consequently,
for every oo-topos X, we have Shve(X) = Fun™ (X, @).

Remark 1.1.5. Let C be a presentable co-category and X an oo-topos. Then Shve(X) can be identified
with the tensor product € ® X constructed in §A.6.3.1. In particular, C® X is a presentable co-category.

Remark 1.1.6. Let G be a small co-category which admits finite limits, and let j : § — Pro(G) denote the
Yoneda embedding.
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Let X be an co-topos. Using Remark 1.1.4, Proposition T.5.5.1.9, and Proposition T.5.3.5.10, we deduce
that composition with j induces an equivalence of co-categories

Fun®™(Pro(9), X) — Fun'®*(g, X).
Combining this observation with Remark 1.1.2, we obtain a canonical equivalence
Fun'™ (G, X) ~ Fun™(X°?, Ind(§%)) = Shvipager) (X).

Remark 1.1.7. Let § be a small co-category which admits finite limits and let X an oo-topos. The oo-
categories Shvyyg(gor)(X) and Funlex(g, X) are canonically equivalent. Objects of either oo-category can be
viewed as describing sheaves I on X with values in Ind(G°?), but from different points of view. If we regard
F as an object of Shvlnd(gop)(f)C), then we are emphasizing the idea that F can be evaluated on the “opens”
U € X, to obtain objects of Ind(§°”). On the other hand, if we view F as an object of Fun'®(§, X), then
we are emphasizing the idea that F can be viewed as an object (or several objects) of X, perhaps equipped
with some additional structures.

Remark 1.1.8. Let G be a small co-category which admits finite limits and let € = Ind(§°?). Remark 1.1.7
implies that for a fized oo-topos X, the co-category Fun'™(G,X) is equivalent to Shve(X). However, the
first description is more evidently functorial in X. To see this, let us suppose that we are given a geometric
morphism

X=——=Y

of oco-topoi. Composition with 7* induces a map Shve(Y) — Shve(X), and composition with 7, induces a
functor Fun'®(g,Y) — Fun'®(G, X). We can view either of these operations as encoding the pushforward of
C-valued sheaves. We observe that the diagram

Shve(Y) —2— Shve(X)

- -

Fun'®*(9, Y) —> Fun'®*(§, X)

commutes up to (canonical) homotopy. The bottom horizontal map admits a left adjoint Fun'®*(g,X) —
Fun'®(G,Y), given by composition with the functor 7*. We will generally abuse notation by denoting this
functor by 7*; we will refer to it informally as given by pullback of G-structures. It is not so easy to
describe this left adjoint directly in terms of 8hve(X) and Shve(Y). For example, the pushforward operation
S8hve(Y) — Shve(X) can be defined for any co-category € (that is, we need not assume that € is compactly
generated), but generally does not admit a left adjoint.

We can regard Remark 1.1.7 as an co-categorical analogue of the equivalence between the definitions (b)
and (e) appearing earlier in this section (and the proof shows that both are equivalent to an co-categorical
analogue of (d)). We close this section by discussing the relationship between (a) and (b). For this, we need
to introduce a bit of notation.

Definition 1.1.9. Let T be an essentially small co-category equipped with a Grothendieck topology, and
C another co-category. We will say that a functor O : T — @ is a C-valued sheaf on T if the following
condition is satisfied: for every object X € T and every covering sieve ‘3'9 x € J/x, the composite map

(T90)C (T)x) =T & eor

is a colimit diagram in C°?. We let Shve(T) denote the full subcategory of Fun(T°?, €) spanned by the
C-valued sheaves on 7.
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Notation 1.1.10. If X is a topological space, then we let Shve(X) denote the co-category Shve(U(X)),
where U(X) is the nerve of the partially ordered set of open subsets of X, endowed with its usual Grothendieck
topology.

Example 1.1.11. Let T be a small co-category equipped with a Grothendieck topology, and let § denote the
oo-category of spaces. Then the oo-categories Shv(T) (Definition T.6.2.2.6) and Shvg(T) (Definition 1.1.9)
coincide (as full subcategories of P(7T)).

The notation and terminology of Definition 1.1.9 are potentially in conflict with the notation and ter-
minology of Definition 1.1.3. However, little confusion should arise in view of the following compatibility
result:

Proposition 1.1.12. Let T be a small co-category equipped with a Grothendieck topology. Let j : T — P(T)
denote the Yoneda embedding and L : P(T) — S8hv(T) a left adjoint to the inclusion. Let C be an arbitrary
oo-category which admits small limits. Then composition with L o j induces an equivalence of co-categories

Shve(Shv(T)) — Shve(T).
Proof. According to Theorem T.5.1.5.6, composition with j induces an equivalence of co-categories
Fung(P(T)°P, €) — Fun(T°?, @),

where Fung(P(7)°P, C) denotes the full subcategory of Fun(P(T)°P, €) spanned by those functors which pre-
serve small limits. According to Proposition T.5.5.4.20, composition with L induces a fully faithful embedding
Shve(8hv(T)) — Fung(P(7)°P, C). The essential image of this embedding consists of those limit-preserving
functors F' : P(T)°? — € such that, for every X € T and every covering sieve ‘J’? x € 7/x, the induced map
F(jX) — F(Y) is an equivalence in ©, where Y is the subobject of jX corresponding to the sieve ‘J'? x-
Unwinding the definitions, this translates into the condition that the composition

(T9%)° € (T)x)” =T L 2T) 5 er
is a colimit diagram. It follows that the composition
Shve (8hv(T)) — Fung(P(7)°?, €) — Fun(T°?, C)

is fully faithful, and its essential image is the full subcategory Shve(T). O

1.2 Geometries

Let X be a topological space. If Ox is a sheaf of commutative rings on X, then it makes sense to ask if
Ox is local: that is, if each stalk Ox , is a local commutative ring. Suppose instead that Ox takes values in
some other category (or co-category) C: is there an analogous condition of locality that we can impose? Of
course, the answer to this question depends on €. We might formulate the question better as follows: what
features of the category CRing are required for introducing the subcategory of local CRing-valued sheaves
on X7

We first observe that CRing is compactly generated; as we saw in §1.1, this allows us to think of a CRing-
valued sheaf on X as a functor A — Shvge(X), where A = (CRing™)P is the category of affine schemes
of finite type over Z. We can now reformulate our question once again: what features of the category A are
required to define the notion of a local CRing-valued sheaf? Our answer to this question is that A (or rather
its nerve) has the structure of a geometry, in the sense of Definition 1.2.5 (see Example 1.2.13). The goal
of this section is to introduce the definition of a geometry G and describe the associated theory of (local)
Ind(G°7)-valued sheaves. We begin with some preliminaries.

Definition 1.2.1. Let G be an oco-category. An admissibility structure on G consists of the following data:

12



(1) A subcategory g ¢ G, containing every object of §. Morphisms of § which belong to G will be
called admissible morphisms in G.

(2) A Grothendieck topology on G, which is generated by admissible morphisms in the following sense: let
952 cg /X be a covering sieve on an object X € G. Then 95(2 contains a covering sieve which is

generated by a collection of admisisble morphisms {U, — X}.
These data are required to satisfy the following conditions:

(i) Let f: U — X be an admissible morphism in G, and g : X’ — X any morphism. Then there exists a
pullback diagram

U——=U
b
X 2o x,
where f’ is admissible.
(i) Suppose given a commutative triangle
Y
N
h

X A

in G, where g and h are admissible. Then f is admissible.
(#i1) Every retract of an admissible morphism of G is admissible.

Remark 1.2.2. Let G be an oo-category endowed with an admissibility structure G2 C 6. In view of part
(i) of Definition 1.2.1, for every object X € G, we can identify 97% with the full subcategory of §,x spanned
by the admissible morphisms U — X.

Remark 1.2.3. Let G be an co-category equipped with an admissibility structure. It follows from condition
(#4) of Definition 1.2.1 that any section of an admissible morphism is again admissible. In particular, if
U — X is admissible, then the diagonal map § : U — U X x U is a section of the projection onto the first
factor, so that ¢ is again admissible.

Remark 1.2.4. Let § be an co-category. Every admissibility structure G C § determines a Grothendieck
topology on gad. namely, the collection all of sieves on objects X € G which generate covering sieves
in §. Our condition that every covering sieve in G be generated by admissible morphisms guarantees that
the topology on G is generated by the topology on gad, Consequently, we can formulate Definition 1.2.1 by
requiring instead that 6% he equipped with a Grothendieck topology. However, in this case we need to add
an additional assumption: namely, we must assume that if f : X — Y is a morphism in § (not necessarily
admissible) and that if (Qad)%), - 9‘7‘31, is a covering sieve, then the pullback f*(Qad)gog - 9‘7‘;{ is a covering

sieve on X (this pullback is well-behaved, by virtue of assumption (4)).

Definition 1.2.5. A geometry consists of the following data:
(1) An essentially small co-category G which admits finite limits and is idempotent complete.
(2) An admissibility structure on G.

We will generally abuse terminology by identifying a geometry with its underlying co-category §.
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Definition 1.2.6. Let G and G’ be geometries. We will say that a functor f : G — G is a transformation of
geometries if the following conditions are satisfied:

(1) The functor f preserves finite limits.
(2) The functor f carries admissible morphisms of § to admissible morphisms of §'.

(3) For every admissible cover {U, — X} of an object X € G, the collection of morphisms { f(U,) — f(X)}
is an admissible cover of f(X) € §'.

Remark 1.2.7. Let G be an idempotent complete co-category which admits finite limits. We will say that
an admissibility structure G on § is a refinement of another admissibility structure > on G if the identity
functor idg is a transformation of geometries (G, Sad/) — (5,6 In this case, we will also say that G* is
finer than Sad/ or that Sad/ is coarser than G*9.

Given any collection S of morphisms of G, and any collection T of sets of morphisms {f, : Uy, — X}
belonging to S, there is a coarsest admissibility structure on G such that every element of S is admissible, and
every element of T generates a covering sieve. We will refer to this admissibility structure as the admissibility
structure generated by S and T.

As a special case, suppose that G is a geometry, §’ another idempotent complete co-category which admits
finite limits, and that f : § — G’ is a functor which preserves finite limits. Then there exists a coarsest
admissibility structure on G’ such that f is a transformation of geometries. We will refer to this admissibility
structure on G as the admissibility structure generated by f.

Definition 1.2.8. Let § be a geometry and X an oo-topos. A §G-structure on X is a left exact functor
0 : § — X with the following property: for every collection of admissible morphisms {U, — X} in § which
generates a covering sieve on X, the induced map [[, O(U,) — O(X) is an effective epimorphism in X. We
let Strg(X) denote the full subcategory of Fun(G, X) spanned by the G-structures on X.

Given a pair of G-structures ©,0" : G — X, we will say that a natural transformation o : O — O’ is a
local transformation G-structures if, for every admissible morphism U — X in G, the induced diagram

OU) ——=0'(U)

|

0(X) —=0'(X)

loc

is a pullback square in X. We let Strg(X) denote the subcategory of Strg(X) spanned by the local trans-
formations of G-structures.

Remark 1.2.9. Let G be a geometry, X an oco-topos, and O : § — X a functor. The condition that O define
a G-structure on X can be tested “stalkwise”, in the following sense. Suppose that X has enough points (see
Remark T.6.5.4.7). Then O is a G-structure on X if and only if, for every point z* : X — 8§, the “stalk”
Oy = 2% 00 is a G-structure on 8.

Similarly, if X has enough points, then a morphism « : O — O in Strg(X) belongs to Strlgoc(X) if and
only if, for every point z* : X — 8, the induced map on stalks a, : O, — O, belongs to Strlé’c(S).
Definition 1.2.10. We will say that a geometry G is discrete if the following conditions are satisfied:

(1) The admissible morphisms in G are precisely the equivalences.

(2) The Grothendieck topology on § is trivial: that is, a sieve 9(/) x € §/x on an object X € G is a covering
sieve if and only if 99}( =9,x.

Remark 1.2.11. Let § be an essentially small co-category which admits finite limits. Then requirements
(1) and (2) of Definition 1.2.10 endow § with the structure of a (discrete) geometry.
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Remark 1.2.12. If G is a discrete geometry and X is an oo-topos, then we have equivalences
Str§(X) = Strg(X) = Fun'® (g, X) ~ 8hvyya(ger) (X).

In other words, the theory of G-structures is equivalent to the theory of Ind(G°?)-valued sheaves studied in
§1.1.

Example 1.2.13. Let CRingﬁ“ denote the category of all finitely generated commutative rings. Let Gz, =
N(CRing™)°? be the opposite of the nerve of CRing™; we can identify Gy, with the (co)-category of affine
schemes of finite type over Z. To emphasize this identification, for every finitely generated commutative
ring A, we let Spec A denote the associated object of Gyz,.. We regard Gy,, as a geometry via the following
prescription:

(1) A morphism Spec A — Spec B is admissible if and only if it induces an isomorphism B [%] — A, for
some element b € B.

(2) A collection of admissible morphisms {Spec A[-1] — Spec A} generates a covering sieve on Spec A if
and only if it is a covering in the sense of classical algebraic geometry: in other words, if and only if
the set {as} C A generates the unit ideal in A.

If X is a topological space and X = 8hv(X) is the oco-category of sheaves (of spaces) on X, then we can
identify Gy,-structures on X with sheaves of commutative rings O on the topological space X which are local
in the sense that for every point € X, the stalk O, is a local commutative ring (Remark 2.5.12). More
generally, we can think of a Gyg,,-structure on an arbitrary co-topos X as a sheaf of local commutative rings
on X. We will study this example in more detail in §2.5.

Example 1.2.13 is the prototype which motivates the theory of geometries that we will develop in this
section. Although we will meet many other examples of geometries in this and subsequent papers, we will
primarily be interested in mild variations on Example 1.2.13.

We will devote the remainder of this section to the proof of a rather technical result concerning admissi-
bility structures which will be needed later in this paper.

Proposition 1.2.14. Let T — Al be an (essentially small) correspondence between co-categories To =
T xa1{0} to T3 = T xa1{1l}. Assume that Ty and T are equipped with admissibility structures, and that T
satisfies the following conditions:

(i) For every admissible morphism uy : Uy — X; in Tq, every object Xo € Ty, and every morphism
Xo — X1 in T, there exists a pullback diagram

Up ——U;

L
Xo —— X1,

in M, where ug is an admissible morphism in Tg.

(#3) Let {U, — X1} be a collection of admissible morphisms in Ty which generates a covering sieve on
X1, and let Xg — X1 be an arbitrary morphism in T, where Xg € Tg. Then the induced maps
{Ua xx, Xo = Xo} generate a covering sieve on Xg.

Let X be an oo-topos. We will say that a functor O : T; — X is local if the following conditions are
satisfied:
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(a) For every pullback diagram
U——=U
X —=X

in T; such that the vertical morphisms are admissible, the induced diagram
oU’) ——0(U)
O(X") ——= 0(X)

is a pullback square in X.

(b) For every collection of morphisms {Uy — X} in T; which generates a covering sieve on X, the induced
map

[Towa) — ox)
is an effective epimorphism in X.

We will say that a natural transformation o : O — O of local functors 9,0 : T; — X is local if the
following condition is satisfied:

(¢) For every admissible morphism U — X in T;, the induced diagram

OU) —— 0'(U)

0(X) —= 0'(X)
s a pullback square in X.

Then:

(1) Let F: Fun(Jo,X) — Fun(T1,X) be the functor defined by left Kan extension along T. Then F carries
local objects of Fun(Ty, X) to local objects of Fun(T7,X).

(2) The functor F carries local morphisms between local objects of Fun(Ty,X) to local morphisms of

Fun(77, X).

(3) Let O : T — X be a functor such that the restrictions Og = O[Ty, O1 = O|Ty are local. Then O
induces a local transformation F(OQg) — O1 if and only if the following condition is satisfied:

(%) For every pullback diagram
Uo I U1

|

Xo—— X

in T of the type appearing in (i), the induced diagram

O(Up) — O0(th)

.

0(Xo) — 0(X1)
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s a pullback square in X.

The proof of Proposition 1.2.14 is elementary but somewhat tedious. We first establish the following
lemma:

Lemma 1.2.15. Let X be an co-topos, C a small co-category, and o : F — F' a natural transformation
between functors F,F : © — X. Suppose that, for every morphism C — D in C, the induced diagram

F) 2Ly
J/ a(D) /l

is a pullback square. Then:
(1) For every object C € C, the diagram

F(0) 2= 7(C)

colim F —— colim F’
is a pullback diagram in X.

(2) Suppose given a diagram o :

colim F — colim F’

L

X—X

in X such that for each C' € C, the induced diagram
F(C) ——=F(C)
X—X
is a pullback square. Then o is a pullback square.

Proof. Assertion (1) follows immediately from the characterization of co-topoi given in Theorem T.6.1.3.9.
To prove (2), we observe that for each C' € € we have a commutative diagram

F(C) F(C)

! !

(colim F’) x x+ X — colim F’

| |

X— X

The lower and outer squares are pullback diagrams, so the upper square is a pullback diagram as well.
Passing to the colimit over C' (and using the fact that colimits in X are universal), we conclude that that the
canonical map colim F — (colim 3”) x x» X is an equivalence, so that o is a pullback diagram as desired. [
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Proof of Proposition 1.2.14. We first prove (1). Given a functor Qg : Tg — X, the functor F(Qg) can be
obtained by first choosing a functor O : T — X which is a left Kan extension of Og = O | Ty, and then setting
F(Q¢) = 0| T1. Let us therefore suppose that O satisfies the following condition:

(*) The functor O : T — X is a left Kan extension of Qg = O | Ty, and Oy is local on X.

We wish to show that, in this case, 01 = O | T7 is a T;-structure on X. We must verify that two conditions
are met:

e The functor Oy preserves pullbacks by admissible morphisms. As a first step, we establish that O has
the following property:

(+') Suppose given a pullback diagram
UO e U1

b

in T as in (¢). Then the associated diagram

O(Up) — O(Uh)

L

0(Xo) — 0(X1)
is a pullback square in X.

To prove (%), we let ¢ : ‘J'(/)X1 — iTéUl be the functor given by pullback along u. Let f denote the
composition

T T, 8 x
and f’ the composition
TV ST, 28X

The functor Oy determines a Cartesian transformation f’ o ¢ — f in the oo-category Fun(‘J'(/)Xl,f)C).
We have a commutative diagram

’

O(Up) — colim(f’ 0 ¢) —2— colim(f') —— O(U})

l i l

0(Xo) —— colim(f) v O(X1).

Lemma 1.2.15 implies that the left square is a pullback. It will therefore suffice to show that 3, 5,
and " are equivalences. For 5’ and ", this follows immediately from assumption (x). To show that
B is an equivalence, it will suffice to show that ¢ is left cofinal. This follows from the observation that
¢ admits a left adjoint, given by composition with w.
Now consider a pullback diagram

U1 O U{

|

X1 HX{
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in T7, where the vertical maps are admissible. Let f, f/, and ¢ be as above, so that we have a
commutative diagram

colim(f’ o ¢) —= O, (Uy) —= O1(U})
| |
colim(f) ——— 01(X1) — 01(X7).

We wish to show that the right square is a pullback. Since the left horizontal arrows are equivalences,
it will suffice to show that the outer square is a pullback. By Lemma 1.2.15, it will suffice to show that
for every Xy € Ty and every map Xy — X; in 7, the induced diagram

0(Xo xx, Ur) — O(U7y)

l i

0(Xo) — 0(X7)

is a pullback square in X, which follows immediately from («').

e Let {U, — X1} be an admissible covering of an object X; € T7. We wish to show that the induced
map [[, O(Us) — O(X1) is an effective epimorphism in X. Let f : ‘T(/JXI — X be as above, so that
O(X1) =~ colim(f). It will therefore suffice to show that, for every object Xy € Ty and every map
Xo — X; in 7, the induced map

u: [JOU) xox,) 0(X0)) — 0(Xo)

is an effective epimorphism. For each «, set V,, = U, xx, Xo. In view of (+'), we can identify the
left hand side with ], Oo(V,). Since Qg is local and and the maps {V,, — X} form an admissible
covering (by (#7)), the map w is an effective epimorphism as desired.

We now prove (3). Let O : T — X satisfy the hypotheses of (3). Set Og = O| Ty, and let 0" : T — X be a
left Kan extension of Og, so that O] = 0" | Ty ~ F(Op) is local by virtue of (1). The identity transformation
from O to itself extends, in an essentially unique fashion, to a natural transformation 8 : 0" — 0. We wish
to show:

(3') If B induces a local map £; : O] — Oy, then for every pullback diagram

Up ——U;

|

Xo—= Xy
as in (i), the outer square in the diagram

0o(Up) —— 01 (U1) —— 01(U)

L

09(Xo) — 01 (X1) — 01(X1)

is a pullback diagram. To prove this, we observe that the left square is a pullback by ('), and the
right square by our hypothesis that §; is local.
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(3") Suppose that, for every pullback diagram

Up ——U;

|

Xo —= X

as in (i), the induced diagram
O(Uo) —_— Ol(Ul)

|
0(Xo) — 0(X1)

is a pullback square in X. We wish to prove that (; is local. Fix an admissible morphism U; — X7 in
T1, and let f: ‘J'(/)X1 - X, f: 'J'éUl — X, and ¢ : ‘J'(/)Xl — ‘J'éUl be defined as above, so that we have a
commutative diagram

colim(f’ o ¢) —= O'(Uy) —= O(Uy)
colim(f) ——— 0’ (X;) — O(X3).

Since the left horizontal arrows are equivalences, it suffices to show that the outer square is a pullback.
This follows immediately from Lemma 1.2.15.

It remains to prove (2). Let a : Oy — Of be a local morphism between local objects of Fun(Ty,X).
We wish to prove that F(a) is a local morphism in Fun(T;,X). Let O,0" : 7o — X be left Kan extensions
of Oy and Oy, respectively, and let @ : O — O be an extension of « (which is uniquely determined up to
equivalence). We wish to show that @ induces a local map from O|T; to O’ |T;. By virtue of (3), it will
suffice to show that the outer square in the diagram

OO(UO) _— OB(U@) — O/(Ul)
00(Xo) — 0p(Xo) — Op(X1)

is a pullback square in X, whenever
UO - U1

|

X()HX]_

is as in the statement of (). The left square is a pullback diagram in virtue of the assumption that « is
local, and the right square is a pullback diagram by (x'). O

1.3 The Factorization System on Strg(X)
Let f: A — B be a homomorphism of commutative rings. Then f factors as a composition
Al A S B

where S is the collection of elements a € A such that f(a) € B is invertible, and f” is local in the sense
that it carries noninvertible elements of A[S~!] to noninvertible elements of B. This factorization is unique
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up to (unique) isomorphism and depends functorially on f, so that we obtain a factorization system on the
category CRing of commutative rings. More generally, if f : A — B is a map of sheaves of commutative
rings on a space X, then f admits an analogous factorization

ALal s
which reduces to the previous factorization after passing to stalks at any point z € X. Our goal in this
section is to show that there is an analogous factorization system on the oo-category Strg(X), where G is any
geometry and X any oco-topos (to recover the original situation, we can take G to be the geometry Gz, of

Example 1.2.13, and X to be the co-topos Shv(X) of sheaves of spaces on X). More precisely, we will prove
the following result:

Theorem 1.3.1. (1) Let G be a geometry, and X an oco-topos. Then there exists a factorization system
(S, 5%) on Strg(X), where Sk is the collection morphisms belonging to Strlé’c(f)C).

(2) The factorization system of (1) depends functorially on X. In other words, given any geometric mor-
phism of co-topoi m* : X — Y, composition with ©* induces a functor Strg(X) — Strg(Y) which carries
SX to SY and S¥ to SY.
Remark 1.3.2. Let G and X be as in Theorem 1.3.1, let o : O — O” be a natural transformation of
R L
G-structures on X with associated factorization 0" % O % 0" . Applying assertion (2) in the case where
7 : X — 8 gives a point x of X, we deduce that the induced transformation on stalks
O — 0, — 0O
is the associated factorization of ay : O}, — O in Strg(8) ~ Ind(G°?). If X has enough points, then the

converse to this assertion holds as well.

Remark 1.3.3. The functorial dependence of the factorization system (S, Sx) on the geometry G is more
subtle; we will return to this point in §2.1.

In order to prove Theorem 1.3.1, we will need a good understanding of the oo-category Pro(§) of pro-
objects of §. We begin by introducing some terminology.

Definition 1.3.4. Let G be a geometry, and let j : § — Pro(§G) denote the Yoneda embedding. We will
say that a morphism f : U — X in the oco-category Pro(9) is proadmissible if there exists a small filtered
diagram p : J — Fun(A',G) such that each p(I) is an admissible morphism of G, and f is a limit of the
composite diagram

75 Fun(Al, §) & Fun(Al, Pro(9)).
For each object X € Pro(9), we let Pro(9)§’_§?’adm denote the full subcategory spanned by the proadmissible
morphisms.
Remark 1.3.5. Let G be a geometry. The composition

Fun(A', §) x A' = G % Pro(9)

classifies a map Fun(Al,§) — Fun(Al,Pro(§)). Since Fun(Al,§) is idempotent complete, Proposition
T.5.3.5.15 implies that this map induces an equivalence of co-categories

¢ : Pro(Fun(A', §)) ~ Fun(A', Pro(9)).

Let Fun®! (A, G) denote the full subcategory of Fun(A',G) spanned by the admissible morphisms of §.
The inclusion of Fun®(A',§) into Fun(A', ) induces a fully faithful embedding Pro(Fun®!(Al,G)) —
Pro(Fun(A', G)). Composing with the equivalence ¢, we obtain a fully faithful embedding

Pro(Fun®(A!, §)) — Fun(A*, Pro(9)).

Unwinding the definitions, we see that the essential image of this functor can be identified with the full
subcategory spanned by the proadmissible morphisms of Pro(9).
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Remark 1.3.6. Let G be a geometry, and f : U — X a morphism in §. If j(f) is proadmissible, then j(f)
can be obtained as the colimit of some filtered diagram {j(f.)}, where each f, is an admissible morphism
in G. Since j(f) is a compact object of Fun(A!, Pro(§)), we conclude that j(f) is a retract of some j(f.),
so that f is a retract of f, and therefore admissible.

Remark 1.3.7. Let G be a geometry, and let X be an object of Pro(§). A morphism U — X is proadmissible
if and only if, as an object of Pro(§),x, U can be identified with a small filtered limit of morphisms U, — X
which fit into pullback diagrams

Ua X

. i)
JU,) —=3j

where j : § — Pro(G) denotes the Yoneda embedding and each f! is an admissible morphism of §.

(X",

Lemma 1.3.8. Let G be a geometry. Then the class of proadmissible morphisms of Pro(G) constitutes a
strongly saturated collection of morphisms of Pro(§)°P ~ Ind(G°?), which is of small generation.

Proof. Let FunP™*d™ (Al Pro(§)) denote the full subcategory of Fun(A', Pro(§)) spanned by the proad-
missible morphisms. The description of Remark 1.3.5 implies that FunP™ ™ (A! Pro(§)) is stable under
small limits, and generated under small limits by a small subcategory. Remark 1.3.7 shows that the class
of proadmissible morphisms is stable under pullbacks. It remains to show that the class of proadmissible
morphisms is stable under composition.

Choose proadmissible morphisms f: X — Y and g : Y — Z in Pro(§); we wish to show that go f is
proadmissible. In view of Remark 1.3.7, we may assume that f is a filtered limit of morphisms { f, : U, — Y},
where each f, is the pullback of an admissible morphism f/ in G. It suffices to show that each composition
g o fo is admissible. Replacing f by f,, we may assume that there exists a pullback diagram

f

X———Y
| b
HX) ZE (V)

where f’ is an admissible morphism of G.

Applying Remark 1.3.7 again, we may assume that g is the limit of a diagram of morphisms {gg : Vs —
Z}gep indexed by a filtered partially ordered set B, such that each gs is a pullback of some admissible
morphism g : Vi — Zj in §. Since j(Y') is a cocompact object of Pro(§), we may assume that h is

homotopic to a composition Y @ Vs, 7% 7 for some Bo € B. Tt follows that we can identify X with the
limit of the diagram {Vjs Xy j(X')}g>p,. It will therefore suffice to show that each of the composite maps

is proadmissible. Each of these composite maps is a pullback of j(hg), where hg : Vi x V' — Z; x X" is the
product of gg with f’. It follows that hg is admissible, as desired. O

Corollary 1.3.9. Suppose given a commutative diagram

Y
N
X—n" oz

in Pro(G), where g is proadmissible. Then [ is proadmissible if and only if h is proadmissible.
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Proof. Combine Lemma 1.3.8 with Corollary T.5.5.5.8. O
We are now ready to prove the Theorem 1.3.1 in the special case X = 8.

Proposition 1.3.10. Let G be a geometry. Then there exists a factorization system (Sp,Sgr) on the oco-
category Fun'®*(G,8) ~ Pro($)°P, where:

(1) A morphism of Fun'®(G,8) belongs to Sy, if and only if it is proadmissible, when viewed as a morphism
in Pro(9).

(2) A morphism a : O — O in Fun'®(S,8) belongs to Sg if and only if, for every admissible morphism
f:U— X in G, the diagram

is a pullback square in 8.

Proof. Let S denote the class of all morphisms in Fun'®(G, 8) of the form j(f), where f : U — X is an
admissible morphism of § and j : §% — Fun'®(G,8) denotes the Yoneda embedding. Using Lemma 1.3.8,
we deduce that Sy is the saturated class of morphisms of Fun'®(G,8) generated by S. It follows from
Proposition T.5.5.5.7 that (S, S7) form a factorization system on Fun'®(G,8). Since Sy is generated by
S under colimits, Proposition T.5.2.8.6 implies that S = S+. Finally, the equality S+ = Sg follows by
unwinding the definitions. O

The proof of Theorem 1.3.1 in general will require a few more lemmas.

Lemma 1.3.11. Let C be an co-category, C° C € a localization of €, and Y an object of Cy. Then G(/JY 18
a localization of €y . Moreover, a morphism f : X — X' in C/y exhibits X' as a G?Y—localization of X if
and only if f exhibits X' as a C°-localization of X in the oco-category C.

Proof. We first prove the “if” direction of the last assertion. Choose a morphism Y’ — Y in €, where
Y’ € €. We have a map of homotopy fiber sequences

Mape, (X', Y") —%> Mape , (X,Y")

l -

Mape(X',Y) LA Mape

(X
Mape (X', Y) —2 = Mape (X, Y).

Since the maps ¢’ and ¢ are homotopy equivalences, we conclude that ¢ is a homotopy equivalence as
desired.

We now show that G(/)Y is a localization of €,y. In view of Proposition T.5.2.7.8 and the above argument,
it will suffice to show that for every map h : X — Y, there exists a factorization



where f exhibits X’ as a @%-localization of X. The existence of f follows from Proposition T.5.2.7.8 (applied
to the oco-category C), and the ability to complete the diagram follows from the assumption that Y € e,
To complete the proof, we observe that any G(/)Y—localization X — X" must be equivalent to the morphism

X — X’ constructed above, so that X — X" also exhibits X" as a €’-localization of X. O

Lemma 1.3.12. Let C be an co-category equipped with a factorization system (Sp, Sgr), and let L : € — @ be
a localization functor such that LSr C Sg. Then the full subcategory L C C C admits a factorization system
(S7,,S%R), where:

(1) A morphism f' in L€ belongs to S7 if and only if f' is a retract of Lf, for some f € Sp.
(2) A morphism g in LC belongs to Sy if and only if g € Sg.

Proof. Clearly S} and S’ are stable under the formation of retracts. Let b : X — Z be a morphism in L C;
we wish to show that h factors as a composition

xLy %z
where ' € S} and ¢’ € S%. First, choose a factorization of h as a composition

xLy 4 g

Then Lf € S}, Lg € Sy, and h ~ Lh ~ Lgo Lf.
It remains to show that ' L ¢/, for f' € S, and ¢’ € S. Without loss of generality, we may suppose
f'=Lf for some f € Sr. Choose a commutative diagram

A——LA—>X
bk
B——LB——=Y.

We wish to show that the mapping space Mape, , iy (LB, X) is weakly contractible. We have a commutative
diagram of fiber sequences

¢
MapeLA//Y(LB,X) — MapeA//Y(B,X)

L,

¢
Map@/y(LB7X) - Mape/y(B7X)
i ¢// \L
Mape , (L4, X) —= Mape, (4, X).

Using Lemma 1.3.11, we deduce that ¢’ and ¢” are homotopy equivalences. It follows that ¢ is also a
homotopy equivalence. We are therefore reduced to proving that Mape , /Y(B, X) is contractible, which
follows from the orthogonality relation f 1 ¢'. O

Lemma 1.3.13. Suppose given a pair of adjoint functors

D .
G

Let (Sp,Sr) be a factorization system on €, and (S},S%) a factorization system on D. The following
conditions are equivalent:

24



(1) The functor F carries S, to ST.
(2) The functor G carries S% to Sg.
Proof. This follows immediately from Remark T.5.2.8.7 and Proposition T.5.2.8.11. O

=X =X
Proof of Theorem 1.3.1. We first show that there exists a factorization system (S} ,S%) on Fun'*(§,X),
characterized by the following condition:

(¥) The collection gz consists of those morphisms a : @ — O such that for every admissible morphism
U — X in G, the diagram

OU) ——= O'(U)

L

0(X) ——= O'(X).

If X = 8, this follows from Proposition 1.3.10. In the general case, we may assume without loss of
generality that X = L P(C), where C is a small co-category and L is a left exact localization functor from P(C)
to itself. Using Corollary T.5.2.8.18, we deduce that the co-category Fun'® (G, P(€)) ~ Fun(€°, Fun'*(G, 8))
admits a factorization system (S, Sg) satisfying (*). Composition with L induces a localization functor from
Fun'™ (G, P(@)) to itself; since L is left exact, this functor carries Sg to itself. It follows from Lemma 1.3.12

that (Sr,, Sg) induces a factorization system (?f,?ﬁ) on the oo-category Fun'®(§, X), and this factorization
system clearly satisfies () as well.

We now claim that the factorization system on Fun'®(G, X) restricts to a factorization system on the full
subcategory Strg(X). Namely, let S¥ denote the collection of all morphisms in Strg(X) belonging to gf,
and define S% likewise. We claim that (S¥,S%) is a factorization system on Strg(X). It is clear that f L g
for f € S¥, g € S¥, and that the collections S¥ and S% are stable under retracts. To complete the proof,
it will suffice to show that every morphism h: O — 0" in Strg(X) factors as a composition

RIENGEENOT

where f € S¥ and g € S¥. Since (S7,Sy) is a factorization system on Fun'®*(, X), we can choose such a

factorization with f € S7 and g € Si. To complete the proof it will suffice to show that O’ € Strg(X). In

other words, we must show that for every admissible covering {U, — X} of an object X € G, the induced
=X

map ¢ : [[, 0 (Us) — O'(X) is an effective epimorphism in X. Using the assumption that g € S (and the

fact that colimits in X are universal), we conclude that the diagram

1, 0'(Ua) — 11, 0" (Ua)

is a pullback square in X. Since O” € Strg(X), the map ¢ is an effective epimorphism. Thus 1) is also an
effective epimorphism (Proposition T.6.2.3.15), as desired.

We now complete the proof by showing that the factorization system (S¥,S%) depends functorially on
X. Let 7 : X — Y be a left exact, colimit preserving functor; we wish to show that composition with 7*
carries S¥ to SY and S% to S%. The second assertion follows immediately from the left exactness of f*. To
prove the first, we will show something slightly stronger: the induced functor F' : Funlex(g, X) — Funlex(S, Y)

.5 = . . .. . " . . ..
carries Sy to SE. Note that F' admits a right adjoint G, given by composition with a right adjoint m, to 7*.

Since 7, is left exact, the functor G carries g}i to Sg; the desired result now follows from Lemma 1.3.13. [
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1.4 Classifying oo-Topoi

For every topological space X, the co-category Shv(X) of sheaves of spaces on X is an co-topos. Moreover,
if the topological space X is sober (that is, if every irreducible closed subset of X has a unique generic
point), then we can recover X from S8hv(X): the points z € X can be identified with isomorphism classes
of geometric morphisms z* : Shv(X) — 8, and open subsets of X can be identified with subobjects of the
unit object 1 € Shv(X). In other words, the space X and the oo-topos Shv(X) are interchangable: either
one canonically determines the other.

The situation described above can be summarized by saying that we can regard the theory of co-topoi as a
generalization of the classical theory of topological spaces (more precisely, of the theory of sober topological
spaces). In this paper, we have opted to dispense with topological spaces altogether and work almost
entirely in the setting of co-topoi. This extra generality affords us some flexibility which is useful even if we
are ultimately interested primarily in ordinary topological spaces. For example, every oo-topos X represents
a functor from topological spaces to oco-categories, described by the formula

X — Fun*(X, 8hv(X)).

These functors are generally not representable in the category of topological spaces itself. For example, the
functor which carries X to the (nerve of the) category of sheaves of commutative rings on X is representable
by the co-topos P(Gza:) (see Proposition 1.4.2 below). Working in the setting of co-topoi has the advantage
of allowing us to treat the topological space X and the classifying co-topos P(Gz.;) on the same footing.

Our goal in this section is to exploit the above observation in a systematic fashion. Let § be a geom-
etry. The oo-category Strg(X) of Definition 1.2.8 depends functorially on the oco-topos X. More precisely,
composition determines a functor

Fun*(X,Y) x Strg(X) — Strg(Y).

In particular, if we fix a G-structure O € Strg(X), then composition with O induces a functor Fun*(X,Y) —

Strg(‘é).

Definition 1.4.1. Let G be a geometry. We will say that a G-structure O on an oo-topos X is universal
if, for every oco-topos X, composition with O induces an equivalence of co-categories Fun™ (X, X) — Strg(X).
In this case, we will also say that O exhibits KX as a classifying co-topos for G, or that X is a classifying
oco-topos for G.

It is clear from the definition that a classifying co-topos for a geometry G is uniquely determined up to
equivalence, provided that it exists. For existence, we have the following construction:

Proposition 1.4.2. Let G be a geometry. Then the composition
J L
G = P(9) = Shv(9)

exhibits Shv(G) as a classifying co-topos for G. Here we regard G as endowed with a Grothendieck topology
as in Remark 1.2.2.

Proof. This follows immediately from Proposition T.6.2.3.20. O

Let G be a geometry and X an oco-topos. The oo-category Strg(X) depends only on the underlying oco-
category of G and its Grothendieck topology, and not on the class of admissible morphisms in §. Consequently,
a classifying co-topos for G also does not depend on the class of admissible morphisms in G (this can also
be deduced from Proposition 1.4.2). However, the class of admissible morphisms of G is needed to define
the subcategory Strlgoc(DC) C Strg(X) of local morphisms, and therefore determines some additional data on

a classifying oo-topos for §. Our next goal is to describe the nature of this additional data.
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Definition 1.4.3. Let X be an oco-topos. A geometric structure on X consists of the specification, for
every oo-topos X, of a factorization system (S¥,S%) on Fun*(X,X), which depends functorially on X in the
following sense: for every geometric morphism 7* : X — Y, the induced functor Fun*(X,X) — Fun*(X,Y)
(given by composition with 7*) carries S¥ to S¥ and S¥ to S§.

If K is an co-topos with geometric structure and X is another co-topos, then we let Strig®(X) denote the
subcategory of Fun™ (X, X) spanned by all the objects of Fun*(X, X), and all the morphisms which belong to
ST
Example 1.4.4. Let G be a geometry and let O : § — X be a universal G-structure. Then the oco-topos K
inherits a geometric structure, which is characterized by the following property:

(¥) For every co-topos X, the equivalence Fun® (%K, X) — Strg(X) restricts to an equivalence of Stri®(X)
with Strlgoc(DC).
This follows immediately from Theorem 1.3.1.

Example 1.4.5. Let G be a discrete geometry, so that Strlg?c(f)C) = Strg(X) = Fun'® (g, X) for every co-topos
X. Then the induced geometric structure on the classifying co-topos X ~ P(9) is trivial, in the sense that

for every oo-topos X, the corresponding factorization system (S¥,S%) is given as in Example T.5.2.8.9.

Warning 1.4.6. There is a potential conflict between the notations introduced in Definitions 1.2.8 and
1.4.3. However, there should be little danger of confusion: Strig®(X) is described by Definition 1.4.3 when X
is an oco-topos with geometric structure, and by Definition 1.2.8 if X is a geometry.

We next discuss the functoriality of the oo-categories Strig®(X) (and Strlé)c(f)C)) in the oo-topos X. We
begin by reviewing some definitions from [9].

Notation 1.4.7. Let @Oo denote the co-category of (not necessarily small) co-categories. We let “Top C
Cat, denote the subcategory defined as follows:

(i) An oo-category X belongs to “Top if and only if X is an co-topos.

(ii) Let f* : X — Y be a functor between oo-topoi. Then f* is a morphism of “Top if and only if f*
preserves small colimits and finite limits.

The inclusion “Top C @Roo classifies a coCartesian fibration p : “Top — “Top. We will refer to p as the
universal topos fibration (see Definition T.6.3.1.6 and Proposition T.6.3.1.7); note that the the fiber of p over
an oo-topos X € “Top is canonically equivalent to X.

Definition 1.4.8. Let G be an geometry. We define a subcategory
LTOp(g) c Fun(9>L(‘TOp) ><Fun(S,L(J'Op) LTOp
as follows:

(a) Let O € Fun(G,“Top) Xpun(g,L70p) LTop be an object. We can identify O with a functor from G to X,
for some oo-topos X. Then O € “Top(§) if and only if O is a G-structure on X.

(b) Let a: O — O’ be a morphism in
Fun(97 LTOP) XFun(S,L‘J'Op) LrIOP?

where O and O’ belong to “Top(§), and let f* : X — Y denote the image of the morphism a in *Top.
Then a belongs to “Top(§) if and only if, for every admissible morphism U — X in G, the induced
diagram

frO(U) — [ O(X)

| |

froU) ——0'(X)

is a pullback square in the co-topos Y.
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We will refer to the opposite co-category “Top(G)°P as the oo-category of G-structured oco-topoi.

Definition 1.4.9. Let X be an oo-topos equipped with a geometric structure. We define a subcategory
LTQp(j{) - Fun(fK, LTOp) XFun(ﬂC,L‘IOp) LTOp
as follows:

(a) Let f* € Fun(X, “Top) X pun(x L Top) LTop be an object, which we can identify with a functor f* : X —
X, where X is an co-topos. Then f* belongs to “*Top(X) if and only if f* preserves small colimits and
finite limits.

(b) Let a : f* — f be a morphism in Fun(X,“Top) Xpun(x Lyop) “Top, where f* and f'* belong to
LTop(X), and let g* : X — Y denote the image of a in “Top. Then a belongs to “Top(X) if and only
if the corresponding morphism g* f* — f’* belongs to Stri2°(Y).

We will refer to the opposite co-category “Top(XK)°P as the co-category of K-structured oo-topoi.

Remark 1.4.10. Let G be a geometry (or an oco-topos with geometric structure). The fiber of the map
LTop(G) — “Top over an co-topos X is canonically equivalent to (but generally not isomorphic to) Strlgoc(DC).
Nevertheless, we will generally abuse notation and identify objects of “Top(G) with pairs (X, Ox), where X
is an oo-topos and Oy : § — X is a G-structure on X.

The following result is an easy consequence of Proposition T.3.1.2.1:

Proposition 1.4.11. Let X be an oco-topos with a geometric structure (or a geometry). Then the projection
map q : “Top(K) — “Top is a coCartesian fibration of simplicial sets. Moreover, a morphism o : Ox — Oy
in "Top(X) is q-coCartesian if and only if, for each object K € X, the induced map 7* Ox(K) — Oy(K) is
an equivalence in Y; here 7 : X — Y denotes the image of a in “Top.

In other words, every geometric morphism of oo-topoi 7w : X — Y gives rise to a pullback functor
Stri®(Y) — Strig®(X), which is simply given by composition with the pullback functor 7*.

Proposition 1.4.12. Let G be a geometry, and let O : § — K be a universal G-structure. Then composition
with O induces an equivalence of oco-categories “Top(X) — YTop(G). Here we regard X as endowed with the
geometric structure of Example 1.4.4.

Proof. Combine Proposition 1.4.11 and Corollary T.2.4.4.4. O

Proposition 1.4.12 implies that the theory of G-structures on co-topoi (here G is a geometry) can be
subsumed into the theory of geometric structures on oo-topoi. It is natural to ask how much benefit we
receive from this shift of perspective. For example, we might ask whether a given oco-topos X arises as the
classifying oo-topos of some geometry. This is not true in general, but if we ignore the geometric structure
on X it is almost true in the following sense: we can always choose a geometric morphism f* : Shv(§) — X
which induces an equivalence after passing to hypercompletions (see §T.6.5.2). Consequently, the gain in
generality is slight. However, the gain in functoriality is considerable.

Definition 1.4.13. Let X and X’ be co-topoi equipped with geometric structures, and let f* : K — X’ be
a geometric morphism. We will say that f* is compatible with the geometric structures on K and K’ if, for
every oo-topos X, composition with f* carries Strie®(X) into Strigs ().

Example 1.4.14. Let f : § — G be a transformation of geometries, and let K and X’ be classifying co-topoi
for G and ', respectively. Then f induces a geometric morphism f* : X — X', well-defined up to equivalence
(in fact, up to a contractible space of choices). Moreover, f* is compatible with the geometric structures on
K and K’ defined in Example 1.4.4.
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Let f*: X — X’ be a geometric morphism which is compatible with geometric structures on K and K’,
respectively. Then composition with f* induces a functor

LTop(K') — “Top(X).

Suppose, for example, that X and K’ are classifying co-topoi for discrete geometries G and ', respectively.
Then the oco-category of geometric morphisms from X to X’ can be identified with the oo-category of left
exact functors from G to K’ ~ P(G'). This is generally much larger than the co-category Fun'® (S, ') of left
exact functors from G to G'.

Example 1.4.15. Let X be the co-topos 8 of spaces. Then K admits a unique geometric structure, which co-
incides with the trivial geometric structure described in Example 1.4.5. It follows that Stri®(X) ~ Fun* (8, X)
for every oo-topos X. Proposition T.6.3.4.1 implies that each Strlg‘éC(DC) is a contractible Kan complex. Com-
bining Lemma 1.4.11 with Corollary T.2.4.4.4, we deduce that forgetful functor “Top(X) — “Top is an
equivalence of co-categories (even a trivial Kan fibration). In other words, every oo-topos X admits an

essentially unique K-structure.

Remark 1.4.16. Let G and G’ be geometries with classifying oo-topoi X and X'. Given a geometric
morphism f* : X — X’ compatible with the geometric structures described in Example 1.4.4, we might ask:
can f* be realized as resulting from a transformation of geometries from G to §’, as in Example 1.4.14? To
phrase the question differently: are there any special properties enjoyed by the geometric morphisms which
arise from the construction of Example 1.4.147 We will describe one answer to this question in §2.1: given
a transformation § — G’ of geometries, the induced functor “Top(§) — “Top(G’) admits a left adjoint.

Remark 1.4.17. Fix an oo-topos X, and regard X as endowed with the trivial geometric structure described
in Example 1.4.5. We can informally summarize Definition 1.4.9 as follows: an object of “Top(X) is a
geometric morphism Oy : X — X, and a morphism in *Top(X) is a diagram of geometric morphisms

Oy y
N
X

which commutes up to a natural transformation « : f*Ox — Oy. However, we do not assume that «a is
invertible. Consequently, we can best view the “Top(X) as a variant of undercategory “Topy /> but defined

X

using the natural co-bicategory structure on “Jop. We will not adopt this point of view, since we do not
wish to take the time to develop the theory of co-bicategories in this paper.

We close this section by giving an alternative description of geometric structures on co-topoi. First, we
review a few facts about limits in the oo-category ®Top ~ “Top™ of oo-topoi.

Recall that the oo-category ®Top of co-topoi is naturally cotensored over Cato,. More precisely, for every
oo-topos X and every simplicial set K, there exists another co-topos X* and a map 6 : K — Fun*(f)CK, X)
with the following universal property: for every oco-topos Y, composition with 6 induces an equivalence of
oo-categories

Fun, (Y, X%) ~ Fun(K, Fun, (Y, X)).

This is an immediate consequence of Proposition T.6.3.4.9. Note that XX is determined up to (canonical)
equivalence by X and K.

Warning 1.4.18. Our notation X% does not denote the simplicial mapping space Fun(K,X) (though
Fun(K,X) is again an co-topos which can be characterized by similar universal mapping property in the
oo-category “Top).
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Note that X% depends functorially on K: every map of simplicial sets K — K’ determines a geometric
morphism 7, : XX — X well-defined up to homotopy. In the special case K = A', we will refer to xk

as a path co-topos for X. The projection A' — A% determines a geometric morphism &, : X ~ XA I)CAI,
which is well-defined up to homotopy; we will refer to d, as the diagonal. Note that, for every co-topos Y,
composition with J, induces a fully faithful embedding

Fun,(Y,X) — Fun. (Y, DCAl) ~ Fun(A!, Fun, (Y, X))

whose essential image is the class of equivalences in Fun, (Y, X).
Now suppose that X is an co-topos endowed with a geometric structure, which determines a factorization
system (S¥,S%) on the co-category Fun® (X, X) for each co-topos X, depending functorially on X. In view

of Remark T.5.2.8.10, we obtain an induced factorization system (?ﬁ, ?DLC) on the co-category Fun, (X, K) ~
1 1
Fun® (%, X)?. Let 6 : A' — Fun,(K? ,X) exhibit X as a path co-topos for K. Then 0 admits an

. . o —xAl —xA! .
(essentially unique) factorization 6 ~ 60 o 0r, where 0y, € S; and 0p € Sy . If X is any oco-topos
and « is any morphism in Fun, (X, X), then there is an equivalence a ~ 7, (6) for some geometric morphism

Tt X — X2, We conclude that a =~ , (01)om.(0Rr) is the factorization of o determined by the factorization
system (gz,gf). In particular, « belongs to Sp if and only if 7. (fr) is an equivalence, and « belongs to
?DLC if and only if 7. (fr) is an equivalence.

The morphisms 67, and fg in Fun*(JCAl ,X) are classified up to homotopy by objects

1 1
k7R e Fun, (K2, K2).

Using Proposition T.6.3.4.6, we can form pullback diagrams

oy X - %
Al lt Al Al xk Al
g T x x& Tk

in the oo-category ®Top of co-topoi. Invoking Remark T.6.3.4.10, this construction yields the following:

Proposition 1.4.19. Let X be an oco-topos with geometric structure, and let KA denote a path oo-topos
for X. Then there exists a pair of geometric morphisms

L P ey
with the following universal property: for every co-topos X, the induced maps
Fun*(DQfK%l) — Fun(A', Fun, (X, X))
Fun*(DCﬁK%1 — Fun(A', Fun, (X, X))
are fully faithful embeddings whose essential images are the full subcategories spanned by gch and ?ﬁ, respec-
tively.
1.5 oo-Categories of Structure Sheaves

In this section, we will study oco-categories of the form Strg(X), where G is a geometry and X an co-topos.
Our first goal is to show that Strg(X) admits (small) filtered colimits. This is a consequence of the following
more general result:
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Proposition 1.5.1. Let X be an oco-topos with geometric structure, and let X be an arbitrary oco-topos.
Then:

(1) The oo-categories Fun* (X, X) and Stri®(X) admit small filtered colimits.
(2) The inclusions Str®(X) € Fun® (X, X) C Fun(X, X) preserve small filtered colimits.
From this, we can immediately deduce some consequences.

Corollary 1.5.2. Let X be an co-topos with geometric structure, and let f* : X — Y be a geometric morphism
of co-topoi. Then the functor
St (X) — Stri(Y)

given by composition with f* preserves small filtered colimits.

Corollary 1.5.3. Let K be an oo-topos with geometric structure, and let J be a small filtered oo-category.
Then every commutative diagram

J——=LTop(X)
1
7
e lp
7
¥ — LTop
can be completed as indicated, such that the dotted arrow is a p-colimit diagram in “Top(X).
Proof. Combine Proposition 1.5.1, Corollary 1.5.2, and Corollary T.4.3.1.11. O
Corollary 1.5.4. Let K be an co-topos with geometric structure. Then:
(1) The co-category “Top(XK) admits small filtered colimits.
(2) The projection functor “Top(X) — “Top preserves small filtered colimits.
Proof. Combine Corollary 1.5.3, Theorem T.6.3.3.1, and Proposition T.4.3.1.5. O

Remark 1.5.5. Proposition 1.5.1 and Corollaries 1.5.2, 1.5.3, and 1.5.4 have evident analogues when the
oo-topos X is replaced by a geometry §. To prove these analogues, it suffices to choose a universal G-structure
0 :§ — X and apply the preceding results (together with Proposition 1.4.12).

Proof of Proposition 1.5.1. Let J be a (small) filtered oo-category, let F' : J — Fun®(X, X) be a diagram, and
let O be a colimit of F' in the co-category Fun(X,X). We must show:

(a) The functor O belongs to Fun™ (X, X).

(b) Suppose that, for every morphism I — J in J, the associated natural transformations F(I) — F(J)
belongs to Stri2°(X). Then each of the natural transformations F(I) — O belongs to Strig®(X).

(c) Suppose given a natural transformation a : O — O, where O’ € Fun*(X,X). Suppose further that
each of the induced transformations o : F(I) — O belongs to Striz°(X). Then o belongs to Strig®(X).
Assertion (a) follows immediately from Lemma T.5.5.2.3 and Example T.7.3.4.7. To prove (b) and (c),

1 1 1
we first choose a path oco-topos KA for X, and a geometric morphism 7% : KA fKﬁ as in Proposition

1.4.19, so that composition with 7}, induces a fully faithful embedding
Fun*(iKﬁ1 ,X) = Fun* (fKAl,f)C) ~ Fun(A', Fun*(X, X))

for every oo-topos X, whose essential image consists of the class of morphisms in Fun®(X,X) which belong

to Strlj%C(I)C). Applying (a) to the oco-topoi %2 and Kﬁl, we conclude that the collection of morhisms in
Fun* (X, X) which belong to Striz°(X) is stable under small filtered colimits, which immediately implies (b)
and (c). O
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We now discuss some ideas which are specific to the theory of geometries.

Proposition 1.5.6. Let G be a geometry, and let p : “Top(G) — “Top denote the projection map. Suppose
that q : K9 — “Top(§) is a small diagram with the following properties:

(1) The composition po q: K< — “Top is a limit diagram.
(2) The functor q carries each morphism in K< to a p-coCartesian morphism in “Top(9).
Then q is both a limit diagram and a p-limit diagram.
The proof requires the following lemma.

Lemma 1.5.7. Let p: X — S be a coCartesian fibration of simplicial sets classified by a diagram x : S —
Cateo. Let q: K — X be a diagram with the following properties:

(1) The composition x opo q: K9 — Caty, is a limit diagram.
(2) The diagram q carries each edge of K9 to a p-coCartesian morphism in X.
Then q is a p-limit diagram.

Proof. Using Corollary T.3.3.1.2, we may reduce to the case where S is an co-category (so that X is also an
oo-category). Choose a categorical equivalence K — K’ which is a monomorphism of simplicial sets, where
K’ is an oo-category. Since X is an oo-category, the map ¢ factors through K’“. We may therefore replace
K by K’ and thereby reduce to the case where K is an oo-category. In view of Corollary T.4.3.1.15, we
may replace S by K< (and X by the pullback X xg K<) and thereby reduce to the case where p o ¢ is an
isomorphism.

Consider the map 7 : K¢ — (A%)? ~ Al. Since K is an co-category, the map r is a Cartesian fibration of
simplicial sets. Let p’ : @ — A! be the “pushforward” of the coCartesian fibration p, so that € is characterized
by the universal mapping property

Homa:1 (Y, €) ~ Homg<(Y xa1 K9, X).

Corollary T.3.2.2.12 implies that p’ is a coCartesian fibration, associated to some functor f from €y =
Cxa1{0} to € = €xa1{l}. We can identify €y with the fiber of p over the cone point of K<, and €,
with the oo-category of sections of p over K. Let €] denote the full subcategory of C; spanned by the
coCartesian sections. Combining Corollary T.3.2.2.12, Proposition T.3.3.3.1, and assumption (1), we deduce
that f determines an equivalence Gy — €.

Let go = q|K. We can identify gg with an object C' € €y, and ¢ with a morphism « : ¢’ — C in C. We
then have a commutative diagram

Go XxX/q4>eo XxX/qO

| |

60 Xe G/a Heo Xe G/C

We wish to show that the upper horizontal map is a categorical equivalence. Since the vertical maps are
isomorphisms, it will suffice to show that the lower horizontal map is a categorical equivalence. In other
words, we wish to show that for every object Cy € €y, composition with « induces a homotopy equivalence
Mape, (Co, C') — Mape(Co, C). We have a commutative diagram (in the homotopy category of spaces)

Mape, (Co, C”) Mape(Co, C)

| |

Mape, (fCo, fC') — Map(fCo, C).
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Here the right vertical map is a homotopy equivalence. Since f is fully faithful, the left vertical map is
also a homotopy equivalence. It therefore suffices to show that the bottom horizontal map is a homotopy
equivalence: in other words, that « induces an equivalence fC’ — C. This is simply a translation of condition
(2). O

Proof of Proposition 1.5.6. We will prove that ¢ is a p-limit diagram; it will then follow from Proposition
T.4.3.1.5 and (1) that ¢ is a limit diagram. Let Gy denote the discrete geometry having the same underlying
oo-category as G. We can identify “Top(§) with a subcategory of “Top(Gy). Moreover, the induced map
qo : K¢ — LTop(Gy) still satisfies (1) and (2). We will prove the following:

(%) Let v denote the cone point of K<. Suppose that (X,O0x) € “Top(G) is an object equipped with a
morphism « : (X,0x) — ¢(v) in “Top(Gy) such that, for every vertex vy € K, the composite map
ag : (X, 0x) — q(vo) belongs to “Top(§). Then the morphism a belongs to “Top(9).

To prove assertion (x), it suffices to observe that a diagram in the underlying co-topos of ¢(v) is a pullback
square if and only if its image in the underlying oco-topos of each ¢(vp) is a pullback square, by virtue of
assumption (1). It follows from (*) that if o is a p-limit diagram in “Top(Gy), then ¢ is a p-limit diagram
in “Top(§G). We may therefore replace G by Gy and thereby reduce to the case where G is discrete.

Let C = K Xvq,p, “Top, and let €' = K< xvq,, “Top(G). Let D C Fung<(K<, €) be the full subcategory
spanned by the coCartesian sections, and let D’ C Fung« (K<, €") be defined similarly. Using Propositions
T.6.3.2.3, T.3.3.3.1, and assumption (1), we deduce that the evaluation map D — €, is an equivalence of
oo-categories. It follows that the evaluation map

D’ ~ Fun'®*(g, D) — Fun'™(g,C,) ~ €

v

is also an equivalence of co-categories. Invoking Proposition T.3.3.3.1 again, we deduce that the coCartesian

fibration €' — K< is classified by a limit diagram K< — @oo. The desired result now follows from Lemma
1.5.7. O

Definition 1.5.8. Let G be a geometry, X an oo-topos, and n > —2 an integer. We will say that a G-
structure O : § — X is n-truncated if O(X) € X is n-truncated, for every X € §. We let Strgn(X) denote
the full subcategory of Strg(X) spanned by the n-truncated G-structures on X.

Remark 1.5.9. If G is n-truncated, then every G-structure on every co-topos X is n-truncated. This follows
immediately from Proposition T.5.5.6.16.

Definition 1.5.10. Let f : § — G’ be a functor between oo-categories which admit finite limits, and let
n > —2 be an integer. We will say that f exhibits ' as an n-stub of G if the following conditions are satisfied:

(1) The oo-category G’ is equivalent to an (n + 1)-category: that is, for every pair of objects X,Y € &',
the space Mapg/ (X, Y") is n-truncated.

(2) The functor f preserves finite limits.

(3) Let € be an oco-category which admits finite limits, and suppose that C is equivalent to an (n + 1)-
category. Then composition with f induces an equivalence of co-categories

Fun'**(g, @) — Fun'™(g, €).
Let G be an oo-category which admits finite limits. It is clear that an n-stub of G is determined uniquely
up to equivalence, provided that it exists. For the existence, we have the following result:

Proposition 1.5.11. Let G be an oco-category which admits finite limits. Then there exists a functor f :
S — G which exhibits § as an n-stub of §. Moreover, if G is small, then we may assume that S’ is also
small.
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The proof will require the following preliminary:

Lemma 1.5.12. Let C be an oo-category which admits finite limits. Suppose that C is equivalent to an
n-category, for some integer n. Then C s idempotent complete.

Proof. Without loss of generality, we may suppose that n > 1 and that € is an n-category. Let Idem denote
the oco-category defined in §T.4.4.5. We wish to show that every diagram p : Idem — € admits a limit in
C. Equivalently, we must show that the co-category €/, admits a final object. Let py denote the restriction
of p to the n-skeleton of Idem. Since C is an n-category, the restriction map €,, — €/, is an isomorphism
of simplicial sets. It will therefore suffice to show that C,,, admits a final object. In other words, we must
show that the diagram py admits a limit in €. This follows from our assumption that € admits finite limits,
since the n-skeleton sk™ Idem is a finite simplicial set. O

Proof of Proposition 1.5.11. Enlarging the universe if necessary, we may suppose that G is small. Let C =
Ind(G°?), so that C is a compactly generated presentable co-category. Corollary T.5.5.7.4 implies that the full
subcategory 7<y, C is again compactly generated, and that the truncation functor 7<, : € = 7<,, C preserves
compact objects. Let G’ denote the opposite of the (essentially small) co-category of compact objects of

T<n C. It follows that the composition
T<n

EN , eor X = (1< )P
factors through a functor f : G — G’ (here j denotes the opposite of the Yoneda embedding G — Ind(G°)).
We claim that f exhibits G’ as an n-stub of G.
It is clear that f preserves finite limits and that G’ is equivalent to an (n + 1)-category. To complete
the proof, we must show that if §” is an oco-category which admits finite limits, and §” is equivalent to an
(n + 1)-category, then composition with f induces an equivalence of co-categories

FunleX(S’, 9//) N Funlex(S, 9//).

By a direct limit argument (using the fact that G and G’ are essentially small), we may reduce to the case
where G is itself small. Let D = Ind(G””"). We have a homotopy commutative diagram

FunleX(g gll)op H_ Funlex 9’ 9 )

T

Funrex(9/0p7®) e Fun™ (57, D)

1,

Fun®(7<, C, D) Fun™(C, D)

We wish to show that h is an equivalence of co-categories. The functor h” is an equivalence of co-categories
by Corollary T.5.5.6.22. Since ¢ and )’ are equivalences (Propositions T.5.3.5.10 and T.5.5.1.9), it follows
that h’ is an equivalence. The functors ¢ and ¢ are fully faithful. To complete the proof, it will suffice to
show that their essential images are identified via the equivalence provided by A’. In other words, we must
show that if g : '’ — D is a right exact functor such that g o f factors through the essential image of the
Yoneda embedding j' : §”” — D, then g factors through the essential image of .

Let € be a minimal model for the full subcategory of §’” spanned by those objects X such that ¢X
belongs to the essential image of j/. Since j’ is right exact, the essential image of & in §’” is stable under
finite colimits. It follows that Ind(&) admits a fully faithful, colimit preserving embedding into 7<,, €. The
essential image of this embedding contains the essential image of the composition

J T<n
% 5 C = 7<, C,
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and therefore (since it is stable under small colimits) contains the essential image of 7<,. It follows that
Ind(€) is equivalent to 7<, €. Using Lemma T.5.4.2.4, we conclude that the inclusion i : &€ C G’ exhibits
G’ as an idempotent completion of £&. We now invoke Lemma 1.5.12 to complete the proof. O

Definition 1.5.13. Let § be a geometry. We will say that a transformation of geometries f : § — S<,
exhibits G<,, as an n-stub of G if the following conditions are satisfied:

(1) The underlying functor between co-categories exhibits G<,, as an n-stub of G, in the sense of Definition
1.5.10.

(2) The class of G<,,-admissible morphisms and the Grothendieck topology on G<,, are generated by the
functor f, in the sense of Remark 1.2.7.

The following result is a more or less immediate consequence of the definitions:

Proposition 1.5.14. Let f : § — G<,, be a transformation of geometries which exhibits G<,, as an n-stub
of G. Then, for every co-topos X, composition with f induces a equivalences of co-categories

Strg_, (X) — Strg"™(X)

Strg () — Strg” () N Strg°(2X).

<n

From this we deduce the following Corollary, which also appeared implicitly in the proof of Proposition
1.5.11:

Corollary 1.5.15. Let § and G<,, be small co-categories which admit finite limits, and let f : § — G<,
exhibit G<,, as an n-stub of §. Then composition with f induces a fully faithful embedding Ind(§%,) —
Ind(G°P) whose essential image is the full subcategory of Ind(S°?) spanned by the n-truncated objects.

Proof. Regard § as a discrete geometry, so that the stub G<,, inherits also the structure of a discrete geometry.
We observe that there are canonical isomorphisms

Ind(G°P) ~ Strg(8) Ind(§<,) ~ Strger (8).

It will suffice to show that the first of these isomorphisms restricts to an isomorphism 7<, Ind(§) ~
Strgn(S). In other words, we must show that a left-exact functor F' : § — § is n-truncated as an object of
Ind(G°?) if and only it takes values in the full subcategory 7<,, 8.

Let e : Ind(G°?)°? — 8 denote the functor represented by F. Then F is equivalent to the composition

G L md(gP)r 5 8. If F e T<n Ind(G°), then e factors through 7<, 8, so that F also factors through
T<n S.

To prove the converse, let € denote the full subcategory of Ind(G°?) spanned by those objects X such
that e(X) =~ Mapy,q(gor) (X, F) is n-truncated. We wish to show that € = Ind(§”"). Since the functor e
carries colimits in Ind(G°) to limits in 8, we conclude that C is stable under colimits in Ind(G°7). It will
therefore suffice to show that € contains the essential image of the Yoneda embedding §°¥ — Ind(G°?), which
is equivalent to the assertion that F' ~ e o j factors through 7<,, 8. O

2 Scheme Theory

The theory of geometries presented in §1 can be regarded as a generalization of the theory of locally ringed
spaces. In this section, we will define a full subcategory Sch(§) C *Top(§)°P, which we will call the oo-
category of G-schemes; in the special case where G is the geometry Gz.. of Example 1.2.13, this will recover
(a mild generalization of) the classical theory of schemes.

Our first step is to describe the class of affine §-schemes. We take our cue from classical scheme theory: if
A is a commutative ring, then the affine scheme (Spec A, Ogpec 4) is characterized by the following universal

property:
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() For every locally ringed space (X, Ox), the canonical map
Hompgipespacetoe ((X, Ox), (Spec A, Ospec 4)) — Homcring (4, I'(X, 0x))
is a bijection.

To make (x) appear more symmetric, we observe that Homcring (4, T'(X, Ox)) can be identified with the set
of maps from (X, Ox) to (x, A) in the category of ringed spaces. This raises the following general question:
given a transformation of geometries f : § — G, does the induced functor “Top(5)°? — “Top(G')°P admit
a right adjoint? We will give an affirmative answer to this question in §2.1 (Theorem 2.1.1), using a rather
abstract construction. Our primary interest is in the situation where §’ = G (the discrete geometry with the
same underlying oo-category as G), and in the restriction of this right adjoint to §'-structures on the final
oo-topos 8. In this case, we obtain a functor Spec? : Ind(G°) — “Top(9).

If A is a commutative ring, the affine scheme (Spec A, Ogpec 4) is characterized by () but can also be
constructed by a very concrete procedure. For example, the underlying topological space Spec A can be
identified with the set of all prime ideals of A, endowed with the Zariski topology. In §2.2, we will generalize
this construction to the setting of G-schemes, where G is any geometry, thereby obtaining an explicit model
for the functor Spec? which is easy to compare with the classical theory of Zariski spectra.

Given the existence of the spectrum functor Spec?, we can proceed to define the oo-category Sch(9): it
is the full subcategory of *Top(G)°? spanned by those pairs (X, Ox) which, locally on the co-topos X, belong
to the essential image of Spec9 . We will then proceed in §2.3 to define the co-category Sch(§) and establish
some of its basic properties (for example, the existence of finite limits in Sch(9)).

The definition of the class of G-schemes presented in §2.3 is analogous to the usual definition of a scheme
as a topological space X equipped with a sheaf O x of commutative rings. There is another equally important
way to think about the category of schemes: every scheme (X, O x) defines a covariant functor Fx : CRing —
Set, described by the formula

Fx(A) = Hom((Spec A, Ogpec 4), (X, 0x)).

This construction determines a fully faithful embedding from the category of schemes to the functor category
Fun(CRing, 8et). In other words, instead of viewing a scheme as a special kind of ringed topological space,
we may view a scheme as a special kind of functor from commutative rings to sets. In §2.4, we will prove an
analogue of this statement in the setting of G-schemes: namely, there exists a fully faithful (Yoneda-style)
embedding

¢ : Sch(§) — Fun(Ind(5°%), 8).

We can therefore identify Sch(G) with the essential image of this functor, and thereby view G-schemes as
special kinds of space-valued functors on Ind(G°).

Our final objective in this section is to give some examples which illustrate the relationship of our theory
with classical geometry (we will consider co-categorical variations on these examples in §4, and still more ex-
otic situations in future papers). Fix a commutative ring k. The category CRing,, of commutative k-algebras
admits many Grothendieck topologies. Of particular interest to us will be the Zariski and étale topologies
on CRing,. To each of these, we can associate a geometry G whose underlying co-category is equivalent to
the (nerve of the) category of affine k-schemes of finite presentation. We will study these geometries in §2.5
and §2.6. In the first case, the theory of G-schemes will recover the usual theory of k-schemes; in the second,
we will recover the theory of Deligne-Mumford stacks over k.

2.1 Construction of Spectra: Relative Version

Let A be a commutative ring. The Zariski spectrum Spec A is defined to be the set of all prime ideals p C A.
We regard Spec A as a topological space, endowed with the Zariski topology having a basis of open sets
Ur ={p C A|f ¢ p}, where f ranges over the elements of A. There is a sheaf of commutative rings Ogpec 4
on Spec A, whose value on an open subset Uy C Spec A has the value Ogpec a(Uy) =~ A[%] The locally ringed
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space (Spec A, Ogpec 4) can also be described by a universal property: it is univeral among locally ringed
spaces (X, Ox) equipped with a ring homomorphism A — I'(X, Ox).
We wish to obtain a generalization of this picture. We proceed in several steps.

(1)

It is in some sense coincidental that Spec A is described by a topological space. What arises more
canonically is the lattice of open subsets of Spec A, which is generated by basic open sets of the form
Uy. This lattice naturally forms a locale, or a 0-topos (see §T.6.4.2 for a discussion of this notion).
It happens that this locale has enough points, and can therefore be described as the lattice of open
subsets of a topological space. However, there are various reasons we might want to disregard this fact:

(a) The existence of enough points for Spec A is equivalent to the assertion that every nonzero com-
mutative ring contains a prime ideal, and the proof of this assertion requires the axiom of choice.

(b) In relative situations (see (2) below), the relevant construction may well fail to admit enough
points, even if the axiom of choice is assumed. However, the underlying locale (and its associated
sheaf theory) are still well-behaved.

(¢) If we wish to replace the Zariski topology by some other topology (such as the étale topology),
then we are forced to work with Spec A as a topos rather than simply as a topological space: the
category of étale sheaves on Spec A is not generated by subobjects of the final object.

When we study derived algebraic geometry, we will want to study sheaves on Spec A of a higher-
categorical nature, such as sheaves of spaces or sheaves of spectra. For these purposes, it will be most
convenient to regard Spec A as an co-topos, rather than as a topological space.

Let A be a commutative ring. We can regard A as defining a sheaf of commutative rings over the space
* consisting of a single point. Then, for any ringed space (X, Ox ), we can identify ring homomorphisms
A — T'(X;0x) with maps from (X,0x) to (x, A) in the category RingSpace of ringed spaces. Let
RingSpace'°® denote the subcategory of locally ringed spaces. Then we can reformulate condition (*)
as follows: for every commutative ring A and every locally ringed space (X, Ox), we have a canonical
bijection

HOInRingSpacelc’C ((X7 OX)v (Spec Aa OSpeC A)) — HomRingSpace((X7 oX)ﬂ (*7 A))

More generally, we might ask if there is an analogue of the locally ringed space (Spec A, Ogpec 4) for any
ringed space (Y, A). In other words, we might ask if the inclusion RingSpace!°® C RingSpace admits a
right adjoint.

For any topological space X, a sheaf O of local commutative rings on X can be identified with a
Gzar-structure on the oo-topos Shv(X), where Gz,, is the geometry described in Example 1.2.13.
This construction allows us to identify the usual category RingSpace'®® with a full subcategory of
the co-category “Top(Gzar )P of locally ringed oo-topoi. Similarly, the category of ringed spaces can
be identified with a full subcategory of “*Top(G')°?, where G’ denotes denotes the discrete geometry
having the same underlying co-category as Gz,,. The evident transformation of geometries §' — Gz,

induces a functor
L‘.Top(SZar)"p — L‘J’op(9/)°p,

generalizing the inclusion RingSpace!®® C RingSpace of (2). More generally, we can consider an analo-
gous restriction functor associated to any transformation of geometries G’ — Gya,.

We can now state the main result of this section.

Theorem 2.1.1. Let f : G — G be a transformation of geometries. Then the induced functor *Top(G') —
LTop(G) admits a left adjoint.
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Definition 2.1.2. Given a transformation of geometries f : § — G, we let Specgl denote a left adjoint

to the restriction functor *Top(§') — “Top(G). We will refer to Specg/ as the relative spectrum functor
associated to f.

Let G be a geometry, and let Gy be the discrete geometry with the same underlying co-category as G. We
let Spec9 denote the composition

Specg0

Ind(SOp)—>L‘J'op(90) —" L‘J’op(S).

Here the first functor is given by the identification of Ind(§°”) ~ Strg, (8) with the identification of Strg, (8)

with the fiber of *Top(Gy) XLgop {8}. We will refer to Spec? as the absolute spectrum functor associated to
the geometry §.

Our goal in this section is to prove Theorem 2.1.1. The basic idea is reasonably simple but perhaps
unenlightening: it uses somewhat abstract constructions such as fiber products of co-topoi, and therefore
yields a poor understanding of the resulting object. We will address this inadequacy in §2.2 by giving a
much more explicit construction of the absolute spectrum functor Spec9 (see Theorem 2.2.12).

For the following discussion, let us fix a transformation f : G — G of geometries. Given objects (X, 0) €
LTop(9), and (X', 0") € *Top(G'), we will say that a morphism 8 : (X, 0) — (X', 0" of) exhibits (X', 0’) as a
relative spectrum of (X, 0) if, for every object (Y,0y) € “Top(g'), composition with € induces a homotopy
equivalence

MapL‘J’op(S)((xl7 O/)a (g7 OH)) - MapL‘J’op(S’)((xa 0)7 (yﬂ OH Of))

Theorem 2.1.1 can be formulated as follows: for every object (X,0) € “Top(G), there exists an object
(X',0") € "Top(§’) and a morphism (X,0) — (X', 0" of) which exhibits (X', 0’) as a relative spectrum of
(X,0). Our first step is to reduce to the proof to a universal case.

Lemma 2.1.3. Let f: G — G be a transformation of geometries. Suppose that (X,0) € “Top(G), (X',0') €
LTop(9'), and that o : (X,0) — (X',0"of) is a morphism in “Top(G) which exhibits (X', 0") as a relative
spectrum of (X,0). Suppose given a pushout diagram

]

x/g H

g
—_—
/

*
*

<

in the oo-category “Jop. Then the induced map (Y,g* o O) — (Y',¢"" 0 O of) exhibits (Y',g'" 0 O') as a
relative spectrum of (Y,g* o O0).

The proof is a simple matter of untangling definitions. To apply Lemma 2.1.3, we use the following
observation: let Og : § — XK be a universal G-structure on an oo-topos K. Then any object (Y, ) € LTop(G)
is equivalent to (Y, 7* QOg) for some geometric morphism 7* : X — Y, which is uniquely determined up to
homotopy. Hence, to prove that (Y, Q) admits a relative spectrum, it will suffice to show that (K, Op) admits
a relative spectrum.

We observe that for every object (X, ) € “Top(§), the mapping space MapL%p(g)((fK, 00), (X, 0)) can
be identified with the largest Kan complex contained in Strlé’C(DC)/ 9. Theorem 2.1.1 is now an immediate
consequence of the following result:

Proposition 2.1.4. Let f : G — G be a transformation of geometries. Then there exists an co-topos 3{9/,
objects O € Strg (ﬂ(gl) and O’ € Strgf(ng/), and a local morphism of G-structures o : O — O' of with the
following universal property: for every object (X,0x) € *Top(§'), composition with o induces a homotopy
equivalence from Maquop(gl)((Kg,, 0", (X,0x)) to the largest Kan complex contained in Stlrlg':’C(DC)/oDC of,
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For a general object (X,0) € “Top(G), we then have Specgl(fx, 0) ~ (X xx %9, O"), where the fiber

product is taken in ®Jop, and O’ is the pullback of the §'-structure on Kgl appearing in the statement of
Proposition 2.1.4.

We will prove Proposition 2.1.4 via a somewhat lengthy construction. First, choose a correspondence

M — A! associated to the functor f : § — §', so that we have isomorphisms G ~ M x1{0} and §' ~
M XAl {1}

Notation 2.1.5. For every co-topos Y, we define a M-structure on Y to be a functor Oy : M — Y such that

Oy |G € Strg(Y) and Oy | §' € Strg/(Y). We let Stry(Y) denote the full subcategory of Fun(M,Y) spanned
by the M-structures.

Lemma 2.1.6. There exists a universal M-structure Oy : M — K (M), such that for every oco-topos X,
composition with Oz induces an equivalence of co-categories

Fun™ (K (M), Y) — Strac(X).
Proof. Using Proposition T.5.3.6.2, we can construct a functor 8 : M — M’ with the following properties:
(a) The oco-category M’ is small and admits finite limits.
(b) The restrictions 3| G and (| G’ are left exact.

(¢) For every oo-category C which admits finite limits, composition with 8 induces an equivalence of
oo-categories

Fun'**(M’, €) = Fun'*(G, €) Xpyn(g,e) Fun(M, €) Xpun(gr,e) Fun' (g, €).
We now define K(M) to be the fiber product
ShV(S) Xfp(g) T(M’) X-:p(g/) Shv(gl),

taken in the oo-category BJop, so that K (M) is an accessible left exact localization of P(M'). Let L :
P(M') — K(M) be a localization functor, and define Oy to be the composition

ME M L o) L xon),

where j denotes the Yoneda embedding. It is not difficult to see that Oy has the desired universal property.
O

Notation 2.1.7. For every oco-topos X, let Strg\}t)(fJC) denote the full subcategory of Stryg(X) consisting of
those M-structures O : M — X such that O is a right Kan extension of O | §’. Similarly, we define Strg\?[)(DC) to

be the full subcategory of Stry¢(X) spanned by those M-structures O : M — X which are left Kan extensions
of O16.
Lemma 2.1.8. (1) For every co-topos X, the restriction functors

Strl?) () — Strg(X)

Stril (20) — Strg/(X)

are trivial Kan fibrations.

(2) For every geometric morphism 7 : X — Y, the induced map Strae(X) — Strac(Y) carries Strg‘%)(JC) to
Strggt) (Y) and Strg\lm)(DC) to Strg‘}[)(‘é).
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Proof. In view of Proposition T.4.3.2.15, assertion (1) can be rephrased as follows:
(1a) Let Og € Strg(X) and let O : M — X be a left Kan extension of Og. Then O |G’ € Strg/(M).
(1b) Let 01 € Strg(X) and let O : M — X be a right Kan extension of O;. Then O|§ € Strg(M).

Assertion (1b) follows from the fact that O |G ~ f o Qp, and assertion (la) is a consequence of the following
result, whose proof will be given below:

Lemma 2.1.9. Let G and G be small co-categories which admit finite limits, let f : G — G be a left exact
functor, and let X be an co-topos. Then left Kan extension along [ carries Funlex(g, X) into FunleX(S/, X).

To prove (2), we observe that 7* preserves small colimits, and therefore left Kan extensions along inclu-
sions of small co-categories. To prove that composition with 7* carries Strg\}[)(JC) to Strg\}[)(‘é), it suffices to

observe that O € Stry(Z) belongs to Strg‘}[) (Z) if and only if O(«) is an equivalence in Z, for every p-Cartesian
morphism in M; here p : M — A denotes the projection. O

We now turn to the proof of Lemma 2.1.9.

Definition 2.1.10. Let M — A! be a (small) correspondence from an oo-category € = M xA1{0} to
another oo-category D = M xa1{1}. The Yoneda embedding for M determines a functor M°? x M — 8§,
which determines by restriction a functor F' : C°? x D — §, such that F(C, D) is homotopy equivalent to
Mapy(C, D).

We will say that a bifunctor F’ : €'”” x D’ — 8 is associated to M if there exist equivalences o : €' — @
and 3 : D" — D such that F’ o (o x 3) is homotopic to F. In this case, we will also say that M is associated
to F'.

Example 2.1.11. Let f : D — € be a functor between small co-categories. Composing with the Yoneda
embedding € — P(€), we obtain a map D — P(C) which is adjoint to a bifunctor F : P xD — 8. A
correspondence M from € to D is associated to F' (in the sense of Definition 2.1.10) if and only if it is
associated to f (in the sense of Definition T.5.2.1.1).

Remark 2.1.12. Let F : C°? x D — § be a bifunctor associated to a correspondence M — Al and let
€y C €, Dy € D be full subcategories. Then the restriction Fy = F|(€j" x Dy) is associated to the full
subcategory of M spanned by the essential images of Cy and Dy.

Lemma 2.1.13. Let C and D be small oco-categories, and let F : CP x D — 8§ be a functor, so that F
determines maps fO : € — P(DP)P and f' : D — P(C). Let j : C — P(C) denote the Yoneda embedding.
Then:

(1) The functor j admits a left Kan extension along f°, which we will denote by fL(3).
(2) The composition of f2(j) with the Yoneda embedding j' : D — P(DP)°P is equivalent to f*.

Proof. To prove (1), it suffices to observe that for every object X € P(D?)°P, the fibers of the right fibration
T(@"p)%’( are essentially small, so that the fiber product C Xgp(poryor T(DOP)%( is essentially small; now
invoke the fact that P(C) admits small colimits (and Lemma T.4.3.2.13).

To prove (2), let M be a correspondence from € to P(D°P)°P associated to f°, and let J : M — P(C) be
a left Kan extension of j. Let M’ denote the full subcategory of M spanned by the objects of @ and the
essential image of j/, let M be a minimal model for M’ (so that M is small), and let J = J| M. We observe
that M is equipped with equivalences o : € = M xA1{0}, 5: D — M x a1 {1} which exhibit M as associated
to the bifunctor F. Moreover, j' o f?(j) can be identified with .J o 3. Invoking Lemma T.5.2.6.7, we can also
identify J o 8 with the composition

DA M = PM) — P(©).

Since M is associated to F, this composition is homotopic to f' as desired. O
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Proof of Lemma 2.1.9. Let h : § — X be a left exact functor; we wish to show that the left Kan extension
fi(h) : §" — X is also left exact. Using Theorem T.5.1.5.6, we may assume without loss of generality that h

is a composition § i> P(9) E) X, where j is the Yoneda embedding and H preserves small colimits. Using
Proposition T.6.1.5.2, we conclude that H is left exact. Using Lemma T.5.2.6.7, we conclude that fi(h) is
equivalent to the composition

5" 45 p(g) L p(g) A x.
As a composition of left-exact functors, we conclude that fi(h) is left exact. O

We now put Lemma 2.1.8 into practice. Let K (M) be as in Lemma 2.1.6, and let X and X’ denote
classifying oco-topoi for G and §', respectively. By general nonsense, we deduce the existence of geometric
morphisms

% 25 x(v) L K/

which determine, for every oco-topos X, a homotopy commutative diagram

Fun* (X, X) — Fun(X(M), X) =<—— Fun*(X’, X)

| | |

Strg (X) ———— Stra(X) =<— Strg/(X)
where the vertical maps are categorical equivalences and the lower horizontal maps are obtained by choosing

sections of the trivial fibrations of Lemma 2.1.8.

Notation 2.1.14. We let iKg/ denote the fiber product
1 Al 1
(K5 xK'L ) Xgear , goar KOOA X xacon (K x K,

taken in the co-category RTop ~ LTop™ of co-topoi. By construction, we have arranged that ng’ is equipped

with a map T : M xA! — ng with the following properties, where X = Kg:
(1) The restriction of 7' to G xA! belongs to Str§(2X).
(2) The restriction of 7' to §’ x Al belongs to Str§ (S).
(3) The restriction of T to M x{0} belongs to Strg‘(/)[)(fJC).
(4) The restriction of T to M x{1} belongs to Strg\}[)(DC).

Moreover, iKg/ can be described by the following universal property: for any co-topos X, composition with

T induces a fully faithful embedding Fun* (J{g’7 X) — Fun(M xA', X) whose essential image is spanned by
those functors M x A’ — X which satisfy conditions (1) through (4).

Let O = T|(G x{0}) and O" = T|(§ x{1}). Condition (4) allows us to identify T|G x{1} with O’ of,
so that (according to condition (1)) the restriction T|(G xA!) determines a morphism o : O — O'of in
Strlgc(ng’), well-defined up to homotopy.

Proof of Proposition 2.1.4. We proceed as in Notation 2.1.14 to define ﬂCg,, a pair of functors O € Strg(iKg,),

VS Strg/(ng/), and a natural transformation o : O — O of. We will show that the desired universal
property is satisfied. In other words, we will show that for every object (X,0x), composition with «

induces a homotopy equivalence from Maprap, (g1 ((Kg’, 0, (X, 0x)) to the largest Kan complex contained
in Strlé’c(f)C)/ Oxef Let Ox : M — X be a right Kan extension of Ox. Using Lemma 2.1.8 and the universal
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property of fK%l, we can identify Mapr.qqp, (g1 ((iKg/, 0", (X, Ox)) with the the largest Kan complex contained
in

€ C Fun(M x A%, %) X pun(n x{23,20) {0x},

where € denotes the full subcategory spanned by those functors T : M xA? — X such that T|M x A{0:1}
satisfies conditions (1) through (4) of Notation 2.1.14, together with the following additional condition:

(5) The restriction 8 = T|(§" xA112}) is a morphism of Strlg/c(DC).

Note that condition (4) (and the fact that O is a right Kan extension of Ox) imply that 8" = T|(g x A{1:2})
can be identified with the image of 8 under f, so that 8’ is a morphism of Strlgoc(DC). Consequently, if
condition (5) is assumed, then Propositions T.5.2.8.6 and T.5.2.8.11 permit the following reformulation of
condition (1):

(1) The restriction T|(G x A{%2}) is a morphism of Strls‘?c(DC).
Unwinding the definitions, we are reduced to proving the following assertion:

(¥) The inclusion § x A{%2} € M xA? induces a trivial Kan fibration 6 : € — Strlgoc(f)C)/a?f| 9.

To prove (x), we factor the map 6 as a composition
cle Be,Bes B e, B sl (n)/Oxls,
where:

(a) Let § € M xA? denote the full subcategory spanned by those objects (X, i) such that either i # 1 or
X € G'. Then €; denotes the full subcategory of

Fun(d, X) X pun(n x{23,20) {Ox}

spanned by those functors which satisfy conditions (1), (2), (3), and (5). Using Proposition T.4.3.2.15,
we deduce that the restriction map 6y : € — C; is a trivial Kan fibration.

(b) The oo-category Cs is defined to be the full subcategory of
Fun(M x A2 20) X pun(at x 21,200 {0}
spanned by those functors which satisfy conditions (1) and (3). Set
C2 = €3 Xpyun(a 02} Strg/ (X)) Fun’(A?, Strg: (X)),

where Fun'(A2, Strg/ (X)) denotes the full subcategory of Fun(A?2, Strg/ (X)) spanned by those func-
tors satisfying (2) and (5). The projection map 65 : Co — €3 is a pullback of the projection
Fun’(A2?, Strg/ (X)) — Fun(Af%2} Strg (X)), and therefore a trivial Kan fibration by Proposition
T.5.2.8.17.

(¢) Let 61 : € — Gy be the evident restriction map. To show that 6 is a trivial fibration of simplicial
sets, it suffices to show that the inclusion

Mxate2h) T (9 xA%) < 4
g’ x Af0.2}

is a categorical equivalence. This follows from Proposition T.3.3.1.3, applied to the Cartesian fibration
M xA? = Al x A2,
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(d) Let J’ denote the full subcategory of M x A{%2} spanned by those objects having the form (X, i), where
either : = 2 or X € G, and let C4 denote the full subcategory of

Fun(d’, X) X pan(e x {23,20) {0}

spanned by those functors satisfying (1’). Proposition T.4.3.2.15 implies that the restriction map
03 : C3 — C4 is a trivial Kan fibration.

(e) To prove that the restriction map 64 : €4 — Strlgc(f)C)/Ox' 9 is a trivial Kan fibration, it suffices to show
that the inclusion
(§ <Aty T x{2}) =7
g x{2}
is a categorical equivalence. This again follows from Proposition T.3.3.1.3, applied to the Cartesian
fibration M xAZ — Al x A2,

O

2.2 Construction of Spectra: Absolute Version

Let G be a geometry, and let Gg;sc be the underlying discrete geometry. In §2.1, we gave a construction of
the relative spectrum functor Specgdm, which restricts to the absolute spectrum functor

Spec? : Ind(5°) — *Top(9).

However, the construction was perhaps rather opaque. We will correct that deficiency in this section, by
giving a second (much more explicit) construction of Spec?. We begin by introducing a bit of notation.

Notation 2.2.1. Let p : LTop — “Top denote the universal topos fibration; we may therefore view objects
of LTop as pairs (X, X) where X is an oo-topos and X is an object of X. Let E € LTop be an object
corresponding to the pair (8, 1s) (so that § is an initial object of “Jop by Proposition T.6.3.4.1, and 1g is a
final object of 8).

We let T : LTop — 8 denote a functor corepresented by E. We will refer to I' (which is well-defined up
to a contractible space of choices) as the global sections functor. For every oo-topos X, the restriction of T
to the fiber “Top Xvg,, {X} ~ X is a functor corepresented by the final object 1y € X.

For any geometry G, we have a canonical evaluation map “Top(§) x G — LTop. Composing with the
global sections functor I'; we obtain a pairing

LTop(9) x § — 8,

which we may view as a functor “Jop(G) — Fun(G,8). We observe that this functor factors through
Fun'®*(9, 8) ~ Ind(3%). We let I'g : “Top(3) — Ind(G°?) denote the resulting map; we will refer to I'g as
the G-structured global sections functor.

Let G be a geometry, and let Gy be a discrete geometry having the same underlying oo-category as G. By
construction, the G-structured global sections functor I'g factors as a composition

LTop(3) — LTop(Go) - Ind(S°P).
We observe that I'g, can be identified with a right adjoint to the fully faithful embedding
Ind(§%) =~ Strg(8) ~ “Top(Go) Xr7op {8} C “Top(SGo).

Consequently, we may identify I'g with a right adjoint to the absolute spectrum functor Spec? : Ind(§°") —
LTop(§) of Definition 2.1.2. We will use description to explicitly construct Spec? X, where X € Ind(G%) ~
Pro(9)°P. We begin with a few preliminaries.

43



Notation 2.2.2. Let § be a geometry. We will say that a morphism f : U — X in Pro(§) is admissible if
there exists a pullback diagram
U——=j(U")

lf ij(f ")

X —j(X")
in Pro(§), where j : § — Pro(§G) denotes the Yoneda embedding and f’ : U’ — X' is an admissible morphism
in G.
Remark 2.2.3. Every admissible morphism in Pro(§) is proadmissible. In particular, if f : U — X is a
morphism in § such that j(f) is admissible in Pro(G), then f is admissible in § (Remark 1.3.6).

Lemma 2.2.4. Let G be a geometry. Then:
(1) Every equivalence in Pro(9) is admissible.

(2) The collection of admissible morphisms in Pro(G) is stable under the formation of pullbacks.

(3) Let
Y
7N

X—7
be a commutative diagram in Pro(S), where g is admissible. Then f is admissible if and only if h is

admissible.

Proof. Assertions (1) and (2) are obvious. Let us now prove (3). We first establish a bit of notation. Since
g is admissible, we can choose a pullback diagram

Y ——j(Yo)

J/g \LJ(QO)

Z*t(;j(zo)

where gg : Yo — Zj is an admissible morphism in §. Write Z as the filtered limit of a diagram {Z,} in 9/Z07
and set Y, = Z, Xz, Yo, so that Y is the filtered limit of the diagram {Y,} in G.
We now prove the “only” if direction of (3). Suppose that f is admissible, so there exists a pullback
diagram
X ——j(X1)

lf lj(fl)
¢ .
Y —— (Y1)

for some admissible morphism f; : X; — Y7 in §. The map ¢ factors as a composition Y — j(V5,) — j(Y1)
for « sufficiently large. We then have a diagram

X *>](X1 Xy; Ya)

|

7(Ya)

|

—J(Za)-

N~ <~
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Since the upper and lower squares are pullback diagrams, we conclude that the outer square is also a pullback
diagram. We now observe that h is a pullback of j(hg), where hy denotes the composition

X4 Xy; Yo=Y, — Z,.

Since the collection of admissible morphisms in G is stable under pullbacks and composition, we conclude
that hg is admissible. Then h is also admissible, as desired.
We now prove the “if” direction of (3). Assume that h is admissible, so that we have a pullback diagram

X —j(X2)

\Lh lj(hz)

7 —"> j(Zs)

for some admissible morphism hs : Xo — Z5 in §. Replacing Zy by Zy x Z> (and repeating the construction
of the first part of the proof), we may suppose that Zy = Z and to = to. Let X, = Z, Xz, Xo, so that X
is the filtered limit of the diagram {X,} in §. By a compactness argument, we can choose a commutative
diagram

J{f ij(fa)

Y ——j(Yo)

for some index «. The map f, determines a commutative diagram

Since the diagonal arrows are both admissible, we deduce that f, is admissible. We have a commutative
diagram

A 4>j(Za).

The outer and lower squares are pullbacks, so the upper square is a pullback as well. It follows that f is
admissible, as desired. O

Warning 2.2.5. If G is a geometry, then the collection of admissible morphisms in Pro(9) is not necessarily
stable under the formation of retracts.

Notation 2.2.6. Let § be a geometry, and let X be an object of Pro(G). We let Pro(9)7‘§( denote the
full subcategory of Pro(§G),x spanned by the admissible morphisms U — X. In view of Lemma 2.2.4, we
can also identify Pro(9)7§( with the oco-category (Pro(9)*?),x, where Pro(§)*® denotes the subcategory of

Pro(9) spanned by the admissible morphisms.



We regard Pro(§),x as endowed with the coarsest Grothendieck topology having the following property:
for every admissible morphism U — X, every admissible covering {V.. — U’} of an object U’ € G and every
morphism U — j(U’) in Pro(§), the collection of admissible morphisms {j(V]) x ) U — U} generates a

covering sieve on U € Pro(S)%ﬂ(.

Remark 2.2.7. Let G be a geometry, and let X € Pro(§G). Every admissible morphism U — X in Pro(9)
arises from some pullback diagram

U——=jU")

lf ij(f')

X —j(X")

in Pro(G). It follows that the collection of equivalence classes of admissible morphisms U — X is small,

provided that X has been fixed in advance. In particular, the co-category Pro(S);“;{ is essentially small.

We may therefore proceed as usual to define a presheaf oco-category fP(Pro(S)%i() = Fun((Pro(S)?‘)i()OP,S)
and the subcategory ShV(Pro(S)%l() - fP(Pro(S)*/“;() of sheaves with respect to the Grothendieck topology
described in Notation 2.2.6. The inclusion Shv(Pro(S)?/“}i() - fP(Pro(S)E}(;() admits a left exact left adjoint L,
and Shv(Pro(S)‘}%{) is an oo-topos.
Remark 2.2.8. Let us say that a geometry G is finitary if G is small, and the Grothendieck topology on G is
finitely generated in the following sense: for every covering sieve 99)’ C G,y on an object Y € G, there exists
a finite collection of admissible morphisms {W; — Y }1<;<, belonging to S?Y which themselves generate a
covering sieve on 991/-

Suppose that G is a finitary geometry, and let X be an object of Pro(G). Then the Grothendieck
topology on Pr0(9)7§( of Notation 2.2.6 can be described as follows. A sieve S on an object U — X of

Pro(9) is covering if and only if there exists an object U’ € G, a finite collection of admissible morphisms
{V/ = U'}1<i<n which generate a covering sieve on U’, and a map U — j(U’) such that each of the pullback
maps U x ;i j(V{') = U belongs to the sieve S.

If G is not finitary, then the condition given above is sufficient to guarantee that S is a covering sieve,
but is generally not necessary.

We are now ready to proceed with our construction.

Definition 2.2.9. Let § be a geometry and let X be an object of Pro(G). We define Spec X to be the
00-topos Shv(Pro(S)?}) (see Notation 2.2.6 and Remark 2.2.7). Let Ogpec x denote the composite functor
6Spe(‘.X ad \ L
5 =" P(Pro(9))x) — Spec X

where L denotes a left adjoint to the inclusion ShV(PI“O(Q)?()l() - T(Pro(gz;‘;()), and the functor 6SpecX is
adjoint to the composite map

G x(Pro(§)7%)” — § x Pro()? = § x Fun'**(§,8) — §.

Remark 2.2.10. Suppose that the Grothendieck topology of Notation 2.2.6 is precanonical in the sense
that for every object Y € G and every object X € Pro(§), the functor

(Pro(§)j%)? — Pro(§)” = Fun'**(§,8) = 8

is a sheaf, where ey denotes evaluation at Y. Then the functor éspec x already takes values in Spec X, so fur-
ther sheafification is unnecessary and we can identify Ogpec x With Ogpec x. In particular, I'g (Spec X, Ogpec x)

can be identified with X € Pro($)° ~ Fun'*(9, 8). This will be the case in many of the examples that we
consider.
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Proposition 2.2.11. Let § be a geometry and X € Pro(3G) an object. Then the functor Ogpec x 1 § — Spec X
is a G-structure on Spec X.

Proof. 1t is clear from the construction that the functor Ogpec x is left exact. To complete the proof, it will
suffice to show that if {V,, — Y} is a collection of admissible morphisms which generate a covering sieve
on an object Y € G, then the induced map ][] Ogpec x(Va) — Ogpec x (Y) is an effective epimorphism in
Shv(Pro(S)"/‘g(). Let U € Pr0(9)7‘)1(, and let n € mp Ogpec x (Y)(U); we wish to show that, locally on U, the
section 7 belongs to the image of my Ox (V4,)(U) for some index ae. Without loss of generality, we may suppose
that 7 arises from a map U — j(Y') in Pro(§), where j : § — Pro(§G) denotes the Yoneda embedding. Then the
fiber products U, = j(Va) X j(y) U form an admissible cover of U, and each 1, = |Us € mo Ogpec x (Y)(Ua)
lifts to mo Ogpec x (Vo) (Ua). O

Consequently, we can view (Spec X, Ogpec x) as an object of “Top(§). Our next goal is to show that this
object can be identified with Spec’ X. To formulate this result more precisely, we begin by observing that
the global sections functors

I':SpecX — 8

I': P(Pro(9)j%) — 8

can be identified with the functors given by evaluation on the final object idx : X — X of Pro(9)7§(. In
particular, the composition

5% P(Pro(9)3%) 5 8

is canonically equivalent to the proobject X € Pro(§) = Fun'®(g,8)% itself. The sheafification map

6specx — Ogpec x induces a natural transformation o : X — I'g(Spec X, Ogpec x) in the oo-category
Ind(G°?) ~ Pro(9)°P.

Theorem 2.2.12. Let G be a geometry and let X be an object of Pro(G). Then the natural transformation
a: X — T'g(Spec X, Ogpec x) in Pro(G)°P is adjoint to an equivalence Spec’ X — (Spec X, Ogpec x) in
LTop(9).

In other words, for every object (Y,Oy) € “Top(G), composition with a induces a homotopy equivalence

MapL’J’op(S)((SpeC X, OspecX>7 (4, O‘d)) - MapPro(S)"P (X’ I'g (H, o'd))-

In view of Propositions T.5.3.5.10 and T.5.5.1.9, we may assume that Oy factors as a composition

g EA Pro(9) @; Y,

where j denotes the Yoneda embedding and the functor Oy preserves small limits. Unwinding the definitions,
we can identify the mapping space Mapp,(g)or (X, I's (4, Oy)) with Mapy (1y, Oy(X)), where 1y denotes the
final object of Y. Consequently, we may reformulate Theorem 2.2.12 as follows:

Proposition 2.2.13. Let § be a geometry, X an object of Pro(§). LetY be an oo-topos and Oy : Pro(§) — Y
a functor which preserves small limits, such that the composition Oy = Oy o j : § — Y belongs to Strg(Y).
Then the canonical map

6 : Mapraop gy ((Spec X, Ospec x ), (4, Oy)) — Mapy (1y, Oy (X))
is a homotopy equivalence.
The proof will require the following preliminary result, which is an easy consequence of Lemma 2.1.13:

Lemma 2.2.14. Let G be a geometry and let X be an object of Pro(G). Let j : Pr0(9)7§( — Spec X

be the composition of the Yoneda embedding Pro(S)E/“)l( — fP(Pro(Sad)/X) with the sheafification functor
L: fP(Pro(Sad)/X) — Spec X (that is, a left adjoint to the inclusion), and let o : Pro(§)3% — Pro(SG) be the

/X
canonical projection. Then:
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(1) The functor j admits a left Kan extension along «, which we will denote by au(j) : Pro(S) — Spec X.

(2) The composition of cu(j) with the Yoneda embedding G — Pro(G) is canonically equivalent to the
structure sheaf Ogpec x -

Proof of Proposition 2.2.13 (and Theorem 2.2.12). Let Oy denote the composition

Pro()34 — Pro(G) 4 Y.
Let Jg denote the simplicial set
({X3xah JT Pro(9)ss x {1}),
{X}x{1}

and let J denote the essential image of Jy in Pro(S)‘}g{ x Al. Since the inclusion Jp C J is a categorical

equivalence, the induced map
Fun(J,Y) — Fun(Jp,Y)

is a trivial Kan fibration.
Let € denote the the full subcategory of Fun(Pro(S)Z}”g( x Al Y) spanned by those functors F which satisfy
the following conditions:

(7) The functor F is a right Kan extension of F'| J. More concretely, for every admissible morphism U — X,
the diagram
F(U,0)——= F(U,1)

F()J;'7 0) —— F()J;', 1)
is a pullback diagram in Y.
(79) The object F'(X,0) is final in Y.
Using Proposition T.4.3.2.15, we deduce that the forgetful functors
€ — Fun’(J,Y) — Fun’(Jy, Y)

are trivial Kan fibrations, where Fun®(7,Y) and Fun®(Jy,Y) denote the full subcategories of Fun(J,Y) and
Fun(Jy,Y) spanned by those functors F' which satisfy condition (i¢). Form a pullback diagram

Co z {00}

| |

€ —— Fun’(Jo, ¥) — Fun(Pro(§)7% x {1}, Y).

Then Z is a Kan complex, which we can identify with the space Mapy(ly,ay (X)). The projection map
Cp — Z is a trivial Kan fibration, so that Cy is another Kan complex which models the homotopy type

Mapy (1y, Oy (X)).
The inclusion Pr0(9)7‘§< x {0} C Pro(S)‘/“)i( x Al induces a functor f: Cy — Fun(Pro(S)E/“)l(, Y). In terms

of the identification above, we can view this functor as associating to each global section 1y — Oy(X) the
functor

U l—)@y(U) X@g(X) 19.
It follows that the essential image of f belongs to the full subcategory
Fun’(Pro(9)j%,Y) € Fun(Pro(9)j%,Y)

spanned by those functors F' which satisfy the following conditions:
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(a) The functor F' preserves finite limits.

(b) For every admissible covering {V,, — V'} of an object V' € G, every object U — X in Pr0(9)7‘§<, and
every map U — (V) in Pro(G) (here j : § — Pro(G) denotes the Yoneda embedding), the induced
map [[, F(j(Va) Xy U) = F(U) is an effective epimorphism in Y.

The map 6 fits into a homotopy pullback diagram

Ma‘pL‘Top(S) ((Spec X7 OSpeCX)v (ya O‘d)) # 60

| |

Fun*(Spec X, Y) FunO(PrO(9)7‘§(7 Y).

Here 6’ is induced by composition with the map
Pro(9)3% — P(Pro(9)3%) % Shv(G7%),

where the first map is a Yoneda embedding and L is a sheafification functor. Using Propositions T.6.1.5.2 and
T.6.2.3.20 (and the definition of the Grothendieck topology on Pro(9)7§(), we deduce that €’ is an equivalence
of co-categories. Consequently, to show that 0 is a homotopy equivalence, it will suffice to show that it induces
a homotopy equivalence after passing to the fiber over every geometric morphism g* : Spec X — Y.

Let « : Pr0(9)7§< — Pro(9) denote the projection, and let 6; denote a left Kan extension of g* o j :
Pro(S)‘;“;( — Y along . Lemma 2.2.14 allows us to identify the composition

G — Pro(9) 6—:? Y

with g* o Ogpec x, 50 that we canonical homotopy equivalences
., L
Mappun(g,y) (97 © Ospec x5 Oy) = Mappun(pro(g),y) (Oy» Oy) = Mabpun(pro(g)34,.) (97 © J: Oo)-

To complete the proof, it will suffice to show that if 5 : g* 0Ogpec x — Oy and ' : g*0j — O are morphisms
which correspond under this homotopy equivalence, then 8 belongs to Strlg‘?c(y) if and only if 3’ satisfies
condition (). This is a special case of Proposition 1.2.14. O

Corollary 2.2.15. Let G be a geometry, X an object of Pro(9), and set (X,0x) = Spec’ X. Suppose that:

() For every admissible morphism U — X in Pro(§), the object U is n-truncated when viewed as an object

of Ind(§°%).
Then O« is an n-truncated G-structure on X.

Proof. In view of Theorem 2.2.12, we may suppose that X = Spec A and that Oy = Ogpecx. Let V € G;
we wish to show that Ogpec x (V) is an n-truncated object of Spec X o~ ShV(Pro(S);“;(). By definition,

Ospec x (V') is the sheafification of the presheaf defined by the composition
Ind(§7)5 — Ind(G°) = Fun'*(§,8) — 8,

where the second map is given by evaluation at V' € G. It will therefore suffice to show that this presheaf
takes n-truncated values. The value of this presheaf on an admissible morphism U — X is the space
Mapp,o(g) (U, j(V)), where j : § — Pro(§) denotes the Yoneda embedding, and therefore n-truncated by
virtue of assumption (x). O
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2.3 G-Schemes

Recall that a scheme is a ringed topological space (X, Ox) such that X admits an open covering {U, C X}
such that each (U,, Ox |U,) is isomorphic (in the category of ringed spaces) to (Spec A, Ogpec 4), for some
commutative ring A. In this section, we will introduce an analogous definition, for an arbitrary geometry
G. We will discuss the relationship of this definition with the classical theory of schemes in §2.5. We begin
with a few general remarks concerning étale morphisms between G-structured co-topoi.

Definition 2.3.1. Let § be a geometry. We will say that a morphism (X, Ox) — (4, Oy) in “Top(S) is étale
if the following conditions are satisfied:

(1) The underlying geometric morphism f* : X — Y of co-topoi is étale .
(2) The induced map f* Ox — Oy is an equivalence in Strg(U).

We let “Top(G)s denote the subcategory of “Top(G) spanned by the étale morphisms, and “Jopg, the
subcategory of “Top spanned by the étale morphisms.

Remark 2.3.2. Let f be a morphism in “Top(§). Condition (2) of Definition 2.3.1 is equivalent to the
requirement that f be p-coCartesian, where p : “Top(§) — “Top denotes the projection. Corollary T.2.4.2.5
implies that p restricts to a left fibration *Top(G)s — “Top(G).

Notation 2.3.3. Let (X, Ox) be a G-structured oo-topos, for some geometry G. If U is an object of X, we
let Ox |U denote the G-structure on X,y determined by the composition

I,
where 7* is a right adjoint to the projection X, — X. Then we have a canonical étale morphism
(X,0x) = (X, 0x |U)
in “Top(9).

Remark 2.3.4. Let G be a geometry, and let f : (X, Ox) — (Y,0g) be a morphism in “Top(§). For every
object U € X, we have a diagram of spaces

MapL’J’op(S)((x/Uv Ox |U)a (137 O’zﬁ)) - MapL’J’op(S)((xv Ox), (13, O’zﬂ))

| |

MapL‘J’op(:X:/U7y) MapL‘J’op(x7%)

which commutes up to canonical homotopy. Taking the vertical homotopy fibers over a point given by a
geometric morphism ¢* : X,y — Y (and its image ¢§ € Fun™(X,Y)), we obtain the homotopy equivalence

MapStrg(‘zd)(¢*(ox |U),0y) ~ MapStrg(‘j)((bS Ox, Oy).

It follows that the above diagram is a homotopy pullback square. Combining this observation with Remark
T.6.3.5.7, we deduce the existence of a fiber sequence

Mapy (1y, ¢"(U)) = Maprgapg) (X0, Ox [U), (9, 0y)) = Maproggpg) (X, Ox), (4, Oy))
(here the fiber is taken over the point determined by ¢*).
Some of basic properties of the class of étale morphisms are summarized in the following result:

Proposition 2.3.5. Let G be a geometry. Then:
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(1) Every equivalence in “Top(G)°P is étale .

(2) Suppose given a commutative diagram

(:X:7ODC) (Z’7OZ)

in LTop(G)°P, where g is étale . Then f is étale if and only if h is étale .

In particular, the collection of étale morphisms in “Top(G)°P is stable under composition, and therefore spans
a subcategory “Top(G)% C “Top(G)°P.

ét =
(3) The co-category “Top(5)% admits small colimits.

(4) The inclusion “Top(G)% C LTop(G)°P preserves small colimits (note that “Top(G)°P need not admit
small colimits in general).

(5) Fiz an object (X, 0x) € “Top(G)°P. Then the co-category (*Top(5)%)/(x,0x) is canonically equivalent
with X.

Corollary 2.3.6. Let G be a geometry. The collection of étale morphisms in “Top(G)°P is stable under the
formation of retracts.

Proof of Proposition 2.3.5. Assertion (1) is obvious. Assertion (2) follows from Proposition T.2.4.1.7, Re-
mark 2.3.2, and Corollary T.6.3.5.9.
Using Propositions T.1.2.13.8 and Theorem T.6.3.5.13, we deduce the following more precise version of

3):

(3') The oo-category “Top(§)s’ admits small colimits. OMoreover, a small diagram p : K» — “Top(G)2F is
a colimit if and only the induced map K* — L‘Iopéf is a colimit diagram.

To prove (4), let us consider a small colimit diagram K> — “Top(5)¢F. Using (3') and Theorem T.6.3.5.13,
we conclude that the composition
K* 5 Lgop(9)? L LTop™

is a colimit diagram. Proposition 1.5.6 implies that p is a limit diagram. Assertion (5) is an immediate
consequence of Remark 2.3.2. O

Remark 2.3.7. The condition that a morphism f : (X, 0x) — (Y, Oy) in *Top(G)°? be étale is local in the
following sense: if there exists an effective epimorphism [[ U, — 1x in X such that each of the induced maps
fa: (X, 0x|Us) — (Y,0y) is étale , then f is étale . To prove this, we let X° denote the full subcategory
of X spanned by those objects U for which the map (X,y,O0x |U) — (Y,0y) is étale . Proposition 2.3.5
implies that X° is stable under the formation of small colimits. In particular, Uy = [1 U belongs to X°. Let
U, be the simplicial object of X given by the Cech nerve of the effective epimorphism Uy — 1. Since X is
a sieve, we deduce that each U,, € X". Then |U,| ~ 1x € X°, so that f is étale as desired.

Example 2.3.8. Let G be a geometry, and let f : U — X be an admissible morphism in Pro(§). Then
the induced map Spec’ U — Spec” X is étale . This follows from Theorem 2.2.12, but we can also give
a direct proof as follows. Since Spec9 preserves finite limits, we can reduce to the case where f is arises
from an admissible morphism fo : Uy — Xo in G. Let Spec” X = (X, Ox), so that Ox(Xp) has a canonical
global section 7 : 1x — Ox(Xp). Set Y = 1x X, (x,) Ox(Uo) and (Y,0y) = (X,y, Ox |Y). Then there is a
canonical global section 1’ of Oy(Up). Unwinding the definitions, we deduce that o’ exhibits (Y, Oy) as an
absolute spectrum U, so that Spec”(f) can be identified with the étale map (Y, Oy) — (X, Ox).
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Definition 2.3.9. Let G be a geometry. We will say that an object (X,0x) € “Top(G)°? is an affine
G-scheme if there exists an object A € Pro(§) and an equivalence (X, Ox) ~ Spec’ A.

We will say that (X,0x) is a G-scheme if the there exists a collection of objects {Uy} of X with the
following properties:

(1) The objects {Uy} cover X: that is, the canonical map [ Uy — 1x is an effective epimorphism, where
1y denotes the final object of X.

(2) For every index a, there exists an equivalence (X, , Ox |Us) =~ Spec? A,, for some A, € Pro(9).

We will say that a G-scheme (X, Ox) is locally of finite presentation if it is possible to choose the covering
{U4} such that each A, belongs to the essential image of the Yoneda embedding § — Pro(5). We let Sch(9)
denote the full subcategory of “Top(G)° spanned by the collection of all G-schemes, and Sch(G) the full
subcategory spanned by the G-schemes which are locally of finite presentation.

We now summarize some of the basic properties of the class of G-schemes.
Proposition 2.3.10. Let G be a geometry. Then:

(1) Let f: (X,0x) — (Y,0y) be an étale morphism in “Top(G)°P. If (Y,0y) is a G-scheme, then so is
(X, Ox).

(2) Let (X,0x) be an object of “Top(G)°P. Suppose that there exists an effective epimorphism [ Uy, — 1x
in X such that each (X, ,Ox |Us) is a G-scheme. Then (X, Ox) is a G-scheme.

(3) Let Sch(G)¢: denote the subcategory of Sch(G) spanned by the étale morphisms. Then Sch(§) e is stable

under small colimits in “Top(S)% ; in particular, Sch(§) ¢ admits small colimits.
Proof. Assertion (2) follows immediately from the definitions, and assertion (3) follows immediately from
(2) and Proposition 2.3.5. Let us prove (1). In view of (2), the assertion is local on the co-topos Y; we may
therefore assume without loss of generality that (Y,0y) = Spec? A for some A € Pro(S). Let (X, 0x) ~
(Y/u,0y |U). Theorem 2.2.12 allows us to identify Y with the oo-category of sheaves ShV(Pro(S)‘}ﬂ). Con-

sequently, there exists an effective epimorphism [[, V, — U, where each V, € Shv(Pro(S)"}i) is the sheafi-
fication of the functor represented by some B, € Pro(S)*}ﬁ. It now suffices to observe that there is an

equivalence of (Y,v,, Oy |Vy) with Spec’ B, (see Example 2.3.8). O

Lemma 2.3.11. Let G be a geometry. Then the co-category Sch(§G)¢: is generated under small colimits by
the full subcategory spanned by the affine G-schemes.

Proof. Let (X,0x) be a G-scheme, and let X° C X be the full subcategory spanned by those objects V for
which (X,y,Ox [V) is affine. Let X' be the smallest full subcategory of X which contains X° and is stable
under small colimits. In view of Remark T.6.3.5.10, it will suffice to show that X' contains every object
X eX.

Since (X, Ox) is a G-scheme, there exists a collection of objects U, € X° such that the induced map
[1, Ua — 1x is an effective epimorphism. Let Xo = [[,(Us x X). Let X, X, be the simplicial object of
X given by the Cechnerve of the map Xy — X. Then X is equivalent to the geometric realization of X,.
It will therefore suffice to show that each X,, belongs to X'. Since colimits in X are universal, X,, can be
identified with a coproduct of objects having the form U,, X ... x U,,, x X. It will therefore suffice to show
that every such product belongs to X' We may therefore replace X by Uy, X ... X Uy, X X, and thereby
reduce to the case where X admits a map X — U, U € X°. Replacing X by X,y;, we may further reduce
to the case where (X, Oy) ~ Spec9 A is affine. In this case, Theorem 2.2.12 implies that we can identify X
with the oo-category Shv(Pro(S)“/‘j). Consider the composition

J: Pr0(97f,) — Fun((Pro(S)?j)oP,S) — Shv(Pro(S)?i).
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We now observe that for every admissible morphism B — A in Pro(G), Theorem 2.2.12 allows us to identify
the G-scheme (X /;(p), Ox |j(B)) with Spec” B. Consequently, the map j factors through X° C X. Since X
is generated under small colimits by the essential image of j, we conclude that every object of X belongs to
X!, as desired. O

Proposition 2.3.12. Let G be a geometry. Then the oo-category Sch(§) is locally small.
Proof. We will prove the following stronger claim:

(*) Let (X,0x) and (Y,0y) be objects of “Top(G)°P. Assume that (Y,0y) is a G-scheme. Then the
mapping space
MapL‘J’op(S)OP((xa Ox), (157 O‘d))

is essentially small.

Consider the composition

XP xY ~ L‘J’op(S)g’oxv X (L‘J'op(S)(?’O“)/)OP ~ LT0p(9) x “Top(9)P — S,

described more informally by the formula

(U7 V) = MapL‘J’op(S)OP((:X:/Uv Ox ‘U)7 (y/V7 Old |V))

Proposition 2.3.5 implies that this functor preserves limits in the first variable, and therefore determines a
map X : Y — Shvg(X). Let X’ denote the full subcategory of Shvg(X) spanned by those functors F : X7 — §
such that F'(U) is essentially small, for each U € X; according to Proposition T.5.5.2.2, the Yoneda embedding
determines an equivalence X — X’. We can then reformulate (*) as follows:

(*') The object x(1y) € Shvg(X) belongs to X'.

Let Y° denote the full subcategory of Y spanned by those objects V' € Y for which x(V) € X'. Note that
if (Y,v,0y|V) ~ Spec? A is affine, then

X(V)(U) = Mapp,og)(I'(X /1, Ox [U), A)

is essentially small for each U € X, so that V' € Y0, To complete the proof, it will suffice to show that Y° = Y.
In view of Lemma 2.3.11, it will suffice to show that ‘éo is stable under small colimits in Y. Since X’ is stable
under small colimits in Shvg(X) (see Remark T.6.3.5.17), it will suffice to show that the functor x preserves
small colimits. We will prove the following more general assertion:

(+") Let {V4} be a small diagram in Y with colimit V' € Y, and let 1 : F' — x(V) be a morphism in Shvg(X).
Then the induced diagram {F x, ) x(Va)} has colimit F' € Shvg(X).

The collection of F' € 8hvg(X) which satisfy (") is stable under (not necessarily small) colimits, since
colimits are universal in Shvg(X) (Remark T.6.3.5.17). It will therefore suffice to prove (¥”) in the special
case where F' € S8hvg(X) is a representable functor corresponding to some U € X. We can then identify n
with a morphism (X, Ox |U) — (Y,v,0y[V) in LTop(§)°P. Let f* : Y,v — X,y denote the underlying
geometric morphism of co-topoi. Using Remark 2.3.4, we can identify each F' x, ) x(Va) with the functor
represented by f*V, € X. The desired result now follows from Remark T.6.3.5.17 (and the fact that f*
preserves small colimits). O

One respect in which our theory of G-schemes generalizes the classical theory of schemes is that we work
with arbitrary oo-topoi, rather than ordinary topological spaces. Our next result (which can be regarded
as a converse to Proposition 2.3.10) shows that, for practical purposes, it often suffices to work with much
more concrete objects (such as 1-topoi):
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Theorem 2.3.13. Let G be an n-truncated geometry, for somen > —1. Suppose that (X, Ox) is a G-scheme.
Then there exists an (n+1)-localic G-scheme (Y, Oy), an (n+2)-connective object U € Y, and an equivalence

Before giving the proof, we need a few preliminary results about étale maps between co-topoi.

Lemma 2.3.14. Let X be an n-localic co-topos for some n > 0 and let U be an object of X. The following
conditions are equivalent:

(1) The pullback functor f* : X — X,y induces an equivalence on (n — 1)-truncated objects.
(2) The object U € X is (n + 1)-connective.

Proof. The implication (2) = (1) follows from Lemma T.7.2.1.13. To prove the reverse implication, choose
an (n + 1)-connective o : U — U’, where U’ is n-truncated. The implication (2) = (1) guarantees that
T<n-1X/u =~ T<n—1X,yr. Replacing U by U’, we may reduce to the case where U is n-truncated; we wish
to show that U is a final object of X.

Since X is m-localic, there exists an effective epimorphism ¢ : V. — U, where V is (n — 1)-truncated.
The assumption that U is n-truncated implies that ¢ is (n — 1)-truncated. Invoking (1), we deduce that
V ~ U x X for some (n—1)-truncated object X € X. It follows that we have an isomorphism ¢*(7,U) ~ 7,V
in the topos h(7<o X,v). Since V' is (n — 1)-truncated, we deduce that ¢*(7,U) ~ *. Because ¢ is an effective
epimorphism, we conclude that 7,U =~ x, so that U is (n — 1)-truncated. We then have an equivalence
T<n—1 X,y =~ (T<n—1X) v, so that (1) implies that the projection (7<n—1X),y — T<n—1 X is an equivalence.
This implies that U is a final object of 7<,,_1 X (hence a final object of X), as desired. O

Lemma 2.3.15. Let C be an oco-category and S a collection of morphisms in C. Let U an S-local object
of €, let w : €y — € denote the projection, and let T = 7= '(S). Then T' €,y = €,y xeS™ € (as full
subcategories of €7 ).

Proof. Tt clearly suffices to prove Lemma 2.3.15 in the special case where S consists of a single morphism
A — Bin €. Let n: X — U be an object of €. We have a homotopy commutative diagram

Mapg(B, X) —22> Mape (B, U)

| l(wo

Mape (A, X) —> Mape (4,U)

By definition, n belongs to €,y xS~ € if and only if 9 is a homotopy equivalence. Since U is S-local,
the map 1o is a homotopy equivalence; thus 1 € C,y xS ~1 @ if and only if 1 induces an equivalence after
passing to the homotopy fiber over any point 6 : Mape(B,U). If we identify ¢ with the corresponding

commutative diagram
[
B
U,

regarded as an element of T', then we can identify the induced map of homotopy fibers with the map

A B

Mapg , (8,1) — Mape,, (a,n)

induced by composition with ¢. Consequently, n € €,y X¢eS —1 € if and only if n is T-local, as desired. O
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Lemma 2.3.16. Let X be an n-localic co-topos for some n > 0, and let U be an object of X. The following
conditions are equivalent:

(1) The object U is n-truncated.
(2) The oco-topos X is n-localic.

Proof. We begin by showing that (1) = (2). Consider first the case where X = P(€), where € is a small
n-category which admits finite limits. Corollary T.5.1.6.12 implies that P(C) i is equivalent to the presheaf
oo-category Fun(C'”,8), where €' = @ xp(e) P(€),u. We note that the canonical projection p : ¢ —Cisa
right fibration associated to the functor U : €7 — §; in particular, € is essentially small. For every pair of
objects x,y € €', we have a fiber sequence

Mape: (x,y) — Mape(z,y) — Mapg(U(y), U(x)).

Since U is n-truncated and € is an n-category, we conclude that Mape/(x,y) is (n — 1)-truncated, so that
@ is equivalent to an n-category. Using Propositions T.1.2.13.8 and T.5.1.3.2, we conclude that €’ admits
finite limits, so that the presheaf co-category Fun(G/Op7 8) is an n-localic co-topos as desired.

We now prove that (1) = (2) in general. Since X is n-localic, we may assume without loss of generality
that X = S~1P(€), where € is a small n-category which admits finite limits, and S is topological (see
Definition T.6.2.1.5). Lemma 2.3.15 allows us to identify X,y with T_lfP(G)/U, where T is the inverse
image of S in P(C€),y. The first part of the proof shows that P(C),y is n-localic. According to Proposition
T.6.4.5.9, it will suffice to show that the strongly saturated class of morphisms 7" is topological.

Let Ty C T be the smallest strongly saturated class of morphisms in P(C),; which is stable under
pullbacks and contains every monomorphism belonging to 7. We wish to show that Ty = T. Consider an

arbitrary diagram
! Y
U

in P(€), corresponding to an element of 7. We then have a pullback diagram in P(€)y:

|

X xU-——

X

—Y

|

Since T is stable under pullbacks, it will suffice to show that f x idy belongs to Ty. Let Sy be the collection
of all morphisms g € S such that g x idy € Ty. Then Sy is strongly saturated, stable under pullbacks, and
contains every monomorphism in S. Since S is topological, Sy = S so that f € S, as desired. This completes
the proof of the implication (1) = (2).

Now suppose that (2) is satisfied. Choose an (n + 1)-connective morphism U — U’, where U’ is n-
truncated. The first part of the proof shows that X,y is n-localic. We may therefore replace U by U’
and thereby reduce to the case where U is (n + 1)-connective; we wish to show that U is a final object of
X. Lemma 2.3.14 implies that the geometric morphism 7* : X — X,y induces an equivalence on (n — 1)-
truncated objects. Since X and X ,; are both n-localic, we conclude that 7 is an equivalence of co-categories,
so that U is a final object of X as desired. O

ledU

Lemma 2.3.17. Let G be a geometry, and let (X,0x) be an affine G-scheme. Then X is generated under
small colimits by fiber products 1x X o, (x) Ox(U), determined by admissible morphisms U — X in G and
global sections 1o — Ox(X).
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Proof. In view of Theorem 2.2.12, we may suppose that (X,Ox) = (Spec A, Ogpec 4), for some object A €
Pro(G). The oo-topos Spec A is a localization of the oo-category X' = Fun((Pro(S)‘/*dA)OPﬁ), and X is
generated under small colimits by corepresentable functors ey, where ¢ ranges over admissible morphisms
B — A in Pro(§). Let 4 € X denote the image of es under the localization functor X' — X.

By definition, every admissible morphism B — A in Pro(§) fits into a pullback diagram

where 7 : § — Pro(9) denotes the Yoneda embedding, and U — X is an admissible morphism in X.
Unwinding the definitions, we deduce that €y ~ 1x X, (x) Ox(U), where the section 1x — Ox(X) is
determined by the map A — j(X). We now conclude by observing that the functors €, generate X under
small colimits. O

Proof of Theorem 2.5.15. Let 7<,, X denote the underlying n-topos of X (that is, the full subcategory of X
spanned by the n-truncated objects). We let Y denote the (n + 1)-localic reflection of X. It is characterized
up to equivalence by the following properties:

(a) The oo-topos Y is (n + 1)-localic.

(b) There is a geometric morphism 7* : Y — X which induces an equivalence of co-categories 7<,, Y —
T<n X.

Since G is n-truncated, the functor Ox : § — X automatically factors through 7<, X. We may therefore
assume without loss of generality that Oy = 7* o Oy for some G-structure Oy : § — Y (which is determined
uniquely up to equivalence). We have an evident morphism (Y, 9y) — (X, Ox) in *Top(G).

We will show that 7* is étale : that is, that 7* induces an equivalence Y,y ~ X for some object U € X.
Lemma 2.3.14 will then imply that U is (n+2)-connective. In particular, U — 1y is an effective epimorphism.
Then Proposition 2.3.10 will imply that (Y, Oy) is a G-scheme, and the proof will be complete.

Let X° denote the full subcategory of X spanned by those objects V € X such that the induced geometric
morphism 7y, : Y — X,y is étale . We wish to show that X° = X. Proposition 2.3.5 implies that X° is stable
under small colimits in X. In view of Lemma 2.3.11, it will suffice to show that X° contains every object V' for
which the G-scheme (X /v, Ox [V) is affine. Assumption (b) implies that 7<,,V ~ 7*W, for some n-truncated
object W € Y. The truncation map « : V — 7*W determines a homotopy commutative diagram of co-topoi

y "X

|,

To complete the proof, it will suffice to show that ¢* is an equivalence of co-categories.

By assumption, (X,y, Ox [V) is an affine G-scheme. Since the geometry § is n-truncated, Theorem 2.2.12
implies that X,y is (n + 1)-localic. Since Y is (n + 1)-localic and W is n-truncated, Lemma 2.3.16 implies
that Y,y is (n + 1)-localic. It will therefore suffice to show that ¢* induces an equivalence of (n 4 1)-topoi
¢%y,  T<n 9w — T<n X v. Since W is n-truncated, we have canonical equivalences

T<ndw = (T<n ¥)yw = (T<n X) frew = T<n Xymew -

Since the morphism « is (n-+1)-connective, Lemma T.7.2.1.13 implies that the pullback functor 7<,, Xz —
T<n X,y 1s fully faithful. This proves that ¢Z,, is fully faithful.
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To complete the proof, it will suffice to show that ¢% , is essentially surjective. Let C denote the essential
image of ¢%,. Since ¢%, is preserves finite limits, small colimits, and is fully faithful, the subcategory
€ C 7<, X,y is stable under finite limits and small colimits. Because ¢* o (Oy |[W) ~ (Ox |V), the oo-
category € contains the essential image of Ox |V. Since (X, Ox V) is an affine §-scheme, Lemma 2.3.17
implies that Xy is generated under small colimits by € C X ,y. It follows that 7<, X,y is generated under
small colimits by €. Since € is stable under small colimits in 7<, Xy, we deduce that € = 7<, X,y as
desired. O

We now discuss the behavior of the co-categories of G-schemes as G varies.

Proposition 2.3.18. Let f : G — G be a transformation of geometries, and Specg/ : LTop(G)r —
LTop(G')°P the relative spectrum functor constructed in §2.1. Then:

(1) The functor Specg/ preserves étale morphisms. More precisely, suppose that (X,0x) € “Top(G). Let
UeX,let(X',0%)€Top(9'), and let a : (X', 0% of ) — (X, Ox) be a morphism in “Top(G)°P which
ezhibits (X', 0%) as a relative spectrum of (X, Ox). Then the induced map

(x//a*U’ (OXI |Oz*U) o f) — (X/U, Ox |U)
exhibits (DC//MU, Ox |a*U) as a relative spectrum of (X,y, Ox |U).
2) The relative spectrum functor Specg, carries affine G-schemes to affine G -schemes.
S

(3) The relative spectrum functor Specg/ carries G-schemes to G -schemes.

(4) The relative spectrum functor Specgl carries G-schemes which are locally of finite presentation to
G'-schemes which are locally of finite presentation.

Proof. Assertion (1) follows from Lemma 2.1.3 and (2) from the homotopy commutative diagram

pec?

Pro(9) _Spee LTop(G)or

\L \LSpecg/

;, Specty /
Pro(§') ——= “Top(g')°P.
Assertions (3) and (4) follow from (2), together with Lemma 2.1.3. O

Remark 2.3.19. Let § be a geometry. Suppose that the topology on Pro(§) is precanonical (see Remark
2.2.10). Then for any pair of objects, A, B € Pro(§), we have canonical homotopy equivalences
Mapsch(g)(Specg A, Spec? B) =~ Mappro(g)(z‘l, Ig (Spec9 B))
~ Mappro(g)(A, I's(Spec B, Ogpec B)
Mapp,o(g)(4, B).

1

In other words, the functor Spec” : Pro(G) — Sch(9) is fully faithful.
We close with a brief discussion of the existence of limits of G-schemes.

Remark 2.3.20. Let § be a geometry, and let f : (X,0x) — (Y,0y) be a morphism in “Top(§)°P. For
every object U € Y, we have a pullback diagram

(X)pev, Ox | f*U) —— (Y,u, Oy [U)

l l

(X, Ox) ——— (¥, 0y);

this follows easily from Remark 2.3.4.
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Proposition 2.3.21. Let G be a geometry. Then:

(1) The full subcategory Sch’™(G) C Sch(S) is admits finite limits, and the inclusion Sch™(G) C “Top(G)°?
preserves finite limits.

(2) Suppose that the Grothendieck topology on Pro(§) is precanonical. Then Sch(G) admits finite limits,
and the inclusion Sch(G) C “Top(G)°P preserves finite limits.

Before giving the proof, we need to establish a bit of notation. Let S denote the oo-category of spaces
which are not necessarily small. We will say that a functor F : “Top(G) — 8§ satisfies descent if, for every
object (X, Ox) € “Top(9), the composition

X ~ L‘J’op(S)?&@x)/ — LTop(9) 53

preserves small limits. Let S/h;(L‘J'op(S)"p) denote the full subcategory of Fun(LU'op(S),g) spanned by

those functors which satisfy descent (the oco-category S/IRJ(L‘Top(S)"p) can be regarded as an oco-topos in
a larger universe, but we will not need this fact). Proposition 2.3.12 implies that the Yoneda embedding

j:LTop(9)Pr — Fun(LTop(S),g) factors through S/}E(L‘.Top(g)"p).
Lemma 2.3.22. Suppose given a commutative diagram

F ¢ o

N 7

n %(L‘J'op(g)olj). Suppose further that there exists a collection of objects U, € X with the following
properties:

(a) The objects Uy cover X; in other words, the map [[ U, — 1y is an effective epimorphism.
(b) For each index «, the induced map
F X jx,00) 30, 0x [Ua) = F' X jx,00) 3(X/v,, Ox [Ua)
is an equivalence.

Then ¢ is an equivalence.

Proof. Let (Y,0y) be an object of “Top(§), and let i be a point of F'(Y,Oy). We wish to show that the
homotopy fiber of the map F(Y,0y) — F'(Y,Oy) over 7 is contractible. Let f be the functor given by the
composition

YoP ~ L‘.Top(S)?gyoy)/ — LTop(9) 55,

let f':YP — 8 be defined similarly, and let g : Y°” — 8 be the functor described by the formula g(V) =
J(V)xpvy{n} (where we identify n with its image in (Y v/, Oy [V'). Let Y° denote the full subcategory of
Y spanned by those objects V' € Y such that g(V') is contractible. Since g preserves small limits, Y9 is stable
under small colimits in Y. To complete the proof, it will suffice to show that Y° contains the final object
ly €Y.

The point 7 determines a geometric morphism ¢, : Y — X. For each index «, let V, = ¢*U, € Y. Let
Yy = [1,, Va. Assumption (a) guarantees that the projection map p : Yy — 1y is an effective epimorphism.
Let Y, be the simplicial object of Y given by the Cechnerve of p, so that

Vo ] Vao X% Va,.

Q- O

58



Hypothesis (b) implies that Y° contains the sieve generated by the objects V,,; in particular, it contains every
product Vi, x ... x V,, . Since %JO is stable under small colimits, it contains each Y,,, and therefore contains
the geometric realization |Y,| ~ 1y as desired. O

Lemma 2.3.23. Let a: F — j(X, Ox) be a morphism in S/I;/(L‘J'op(g)"p). Suppose that there exists a family
of objects {U,, € X} with the following properties:

(a) The objects U, cover X; in other words, the map [[Us — 1x is an effective epimorphism.

(b) For each index «, the fiber product

F X jx,02) (X v, Ox [Ua)
is representable by a G-scheme (Y4, Oy,).
Then F is representable by a G-scheme (Y, Oy).

Remark 2.3.24. In the situation of Lemma 2.3.23, the G-schemes (Y,,0y,) form an étale covering of
(Y,0y). In particular, if each (Y4, Oy, ) is locally of finite presentation, then (Y,Oy) is locally of finite
presentation.

Proof. Let X° denote the full subcategory of X spanned by those objects U for which the fiber product
F X j(x,00) §(X/0, 0x |U)

is representable by a G-scheme Xp. Remark 2.3.20 implies that X° is a sieve in X: that is, if f: V — U is a
morphism in X and U € X, then V € X°. We will prove:

(*) The full subcategory XY C X is stable under small colimits.

Assuming (x) for the moment, we can complete the argument as follows. By hypothesis, each U, belongs
to XY. By (%), the object Xo = ], Us belongs to X°. Let X, be the simplicial object of X given by the
Cechnerve of Xy — 1x (so that X, ~ X"+1). Since X° is a sieve, each X,, belongs to X°. Applying (%)
again, we deduce that 1y ~ |X,| belongs to x° , which is equlvalent to the desired assertion.

To prove (), let us consider a small dlagram p: K — X" andlet U = colim(p) € X; we wish to show that
U e X°. Let p' : K — Sch(§) be the functor described by the formula p/(v) = Xp(v)- Using Remark 2.3.20,
we deduce that p’ factors through Sch(G)e. Proposition 2.3.10 implies that p’ admits a colimit (Z,Og) in
Sch(G)et. Since F' satisfies descent, we obtain a canonical map j(Z, 0z) — F. It follows from Lemma 2.3.22
that this map is an equivalence. O

Proof of Proposition 2.3.21. Let € denote the essential image of the composite map

Sch(S) € “Top($)”” L Fun(*Top(§),S),
and let €™ C @ be defined similarly. Assertions (1) and (2) can be reformulated as follows:

(1') The full subcategory G C Fun(L‘J'op(S),g) is stable under finite limits.

(2') If the Grothendieck topology on Pro(9) is precanonical, then the full subcategory € C Fun(*Top(9), B)
is stable under finite limits.

We will prove (1') and (2’) under the assumption that the Grothendieck topology on Pro(§) is precanonical,
indicating where necessary how to eliminate this hypothesis in the proof of (1’). We begin by observing that
" C @ contains the final object of ]§‘un(L‘J’op(9),g)7 since this final object is representable by the spectrum
of the final object of Pro(). It is therefore sufficient to show that €1 and € are stable under the formation
of pullbacks.
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Consider a pullback diagram
FrF—G

L,k

F——G

in Fun(“*Top(9), g), where G', G and F belong to € (or €™). Then G is representable by a G-scheme (X, Ox)
(which is locally of finite presentation). We wish to show that F’ € € (or ™). In view of Lemma 2.3.23
(and Remark 2.3.24), the assertion is local on X; we may therefore assume without loss of generality that
(X, 0x) = Spec? A is affine (where A belongs to the essential image of the Yoneda embedding § — Pro(9)).

By assumption, the functor G’ is representable by a G-scheme (Y, Oy). The desired conclusion is also
local on Y, so we may assume without loss of generality that (Y, Oy) = Spec? A’ is affine (and A’ belongs to
the essential image of the Yoneda embedding § — Pro(9)). Since the Grothendieck topology on Pro(9) is
precanonical, Remark 2.3.19 implies that the map a : G’ — G is induced by a morphism A’ — A in Pro(9)
(in the proof of (1), we must work a bit harder. The universal property of Spec? A implies that a : ¢/ — G
is determined by a point 7 € Oy(A). The construction of Theorem 2.2.12 allows us to identify Oy(A) with
the sheafification of the presheaf (97%,)0” — 8 described by the formula A” — Mapg(A”, A). It follows that
after further localization on Y, we may assume that « is induced by a map A’ — A in G).

Using the same argument, we can suppose that F' is representable by the affine G-scheme Spec9 B, where
B € Pro(9) (and belongs to the essential image of the Yoneda embedding § — Pro(9)), and /5 is induced by
a morphism B — A in Pro(G). It follows that F” is representable by the affine G-scheme Spec?(B x4 A'),
so that F' € € (F' € C™), as desired. O

2.4 The Functor of Points

In classical algebraic geometry, we can often understand algebraic varieties (or schemes) as arising as the
solutions to moduli problems. For example, the n-dimensional projective space P™ can be characterized
as follows: it is universal among schemes over which there is a line bundle £ generated by (n + 1) global
sections. In particular, for any commutative ring A, the set Hom(Spec A, P™) can be identified with the set
of isomorphism classes of pairs (L,n : A"*1 — L) where L is an invertible A-module and 7 is a surjective
map of A modules (such a pair is determined up to unique isomorphism by the submodule ker(n) C An+1).

More generally, any scheme X determines a covariant functor from commutative rings to sets, given by
the formula

A — Hom(Spec 4, X).

This functor determines X up to canonical isomorphism. More precisely, the above construction yields a fully
faithful embedding from the category of schemes to the presheaf category Fun(CRing, Set). Consequently,
it is possible to think of schemes as objects of Fun(CRing, Set), rather than the category of locally ringed
spaces. This point of view is often valuable: frequently it is easier to describe the functor represented by a
scheme X than it is to give an explicit construction of X as a locally ringed space. Moreover, this perspective
becomes essential when we wish to study more general algebro-geometric objects, such as algebraic stacks.

Our goal in this section is to obtain an analogous understanding of the oo-category Sch(G) of G-schemes,
where § is an arbitrary geometry. We begin by reviewing a bit of notation. Let 8 denote the oo-category
of (small) spaces, and 8 the larger co-category of spaces which are not necessarily small. Fix a geometry G,
and let j : “Top(§)P — Fun(L‘J'op(S)7g) denote the Yoneda embedding. The main result of this section is
the following:

Theorem 2.4.1. Let G be a geometry, and let ¢ denote the composite functor

o Spe

Sch(S) C “Top()™ & Fun(*Top(9), 8) “S25° Fun(Ind(5),8),

where Spec? : Ind(§°7) — L“Top(§) denotes the absolute spectrum functor constructed in §2.2. Then:
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(1) The essential image of ¢ is contained in the essential image of the inclusion
Fun(Ind(G%),8) € Fun(Ind(5%), 8).

(2) The functor ¢ is fully faithful.

Assertion (1) is equivalent to the statement that the mapping space MapL%p(g)((DC, Ox), Spec’ A) is
essentially small whenever (X, Ox) is a G scheme and A € Pro(9); this follows from Proposition 2.3.12. The
proof of (2) will occupy the remainder of this section.

Definition 2.4.2. Let § be a geometry. We will say that a functor F' : Ind(5°?) — S is representable by a
G-scheme if F belongs to the essential image of the functor ¢ appearing in Theorem 2.4.1.

Our first step is to isolate one key feature of representable functors F' : Ind(G°?) — S. Namely, they are
sheaves with respect to the natural Grothendieck topology on Pro(§). However, we must exercise a bit of
care because the co-category Pro(§) is not small.

Definition 2.4.3. Let G be a geometry, and let F : Ind(5°?) — S be a functor. We will say that F is a
sheaf if, for every object A € Ind(5°?), the composition

~

Ind(G%) 4, — Ind(5%) 58

is a sheaf in the sense of Definition 1.1.9 (here we regard (Ind(§),4)? =~ Pro(§),4 as endowed with the

Grothendieck topology described in Notation 2.2.6). We let @(Pro(g)) denote the full subcategory of
Fun(Ind(5°?), 8) spanned by the sheaves, and set

Shv(Pro(§)) = Shv(Pro(S)) N Fun(Ind(5%), 8).
The basic properties of sheaves are summarized in the following result:
Proposition 2.4.4. Let G be a geometry.
(1) The inclusion S/h;(Pro(S)) C Fun(Ind(S%),8) admits a left adjoint L.

(2) If F € Fun(Ind( ?),8), then LF € S/h;(Pro(S)) belongs to the essential image of the inclusion
Shv(Pro(g)) C Shv(Pro(S)).

(3) The inclusion 8hv(Pro(9)) C Fun(Ind(5°), 8) admits a left adjoint L.

(4) The oo-category Shv(Pro(S)) admits small limits and colimits. Moreover, a small diagram p : K* —
Shv(Pro(§)) is a colimit diagram if and only if, for every object A € Pro(G), the composition

K” — 8hv(Pro(§)) — Shv(Pro(§)74)
is a colimit diagram.

(5) The oo-category S/l—l;(Pro(S)) admits limits and colimits. Moreover, a diagram p : K* — S/IE(Pro(S))
is a colimit diagram if and only if, for every object A € Pro(9), the composition

K” — 8hv(Pro(9)) — Shv(Pro(9)3)
is a colimit diagram.

(6) The inclusion Shv(Pro(§)) C S/IF/(Pro(S)) preserves small limits and colimits.
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Warning 2.4.5. The oo-category S8hv(Pro(9)) is usually not an oo-topos, because it is not presentable.

However, this is merely a technical annoyance. Note that the (very large) oo-category SThT/(Pro(S)) can be
regarded as an oo-topos after a change of universe.

The proof of Proposition 2.4.4 will require a few preliminary results concerning the theory of sheaves.
We first discuss the pushforward operation associated to a morphism between Grothendieck sites.

Lemma 2.4.6. Let C be a nonempty co-category. Assume that for every pair of objects X,Y € C, there
exists a product X XY € C. Then C is weakly contractible.

Proof. Fix an object X € C. By assumption, the projection F': C;x — € admits a right adjoint G. Then
we have natural transformations
ide <+ FG — T,

where T : € — C is the constant functor taking the value X. This proves that the identity map ide is
simplicially homotopic to a constant map, so that € is weakly contractible as desired. O

Lemma 2.4.7. Let T and T’ be small co-categories equipped with Grothendieck topologies. Assume that T
admits finite limits. Let f : T — T’ be a functor with the following properties:

(a) The functor f preserves finite limits.

(b) For every collection of morphisms {U, — X} which generate a covering sieve on X € T, the resulting
collection of morphisms {fU, — fX} in T’ generates a covering sicve on fX € T'.

Then:
(1) For every co-category C, composition with f induces a functor f. : Shve(T’) — Shve(T).
(2) If € =8, then f. is a geometric morphism of co-topoi.

Proof. We first prove (1). Let O : 7' — @ belong to Shve(T’). We wish to show that ©of belongs to
S8hve(T). In other words, we wish to show that for every object X € T and every covering sieve ‘J'%)( CIx,
the functor O of exhibits O(fX) as a limit of the diagram

() = gr Ly S
Let ‘J";lf)x C ‘J"/ sx be the sieve generated by f f]'(/gz. Assumption (b) implies that ‘J"(/lf)X is a covering sieve
on fX. Since O is a sheaf, the diagram

@) 57" Se

is a limit diagram. It will therefore suffice to show that the functor f induces a left cofinal map ‘.T;g)( — ‘J"(/lf)X.

In view of Corollary T.4.1.3.1, we must show that for every morphism ¥ — fX belonging to ‘J'/jlf)X, the

oo-category
_ (0) /(1)
C= T/X X(J.,yf)xj' Y/ /X
is weakly contractible. Since ‘J"(/lf)x is generated by ‘J’%)(, the oco-category € is nonempty. Assumption (a)
guarantees that € admits pairwise products. The contractibility of € now follows from Lemma 2.4.6.
We now prove (2). Let f, : P(T') — P(T) be given by composition with f, and let f : P(T) — P(T’) be
a left adjoint to f,. Proposition T.5.2.6.3 implies that ?* fits into a homotopy commutative diagram

f

J—s7

L,

P(T) L= (T,
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where the vertical arrows are Yoneda embeddings. Applying (a) and Proposition T.6.1.5.2, we conclude that
7* is left exact. We now observe that f, has a left adjoint f* given by the composition

Shv(T) € P(T) L P(7) L shv(T),

where L is a left adjoint to the inclusion Shv(T’) C P(T") (and therefore left exact). As a composition of left
exact functors, f* is left exact as desired. O

Lemma 2.4.8. Let T be a small co-category equipped with a Grothendieck topology. Let X be an object of
T, and let ¢ : P(T) — P(T,x) be given by composition with the projection T)x — T. Let a : F — F' be a
natural transformation in P(T) which exhibits F' as a sheafification of F. Then ¢(a) : ¢F — ¢F’ exhibits
®F" as a sheafification of ¢F (with respect to the induced Grothendieck topology on T /x ).

Proof. Let L : P(T) — Shv(7T) denote a left adjoint to the inclusion, and let S be the collection of all
morphisms f in P(T) such that Lf is an equivalence. Let Ly : P(T,x) — Shv(T,x) and Sx be defined
similarly. It follows immediately from the definition that "y € 8hv(T,x). To complete the proof, we must
show that ¢(«) € Sx. Since a € S, it will suffice to show that ¢(S) C Sx.

Let j : T — P(7T) denote the Yoneda embedding. The functor ¢ preserves finite limits (in fact all limits)
and small colimits. Consequently, ¢~ Sx is a strongly saturated class of morphisms in P(7T) which is stable
under pullbacks. Thus, in order to prove that S C ¢~ 'Sy, it will suffice to show that ¢Sy contains every
monomorphism of the form U — j(Y'), where U corresponds to a covering sieve T%E C T)y. In other words,

we must show that the induced map ¢(U) — ¢(j(Y)) belongs to Sx. Let jx : T/x — P(T,x) denote the
Yoneda embedding for T,x. Since Sx is stable under small colimits, it will suffice to show that for every
object X’ — X of T,x and every map 3 : jx(X') — ¢j(Y), the induced map

i o(U) Xg(i(vy) Jx (X)) = jx(X)

belongs to Sx. We can identify that map 8 with a morphism X’ — Y in 7. We now observe that i is a
monomorphism classified by the sieve

‘.T(/(Q Xg'/y (‘T/X’ - (‘T/X’ .

Since this sieve is a covering (with respect to the Grothendieck topology on T,x/), the morphism i belongs
to Sx as desired. O

Lemma 2.4.9. Let p: X — Y be a functor between oo-categories, X° a full subcategory of X, and py = | x°.
Assume that the following conditions are satisfied:

(a) The functors p and py are Cartesian fibrations.
(b) The inclusion X° C X carries po-Cartesian morphisms in X° to p-Cartesian morphisms in X.
c) For every object Y €Y, the inclusion of fibers XV C Xy admits a left adjoint.

Y

Let © denote the co-category Funy (Y, X) denote the co-category of sections of p, and let el = Funy (Y, DCO) ce
be defined similarly. Then:

(1) The inclusion €° C C admits a left adjoint.

(2) A morphism X — X' in C exhibits X' as a C°-localization of X if and only if, for each object Y € Y,
the induced map X(Y) — X' (Y) exhibits X' (Y) as a X3 -localization of X(Y) € Xy.

Proof. This is a special case of Proposition A.7.3.2.6. O
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Lemma 2.4.10. Let C be an essentially small co-category equipped with a Grothendieck topology. Let
a: F — F' be a morphism in P(C) be a morphism which exhibits F' as a S8hv(C)-localization of F in P(C).

Then a also exhibits F' as a Shvg(C)-localization of F' in Fun(€,8).

Proof. Without loss of generality, we may suppose that € is small. Let L be a left adjoint to the inclusion
S8hv(€) C P(C), and let S be the collection of all morphisms 3 in P(C) such that L(f) is an equivalence. Let

S C Homget (Al,Fun(GOp,g))

be defined similarly. To prove the desired assertion, we must show that F’ € 8hvg(€) and that a € S. The

first assertion is obvious; to prove the second, it will suffice to show that S C S.

Let S’ be the collection of all morphisms in P(€) which belong to S. Then S’ is strongly saturated and
stable under pullbacks; we wish to show that S C S’. For this, it suffices to observe that S’ contains every
monomorphism 5 : x — j(C), where j : € — P(C) is the Yoneda embedding, C' € C is an object, and x is
the subobject of j(C) associated to a covering sieve G?C C €. O

Proof of Proposition 2.4.4. The proof is similar to that of Lemma T.6.3.5.21. Let Fun®!(A', Ind(G°?)) denote
the full subcategory of Fun(A!,Ind(G°?)) spanned by the admissible morphisms in Ind(G), and let e :
Fun®!(A', Ind(G%?)) — Ind($°) be given by evaluation at the vertex {0} € A'. Since the collection of
admissible morphisms of Ind(G°?) is stable under pushouts, the map e is a coCartesian fibration.

We define a simplicial set X equipped with a projection p : X — Ind(G°?) so that the following universal
property is satisfied: for every simplicial set K, we have a natural bijection

Homlnd(gop) (K, IX:) = HomgetA (K XInd(SDP) F\llnad(Al, Ind(SOP)), 8)

Then X is an oo-category, whose objects can be identified with pairs (A, F), where X € Ind(§°") and
F :Ind(G°?)*/2d — 8 is a functor. It follows from Corollary T.3.2.2.13 that the projection p is a Cartesian
fibration, and that a morphism (A, F') — (A’, F’) is p-Cartesian if and only if, for every admissible morphism
A — B, the canonical map F(B) — F'(A"[[, B) is an equivalence in 8.

For every admissible morphism f in Ind(G°), classified by a map A — Ind(G°?), the pullback

Funad(Al,Ind(SOp)) xInd(S"p) Al — Al

is a Cartesian fibration. Applying Corollary T.3.2.2.13 again, we conclude that the projection X xlnd(gop)Al
is a coCartesian fibration. In other words, given an object (A, F) € X and an admissible morphism f :
A — A’ in Ind(G°?), there exists a locally p-coCartesian morphism f : (A, F) — (A’, F’) lifting f, which is
characterized up to equivalence by the requirement that the map F(B) — F'(B) is an equivalence for every
admissible morphism A’ — B. Invoking Corollary T.5.2.2.4, we conclude that f is actually p-coCartesian.
Let Y = Funpq(gery(Ind(§?”), X) denote the co-category of sections of p. Unwinding the definition, we

can identify Y with the co-category Fun(Fun®(A!, Ind(G%)), 8). Let Ind($°)’ denote the essential image of
the (fully faithful) diagonal embedding Ind(G%) — Fun®@(A',Ind(G%)). Consider the following conditions
on a section s : Ind(§°?) — X of p:

(a) The functor s carries admissible morphisms in Ind(G°?) to p-coCartesian morphisms in X.

(b) Let S : Fun®*!(A!,Ind(G°?)) — 8 be the functor corresponding to s. Then, for every commutative

diagram
B

A——C

of admissible morphisms in Pro(§), the induced map S(A — C) — S(B — C) is an equivalence in S.
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(¢) For every admissible morphism A — B in Pro(§), the canonical map S(idsa) — S(4A — B) is an
equivalence in 8.

(d) The functor S is a left Kan extension of S| Ind(5°7)’.

Unwinding the definitions, we see that (a) < (b) = (¢) < (d). Moreover, the implication (¢) = (b) follows
by a two-out-of-three argument. Let Y’ denote the full subcategory of Y spanned by those sections which
satisfy the equivalent conditions (a) through (d); it follows from Proposition T.4.3.2.15 that composition
with the diagonal embedding Ind(G°) — Fun®® (A, Ind($°)) induces an equivalence

0 :Y" — Fun(Ind(§°?), 8) — Fun(Ind(5?), 8).

Let X, denote the full subcategory of X spanned by those objects (A, F), where F : (Ind(G°?)2d)4/ — 8
is a sheaf. Let Yo denote the full subcategory of Y spanned by those sections which factor through Xy, and
let % =Y'NY,. Unwinding the definitions, we see that  restricts to an equivalence 6y : ‘dg — 8hv(Pro(9)).
Consequently, to prove (3), it will suffice to show that the inclusion Y C Y admits a left adjoint. For this,
we will show that the inclusion Yy C Y admits a left adjoint L, and that LY C 96. Since p restricts to a
Cartesian fibration pg : Xo — Ind(§°?) (Lemma 2.4.7), the first assertion follows from Lemma 2.4.9. The
second is then a translation of Lemma 2.4.8. o "

Assertion (1) can be proven using an analogous argument. Namely, we let X, Xo, Y, Yo, ¥, and Y, be
defined in the same way as X, Xo, Y, Yo, ¥, and Y, with the exception that the oo-category 8 of small
spaces is replaced by the larger co-category S of all spaces. Then we have a commutative diagram

~/ ~/

9o

|

Shv(Pro(§)) — Fun(Ind(5%), 8)

i

where the vertical maps are categorical equivalences; it therefore suffices to show that i admits a left adjoint
L, which follows from the arguments above. (We could also argue more directly by viewing S/IR/(Pro(S)) as
an oo-topos of sheaves on a Grothendieck site in a larger universe.)

To prove (2), it will suffice to show that if a : F — F’ is a morphism in Y which exhibits F’ as a

1z}g—localiza’ciom of F, then « also exhibits I’ as a gg—localization of F'in 9’. In view of Lemma 2.4.9, it will
suffice to test this assertion fiberwise on Ind(G°?), where it reduces to Lemma 2.4.10.

We now give the proof of (4); the proof of (5) is nearly identical and left to the reader. The case of limits
is clear (since Shv(Pro(9)) is stable under small limits in Fun(Ind(G°?),8)). Since 6y is an equivalence, the
assertion regarding colimits can be reformulated as follows:

(4) The oo-category Yy admits small colimits. Moreover, a small diagram ¢ : K> — Yj, is a colimit diagram
if and only if, for every object A € Ind(G)°?, the induced map g4 : K* — Shv(Pro(S)?ﬁ) is a colimit
diagram.

Since the map pg is a Cartesian fibration, Proposition T.5.1.2.2 immediately yields the following analogue
of (4):
(4") The oo-category Yo admits small colimits. Moreover, a small diagram g : K* — Y is a colimit diagram

if and only if, for every object A € Ind(5)°?, the induced map g4 : K* — Shv(Pro(S)?‘f‘) is a colimit
diagram.

To deduce (4) from (4"), it suffices to observe that Yy is stable under small colimits in Y, since for every
admissible morphism f : A — B in Ind(§°?) the induced functor f* : ShV(Pro(S)i;i) — ShV(Pro(S)'(/‘%) is a
geometric morphism of oo-topoi (Lemma 2.4.7) and therefore preserves small colimits.
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To prove (6), we must show that the inclusion Shv(Pro(G)) C S/hT/(Pro(S)) preserves small limits and
colimits. In the case of limits, this follows from the observation that the inclusion Fun(Ind(§)°?,8) —

Fun(Ind(G)°P ,g) preserves small limits (which in turn follows from Proposition T.5.1.2.2). To handle the
case of colimits, it will suffice to show that the inclusion Xy C Xy preserves small colimits after passing to
the fiber over every object A € Ind(G°?). In other words, we must show that the inclusion Shv(Pro(S)j‘f‘) -

S/er/(Pro(S)?j) preserves small colimits. This follows from Proposition 1.1.12 and Remark T.6.3.5.17. O

Remark 2.4.11. Although the oco-category Shv(Pro(G)) is not an co-topos, it can be identified with the
limit of a (large) diagram of co-topoi. It therefore has many features in common with oo-topoi. For
example, there is a good theory of effective epimorphisms in 8hv(Pro(9)): we say that a map « : Fy — F
in 8hv(Pro(§)) is an effective epimorphism if it restricts to an effective epimorphism in each of the oo-
topoi Shv(Pro(S)‘}‘i) (equivalently, « is an effective epimorphism if it is an effective epimorphism in the

larger oo-category S/h;(Pro(S)), which is an oo-topos in a larger universe). As in an ordinary oco-topos, we
have effective descent: namely, if F, denotes the Cechnerve of «, then the canonical map |F,| — F is an
equivalence in 8hv(Pro(9)).

Lemma 2.4.12. Let G be a geometry, let (X, Ox) be an object of “Top(G), and let e : “Top(G) — S be the
functor corepresented by e. Then the composite map

Tnd(5%) 525" Loop(5) 5 §
belongs to S/h;(Pro(S)).
Proof. Fix an object A € Ind(9)°P; we wish to show that the composition
Ind(§)%, % md(G%) 25" Loop(g) 5 §
is a sheaf on Ind(SOp)ff/. We note that the composition Spec? of can also be written as a composition

Ind(G°)%) % Shv(Pro(§)j4) ~ Lﬂ'op(S)St"e“S Al 5 Lgop(9),

where ¢ is the (opposite of) the composition of the Yoneda embedding j : Plro(g)j‘f1 — Fun(Pro(S)?i,S)

with a left adjoint to the inclusion Shv(Pro(S)jﬂ) - Fun(Pro(S)a/ﬂ7 8). In view of Proposition 1.1.12, it will
suffice to show that the composition

L‘J’op(S)ZpeCS Al LTop(g) & S

preserves small limits, which follows immediately from Proposition 2.3.5. O

Lemma 2.4.13. Let G be a geometry. Then the composition
LTop(9)*? — Fun(*Top(9),8) — Fun(Ind(§°"),8)
factors through a functor ¢ : “Top(G)°P — S/}R/(Pro(g)). Moreover, the composition
LTop(G)% C “Top(5)*? % Shv(Pro(S))

preserves small colimits.
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Proof. The first assertion is merely a translation of Lemma 2.4.12. To prove the second, it will suffice to
show that for every object A € Pro(§), the induced map

@4 “Top(§)F — 8hv(Pro(§)%)

preserves small colimits (Proposition 2.4.4). Using Proposition 1.1.12 and Theorem 2.2.12, we can identify
the target with Shvg(Y), where (Y, 0y) = Spec? A.
Let us consider an arbitrary small diagram {(X,, Ox.)} in *Top(§)°?, having colimit (X, 9x). We then
have canonical identifications
(DCQ, Oxa) >~ (:X:/Ua,Ox |Ua)

for some diagram {U,} in X having colimit 1x. To prove that ¢, preserves this colimit diagram, it will
suffice to show that the composition

X = (“Top(G)5 )77 — Top(8)% 4 Shvg(y)

é

preserves small colimits. This follows from the proof of Proposition 2.3.12 (more specifically, assertion
(")) O

We now return to our main result.

Proof of Theorem 2.4.1. In view of the first assertion of the theorem and Lemma 2.4.13, we may regard ¢
as a functor Sch(G) — 8hv(Pro(G)). We wish to show that this functor is fully faithful. In other words, we
must show that for every pair of objects X, Y € Sch(§), the induced map

’(/}X,Y : MapSch(S) (X7 Y) - MapShv(Pro(S)) (¢X7 ¢Y)

is a homotopy equivalence.

Let us regard Y as fixed, and let Sch(§)Y, be the full subcategory of Sch(§)s spanned by those objects X
for which ¢ x y is a homotopy equivalence. Using Lemma 2.4.13, we conclude that Sch(g)gt is stable under
small colimits in Sch(G)s. We wish to show that Sch(§)% = Sch(G)et. In view of Lemma 2.3.11, it will
suffice to show that Sch(§)?, contains every affine G-scheme. In other words, we are reduced to proving that
Yx y is a homotopy equivalence when X is affine, which is obvious. O

Warning 2.4.14. In the classical theory of schemes, a scheme (X, Ox) is locally of finite presentation (over
the integer Z, say) if and only if the associated functor Fx : CRing — Set preserves filtered colimits. The
analogous assertion is false in the present setting: if (X, Ox) is a G-scheme which is locally of finite presen-
tation, then the associated functor Ind(G°?) — 8 need not preserve filtered colimits in general. However, it
remains true if we assume that X is n-localic for some n > 0. We will give a more detailed discussion in a
future paper.

Theorem 2.4.1 allows us to identify Sch(§) with a full subcategory of 8hv(Pro(§)) C Fun(Ind(5°?),8).
We might now ask for a characterization of this subcategory. In other words, given a “moduli functor”
F : Ind(G°?) — 8, under what conditions is F' representable by a G-scheme? We will return to this question
in a sequel to this paper. For the time being, we will content ourselves with a few easy observations.

Definition 2.4.15. Let § be a geometry, and let a : F/ — F be a natural transformation of functors
F,F" € S8hv(Pro(9)). We will say that « is étale if the following condition is satisfied:

(%) Let 8 : G — F be a natural transformation in 8hv(Pro(9)), where G is representable by a G-scheme
(X, Ox). Then the fiber product G x g F’ is representable by a G-scheme which is étale over (X, Ox).
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Remark 2.4.16. In the situation of Definition 2.4.15, it suffices to test condition (x) in the case where G is
representable by an affine G-scheme. For suppose that this weaker version of condition (x) is satisfied, and
let G be representable by an arbitrary G-scheme (X, Ox). Let X" denote the full subcategory of X spanned
by those objects V' for which (X1, Ox [V') represents a functor Gy for which Gy x g I is representable by a

G-scheme étale over (X,y, Ox [V'). Using Proposition 2.3.5, we deduce that X" is stable under small colimits
in X, so that X = X° by Lemma 2.3.11.

We now record the basic properties of the class of étale morphisms in Shv(Pro(9)).
Proposition 2.4.17. Let G be a geometry.
(1) FEvery equivalence in Shv(Pro(9)) is étale .
(2) FEvery pullback of an étale morphism in Shv(Pro(9)) is étale .

(3) Let oo: F — G be a morphism in Shv(Pro(9)), where G is representable by a G-scheme (X, Ox). Then
« is étale if and only if F' is representable by a G-scheme which is étale over (X, Ox).

(4) Ewery retract of an étale morphism in Shv(Pro(9)) is étale .
(5) Suppose given a commutative diagram
/ \g\\

h

F H

in 8hv(Pro(§)) such that g is étale . Then f is étale if and only if h is étale . In particular, the
collection of étale morphisms is stable under composition.

(6) Let fo : Fo — G be a collection of étale morphisms in Shv(Pro(G)). Suppose that each F, is rep-
resentable by a G-scheme (X4, Ox.) and that the induced map [[Fo — G is an effective epimor-
phism (see Remark 2.4.11). Then G is representable by a G-scheme (Y, Oy). (Each map of G-schemes
(Xa, Ox,) — (Y,0y) is then automatically étale , by virtue of (3)).

(7) Let 8hv(Pro(9))¢: denote the subcategory of Shv(Pro(G)) spanned by the étale morphisms. Then the co-
category Shv(Pro(§)) ¢ admits small colimits, and the inclusion Shv(Pro(9)) ¢ C Shv(Pro(§)) preserves
small colimits.

Proof. Assertions (1) and (2) follow immediately from the definition. The “only if” direction of (3) follows
immediately from the definition, and the “if” direction follows from Remark 2.3.20. To prove (4), let us
suppose that « : F' — F’ is a retract of an étale morphism 8 : G — G’. Let F}} be a functor representable by
a G-scheme (X, Ox). Let € denote the full subcategory of Shv(Pro(§)),r; spanned by those functors which
are representable by G-schemes which are étale over (X, Ox). We wish to prove that F' Xz F belongs to C.
By assumption, F' x ps F{ is a retract of G X Fj € C. It will therefore suffice to show that € is idempotent
complete, which follows from the observation that € ~ X.

We now prove (5). Suppose first that f is étale ; we wish to prove that h is étale . Without loss of
generality, we may suppose that H is representable by a G-scheme (X, Ox). Since g is étale , G is representable
by a G-scheme (X7, Ox |U). Since f is étale , we conclude that F' is representable by (X, Ox |V') for some
morphism V' — U in X.

For the converse, let us suppose that A is étale ; we wish to prove that f is étale . Consider a morphism
Go — G, where Gy is representable by a G-scheme (X, O« ); we wish to show that F' xg Gy is representable
by a G-scheme étale over (X, Ox ). Pulling back by the composite map Gy — G — H, we may assume that H
is representable by (X, Ox). Since g and h are étale , the functors F' and G are representable by G-schemes
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(X/u,0x |U) and (X, Ox [V'), respectively. Then f is induced by an étale map of G-schemes, classified by
a morphism U — V in X (Remark 2.3.4), and therefore étale (by virtue of (3)).

To prove (6), let Fy = [[ Fo € Shv(Pro(9)), so that Fj is also representable by a G-scheme (Proposition
2.4.13). Let F, be the simplicial object of Shv(Pro(G)) determined by the Cech nerve of the effective epimor-
phism Fy — G. We observe that the map Fy — G is étale (this is a special case of (7), but is also easy to
check directly). Using assertions (2) and (5), we conclude that Fy can be regarded as a simplicial object in
Shv(Pro(§))st. Since Fy is representable by a G-scheme, assertion (3) implies that each F), is representable
by a G-scheme, so that we obtain a simplicial object (Xo, Ox,) in Sch(G)st. Let (X, Ox) € Sch(§) denote the
colimit of this diagram. Lemma 2.4.13 implies that (X, Ox) represents the functor |F,| ~ G € Shv(Pro(9)).

To prove assertion (7), let us consider a small diagram {F,} in 8hv(Pro(9))s having a colimit F in
Shv(Pro(9)). We first claim that each of the maps F, — F is étale. Since colimits in Shv(Pro(9))
are universal, we may assume without loss of generality that F' is representable by an affine G-scheme
Spec? A = (X,O0x) (see Remark 2.4.16), so there is a canonical point n € F(A). For each index a, let
Go :Ind(G?) 4, — 8 denote the fiber of the map

Fa|Ind(§°P)%) — F|Ind(G)%)

over the point determined by 7. Using Theorem 2.2.12, we can identify G, with an object U, € X.
Proposition 2.4.4 implies that colim{U,} ~ 1. Applying Theorem T.6.1.3.9 (in the very large oco-topos

S/}R/(Pro(S))), we conclude that each of the diagrams

F/ ——F,

|

FF——F

is a pullback square. However, since colim{U, } ~ 1y, the bottom horizontal map is an equivalence (Lemma
2.4.13). Tt follows that the upper horizontal map is also an equivalence, so that F, is representable by a
G-scheme which is étale over (X, Oxy).

To complete the proof of (7), it will suffice to show that a morphism f : F' — G in 8hv(Pro(9)) is étale if
and only if each of the composite maps f, : F,, =& F — G is étale . The “only if” direction follows from the
argument given above. Let us therefore suppose that each of the maps f, is étale ; we wish to show that f is
étale . Without loss of generality, we may assume that G is representable by a G-scheme (Y, Oy). Then each
F, is representable by a G-scheme (Y,v, , Oy [V,). Using assertion (3) and Lemma 2.4.13, we conclude that
F is representable by a G-scheme (X, Ox), which is covered by the G-schemes (Y v, , Oy |V,). The desired
result now follows from assertion (3) and Remark 2.3.7. O

2.5 Algebraic Geometry (Zariski topology)

Throughout this section, we fix a commutative ring k. Our goal is to show how to recover the classical
theory of k-schemes from our general formalism of geometries. More precisely, we will introduce a geometry
Gzar(k), such that Gz, (k)-structures on an oo-topos X can be identified with “sheaves of commutative local
k-algebras” on X. We begin with a concrete discussion of sheaves of k-algebras.

Definition 2.5.1. Let X be an co-topos. A commutative k-algebra in X is a k-algebra object in the underlying
topos (1< X) of discrete objects of X. In other words, a commutative k-algebra in X is a discrete object
A € X, equipped with addition and multiplication maps

AxASZ A AxASA

and scalar multiplication maps A A A for each \ € k, which are required to satisfy the usual axioms
for a commutative k-algebra. The commutative k-algebras in X form a category, which we will denote by

CRing;, (X).
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Example 2.5.2. Let X = §. Then CRing, (X) can be identified with the usual category of commutative
k-algebras. We will denote this (ordinary) category by CRing.

Let A be an arbitrary discrete object of an co-topos X. Then A represents a functor e4 : hX°P — Set,
described by the formula
ea(X) = Homyx (X, A) ~ mo Map (X, A).

According to Yoneda’s lemma, giving a commutative k-algebra structure on A is equivalent to giving a
commutative k-algebra structure on the functor e4: in other words, producing a factorization

CRing,,

where the vertical arrow denotes the evident forgetful functor. In other words, we can identify commutative
k-algebras in X with functors €4 : hX°? — CRing,, whose underlying set-valued functor is representable.
Such a functor can be identified with a map of co-categories €4 : X7 — N(CRing;,). In view of Proposition
T.5.5.2.2, the representability condition is equivalent to the requirement that €4 preserve small limits. This
proves the following result:

Proposition 2.5.3. Let X be an co-topos. Then there is a canonical equivalence of co-categories
ShVCRingk (:X:) ~ N CRingk (:X:),
where the left side is described in Definition 1.1.3.

Notation 2.5.4. Let CRingzin denote the full subcategory of CRing; spanned by those commutative k-
algebras which are of finite presentation; that is, k-algebras of the form

ka1, o @l /(Fis .o f).

We let G(k) denote the co-category N(CRingi™)??, regarded as a discrete geometry.

Remark 2.5.5. We can identify G(k) with the (nerve of the) category of affine k-schemes which are of finite
presentation over k.

Remark 2.5.6. The category CRing,; is compactly generated, and the compact objects of CRing,, are
precisely the finitely generated commutative k-algebras. Consequently, we have a canonical equivalence of
oo-categories N(CRing,,) ~ Ind(S(k)P).

Combining Proposition 2.5.3, Remark 1.1.7, and Remark 2.5.6, we obtain the following:
Proposition 2.5.7. Let X be an co-topos. Then there is a canonical equivalence of co-categories

Strg (k) (X) ~ N CRing,,(X).

To recover the classical theory of schemes, we will view N(CRingim)OP as a geometry in a slightly different
way.

Definition 2.5.8. Let k be a commutative ring. We define a geometry Gz..(k) as follows:

(1) The underlying oo-category of Gz, (k) is N(CRingi™)er.
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(2) Let f be a morphism in Gz, (k), which we can identify with a map A — B of commutative k-algebras.
Then f is admissible if and only if there exists an element a € A such that f induces an isomorphism
ALl ~ B.

a

(3) Suppose given a collection of admissible morphisms {¢q, : Uy, — X} in Gz..(k), corresponding to maps
A— A[i] of commutative k-algebras. Then the admissible morphisms ¢, generate a covering sieve
on X if and only if the elements {a,} generate the unit ideal of A.

Remark 2.5.9. To verify that Definition 2.5.8 really describes a geometry, we must show that the collection
of k-algebra morphisms of the form A — A[a™!] is stable under retracts. To prove this, let us consider a
diagram

A At 4

b
B——> Ala'| — B,

where the vertical compositions are the identity maps. We will prove that f is admissible by showing that
f induces an isomorphism A[¢(a)~!] — B. Since B is clearly a module over the ring A[¢(a)~!], it suffices
to show that the element ¢(a) € A acts locally nilpotently on the A-modules ker(f) and coker(f). Since the
above diagram yields surjective maps of A’-modules ker(f’) — ker(f) and coker(f’) — coker(f), it suffices
to show that a € A’ acts locally nilpotently on the A’-modules ker(f’) and coker(f’), which is clear.

Remark 2.5.10. Condition (3) of Definition 2.5.8 is equivalent to the requirement that the collection of
maps {¢, : Uy, — X} are jointly surjective, when viewed as maps of affine k-schemes. To see this, let a C A
denote the ideal generated by the elements {a,}. If a = A, then no prime ideal p of A can contain every
element a,, so that p belongs to the image of some ¢,. Conversely, if a # A, then a is contained in some
prime ideal p of A, which does not belong to the image of any ¢,. See the proof of Lemma 2.5.18 for more
details.

Remark 2.5.11. Every admissible morphism in Gz, (k) corresponds to an open immersion in the category
of affine k-schemes. However, the converse is false: not every open immersion U — X of affine k-schemes
arises from a localization morphism A — A[é] For example, let k be an algebraically closed field, E an
elliptic curve over k, X = E — {z} and U = FE — {x, y}; here z and y denote closed points of X. Then U is
the nonvanishing locus of a regular function on X if and only if the difference x — y is torsion with respect
to the group structure on F.

In Definition 2.5.8, we can enlarge the class of admissible morphisms to include all open immersions
between affine k-schemes of finite presentation; the resulting theory is the same. We will prove a version of
this assertion in §4.

Remark 2.5.12. Let X be a topological space, and let Ox be a sheaf of commutative k-algebras on X (in
the usual sense). Using Proposition 2.5.7, we can identify Ox with a G(k)-structure Ox : G(k) — Shv(X).
The relationship between Ox and Ox can be described more precisely as follows: if A is a commutative
k-algebra of finite presentation, then Ox (A) is a sheaf (of spaces) on X whose value on an open set U C X
is the (discrete) set HomcRring, (4, Ox (U)) of k-algebra homomorphisms from A to Ox (U).

We note that Ox belongs to Strg,,.. k) (8hv(X)) if and only if, for every collection of homomorphisms
{A— A[i]} such that the elements a, generate the unit ideal in A, the induced map

Hmm%n L Ox(4)

is an epimorphism of sheaves on X. Unwinding the definitions, this condition asserts that for every open set
U and every k-algebra homomorphism
(;5 A — Ox(U),

71



if we define U, C U to be the largest open subset over which the section ¢(an) € Ox(U) is invertible, then
the open subsets U, cover U. In other words, at every point € X, at least one of the sections ¢(ay) is
invertible. This is equivalent to the requirement that every stalk Ox , be a local ring.

Remark 2.5.13. Let f : (X,0x) — (Y,0y) be a map of topological spaces ringed by commutative k-
algebras. In other words, suppose we have a continuous map of topological spaces f : X — Y, and a
homomorphism f* Oy — Ox of sheaves of commutative k-algebras on X. As in Remark 2.5.12, we can
identify Ox and Oy with §(k)-structures Oy : G(k) — Shv(X) and Oy : (k) — Shv(Y), respectively. The
map f itself determines a morphism

f:(8hv(X),0x) — (Shv(Y),Oy)
in the oo-category L‘Top(S(@)‘)p . Suppose furthermore that Ox and Oy are sheaves of local rings, so that
(8hv(X),0x) and (Shv(Y'), Oy ) belong to the subcategory “Top(Gyza..(k))°? C “Top(G(k))°P. The morphism

f belongs to *Top(Gz,, (k) if and only if, for every admissible morphism A — A[%] between commutative
k-algebras of finite presentation, the diagram

F*Oy(A[3]) — Ox(A[])

l |

0y (A) Ox(A).

Unwinding the definitions, this amounts to the following condition: let U be an open subset of Y, and let
a € Oy (U). Then, for every point x € f~1U C X, the restriction f*(a) € Ox(f~1U) is invertible at z if
and only if the section a is invertible at f(x). In other words, f belongs to “Top(SGza.(k))°? if and only if
f:(X,0x) — (Y,0y) is a morphism in the category of locally ringed spaces.

Definition 2.5.14. Let G be a geometry, n > 0 a nonnegative integer, and let (X, Ox) € “Top(G). We will
say that (X, Ox) is n-localic if the oco-topos X is n-localic, in the sense of Definition T.6.4.5.8.

We recall that an oco-topos X is 0-localic if and only if X is equivalent to the oo-category of sheaves (of
spaces) of some locale (see §T.6.4.2). If X has enough points, then we can identify this locale with the lattice
of open subsets of a sober topological space X (recall that a topological space X is said to be sober if every
irreducible subset of X has a unique generic point). Combining this observation with Remarks 2.5.12 and
2.5.13, we obtain the following result:

Proposition 2.5.15. (1) Let L‘J'op/ denote the full subcategory of “Top spanned by those 0-localic co-topoi
with enough points, and let Top,.;, denote the category of sober topological spaces and continuous maps.
Then there is a canonical equivalence of co-categories

N(Top,qp,) =~ (*Top')?P.

(2) Let “Top' (S(k)) denote the full subcategory of “Top(G(k)) spanned by those pairs (X, Ox), where X is
a 0-localic co-topos with enough points. Let RingSpace;, denote the ordinary category of pairs (X, 0x),
where X is a sober topological space and Ox is a sheaf of commutative k-algebras on X. Then there is
a canonical equivalence of co-categories

N(RingSpace;,) ~ L‘J’opl(S (k))°P.

(3) Let “Top (Szar(k)) denote the full subcategory of “Top(Szar(k)) spanned by those pairs (X, Ox) where
X is a 0-localic co-topos with enough points, and let RingSpace}fC denote the ordinary category of pairs
(X,0x) where X is a sober topological space and Ox a sheaf of commutative k-algebras on X with
local stalks (morphisms are required to induce local homomorphisms on each stalk). Then there is a
canonical equivalence of co-categories

o : N(RingSpace}>®) ~ L‘TOP/(SZar(k))Op~
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We can now describe the relationship of our theory with classical algebraic geometry.

loc

Theorem 2.5.16. Let Schy denote the category of k-schemes, regarded as a full subcategory of RingSpace; .
Then the equivalence o of Proposition 2.5.15 induces a fully faithful embedding

N(Schg) — Sch(Gzar (k).

The essential image of this embedding consists of those Gza.(k)-schemes (X, Ox) for which the co-topos X is
0-localic.

The proof of Theorem 2.5.16 will require a few preliminaries.

Lemma 2.5.17. Let X be a topological space. Suppose that X is locally sober: that is, X is the union of its
sober open subsets. Then X is sober.

Proof. Let K be an irreducible closed subset of X. Since K is nonempty, there exists a sober open subset
U C X such that U N K # (. Since K is irreducible conclude that K is the closure of U N K in X, and
that U N K is an irreducible closed subset of U. Since U is sober, U N K is the closure (in U) of some point
x € UNK. Then K is the closure of {z} in X; in other words, z is a generic point of K. Let y be another
generic point of K, so that K = {y}. Since K N U # (), we must have y € K, so that y is a generic point of
K NU in U. Since U is sober, we conclude that y = x. O

Lemma 2.5.18. Let A be a commutative k-algebra. Then the functor o of Proposition 2.5.15 carries the
affine k-scheme Spec A to the Sz,.(k)-scheme Specgz"”(k) A.

Remark 2.5.19. In the statement of Lemma 2.5.18, we have implicitly identified Pro(Gz.,(k)) with the
(opposite of the nerve of the) category of commutative k-algebras.

Proof. Tt is possible to prove Lemma 2.5.18 by showing that Spec A and Spech“‘(k) A can be described by the
same universal property. We opt instead for a more concrete approach, using the equivalence Specgzar(k) A~
(Spec A, Ogpec 4) supplied by Theorem 2.2.12. We begin by observing that Pro(SZar(k))‘"/‘jf‘ ~ N(@), where C

is the opposite of the category of commutative A-algebras having the form A[é], for some a € A. We observe
that the category € is equivalent to a partially ordered set (in other words, there is at most one morphism
between any pair of objects of C). It follows that Spec A ~ S8hv(C) is a 0-localic co-topos, and is therefore
determined by its underlying locale U of subobjects of the unit object.

Our first goal is to describe the locale U more explicitly. By definition, U is given by the partially ordered
set of sieves @° C € which are saturated in the following sense:

(*) If a is an element of A, {bs} a collection of elements of A[1] which generate the unit ideal in A[1], and
each localization A[1][7-] belongs to €Y, then Alil e (Gal

For every saturated sieve €° C C, we let I(€°) = {a € A: Alll e €%}, Tt is clear that I(C°) determines the
sieve C°. We observe that the set I (CO) has the following properties:

(1) Ifa € I(C°) and X € A, then Aa € I(€°) (since C° is a sieve).

(2) If a,b € I(C"), then a + b € I(C") (since A[-1; l],A[a%irb, ks €%, and the elements a and b generate

a+b’ a
the unit ideal A[a%_b])

(3) If a € A and ™ € I(C°) for some n > 0, then a € I(C") (since there is a canonical isomorphism
Al ~ Al

In other words, I(C°) is a radical ideal of A.
Conversely, if I C A is any radical ideal, then we can define €° to be the collection of all commutative
A-algebras which are isomorphic to A[%], for some a € A. Since I is closed under multiplication, we conclude
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that € is a sieve on C. We claim that €" is saturated and that I = I(C”). We first prove the second claim
in the following form: if a € A is such that A[1] € €%, then a € I. For in this case, we have an isomorphism
of A-algebras A[2] ~ A[}] for some b € I. It Follows that b is invertible in A[L], so that Ab = a™ for some
A€ A n>0. Slnce I is a radical ideal, we conclude that a € I as desired.

We now claim that €” is saturated. For this, we must show that if {b,} is a collection of elements of A[1]
which generate the unit ideal and each A[1][;}] € €Y, then a € I. Without loss of generality, we may assume
that each b, arises from an element of A (Whlch by abuse of notation, we will continue to denote by b, )
The condition that the b, generate the unit ideal in A[1] guarantee an equation of the form Y~ Aobo = a”
Since each product ab, belongs to I, we conclude that a"+1 Y o Aaaby € 1. Since [ is a radical ideal, we
deduce that a € I, as desired.

The above argument shows that we can identify the locale U with the collection of all radical ideals in
A, partially ordered by inclusion. Unwinding the definitions, we can identify points of U with proper radical
ideals p C A satisfying the following additional condition:

e If p is contains the intersection I NI’ of two radical ideals of A, then either I C p or I’ C p.

If p fails to satisfy this condition, then we can choose a € I, b € I’ such that a,b ¢ p. The product ab belongs
to INI' Cp, so that p is not prime. Conversely, suppose that p is prime. If p fails to contain some element
a € I, then for every b € I', the inclusion ab € I NI’ C p guarantees that b € p, so that I’ C p. This proves
that the set of points of U can be identified with the Zariski spectrum Spec A consisting of all prime ideals
of A. Note that the induced topology on Spec A agrees with the usual Zariski topology: the closed subsets
are exactly those of the form {p C A: T C p}, where [ is a radical ideal of A.

We next claim that U has enough points. Unwinding the definitions, this is equivalent to the assertion
that if I C I’ is a proper inclusion of radical ideals of A, then there exists a prime ideal of A which contains
I but not I'. Replacing A by A/I, we may reduce to the case I = 0. Since I # I’, there exists a nonzero
element a € I’. Since I = 0 is a radical ideal, a is not nilpotent. Replacing A by A[%], we may reduce to
the case I' = A. We are therefore reduced to the following classical fact: every nonzero commutative ring
contains a prime ideal.

Since U has enough points, it can be identified with the collection of open subsets of the topological space
Spec A. In other words, we have a canonical equivalence of co-topoi Spec A ~ 8hv(Spec A). To complete the
proof, it will suffice to show that the structure sheaves of Spec A and Spec A agree. In other words, we must
show that the functor Ogpec 4 : Gzar (k) — Shv(Spec A) can be described by the formula

Ospec A(R)(AL]) = Homoring, (R, AL

By definition, Ogpec 4(R) is the sheaf associated to the presheaf described by this formula. The desired result
now follows from the fact (already implicit in the statement of the lemma) that this presheaf is already a
sheaf. O

Lemma 2.5.20. Let (X,0x) be a scheme. Then the topological space X is sober.

Proof. In view of Lemma 2.5.17, we may assume that (X, Ox) is affine, so that X is the Zariski spectrum
of some commutative ring A. The desired result now follows from Lemma 2.5.18. O

Lemma 2.5.21. Let X be a locale whose final object 1 is a join \/ Uy where each X,y has enough points.
Then X has enough points.

Proof. We must show that if we are given a strict inequality V' < W in X, then there exists a point of X
contained in W but not V. Since the inequality V' < W is strict, we have V AU, < W A U, for some index
a. The desired result then follows from our assumption that X,;;, has enough points. O

Lemma 2.5.22. Suppose given a map of ringed topological spaces f : (Y,0y) — (X,0x) satisfying the
following conditions:
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(1) The underlying map of topological spaces Y — X is a surjective local homeomorphism.
(2) The map f*Ox — Oy is an isomorphism of sheaves on'Y .
If (Y, Oy ) is a scheme, then (X,0x) is also a scheme.

Proof. Let x be a point of X. Since f is surjective, we can choose a point y € Y such that f(y) = z. Let
U be an open subset of Y such that the restriction f|U is a homeomorphism from U onto V', where V is an
open subset of X containing z. Since Y is a scheme, we may (after shrinking U if necessary) suppose that
(U, 0y |U) is an affine scheme. Then (V,0x |V) ~ (U, Oy |U) is also an affine scheme. O

Proof of Theorem 2.5.16. The first assertion follows immediately from Lemma 2.5.18. To complete the proof,
let us consider an arbitrary 0-localic Gz, (k)-scheme (X, Ox). Using Lemmas 2.5.18 and 2.5.21, we conclude
that the locale 7<_; X has enough points. We therefore have X ~ 8hv(X), where X is a (sober) topological
space, and we can identify O with a sheaf of local rings Ox on X. We wish to show that (X,0x) is a
scheme.

Since (X, Ox) is & Gzar(k)-scheme, there exists an étale surjection [ ] Speciz®) 4, — (X, 9x), for some
collection of commutative k-algebras {A,}. This induces a map of locally ringed spaces (Y, 0y ) — (X, 0x)
satisfying the hypotheses of Lemma 2.5.22, so that (X, Ox) is a scheme as desired. O

Warning 2.5.23. Let (X,0x) be a Gyz.,.(k)-scheme. As explained in §2.4, we can identify (X, Ox) with
its underlying “functor of points” F' : N(CRing,) — 8, which is a Zariski sheaf on CRing;. If (X,Ox) is
0O-localic, then F' can be identified with the usual (set-valued) functor associated to the underlying k-scheme.
In this case, F is a sheaf with respect to many other Grothendieck topologies on CRing,, (for example, the
flat topology). However, this is not true for a general Gyz,.(k)-scheme (X, Ox), even if (X, Q) is 1-localic.
For this reason, we will generally not consider Gz, (k)-schemes which are not 0-localic; if we want to allow
more general underlying co-topoi, then it is important to switch from the Zariski topology on CRing,, to the
étale topology (see §2.6).

2.6 Algebraic Geometry (Etale topology)

Throughout this section, we fix a commutative ring k. In §2.5, we explained how to use our formalism of
geometries to recover the classical theory of k-schemes: namely, they are precisely the 0-localic Gz, (k)-
schemes, where Gz.,.(k) is the geometry of Definition 2.5.8. As the notation suggests, the collection of
admissible morphisms and admissible coverings in Gz..(k) is specifically geared towards the study of the
Zariski topology on commutative rings (and the associated notion of a local commutative ring). In this
section, we wish to describe an analogous geometry SGg (k) which is instead associated to the étale topology
on commutative rings. Our main result is Theorem 2.6.18, which asserts that G (k)-schemes are closely
related to the usual theory of Deligne-Mumford stacks over k.

Warning 2.6.1. The definitions presented in this section are slightly nonstandard, in that we do not require
our Deligne-Mumford stacks to satisfy any separatedness conditions. These can always be imposed later, if
so desired.

We begin by reviewing some definitions.

Notation 2.6.2. Let A be a commutative ring. We let CRing‘Zt denote the category of all commutative
A-algebras which are étale over A. We regard (CRing®)? as equipped with the following Grothendieck
topology: a collection of étale morphisms {B — B, } is a covering if there exists a finite collection of indices
{ou,...,an} such that the map B — [[,.,.,, Ba,, is faithfully flat. An étale sheaf of sets on A is a functor

F: CRingit — 8et which is a sheaf with respect to this topology: that is, for every étale covering {B — By},
the associated diagram

F(B) — 1o F(Ba) == [la,5 F(Ba @5 Bp)
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is an equalizer. We let Shvi, (A) denote the full subcategory of Fun(CRing,Set) spanned by the sheaves
of sets on A.

Let ¢ : A — A’ be a homomorphism of commutative rings. Composition with the base change functor
B~ B®4 A’ induces a pushforward functor ¢, : Shvi., (A’) — Shvi, (A). This pushforward functor has a
left adjoint, which we will denote by ¢*.

Let us now fix a commutative ground rink k. Suppose that A is a commutative k-algebra and that
F € Shvg.,(A). We define a functor F : CRing;, — Set by the following formula:

F(B) = {(¢,n) : ¢ € Homy(A, B),n € (¢* F)(B)}.

Example 2.6.3. Let k be a commutative ring, A a commutative k-algebra, and let Fo € Shvi’ (4) be a

final object (so that Fy(B) ~ x for every étale A-algebra B). Then JF, : CRing; — Set can be identified
with the functor A corepresented by A: that is, we have canonical bijections

5’5(3) ~ A(B) ~ Homg (A, B).

More generally, if F is any objectAof Shv?et(A)7 then we have a unique map F — Fy in Shve;et(A), which
induces a natural transformation ¥ — A.

Definition 2.6.4. Let k& be a commutative ring, A a commutative k-algebra, and F' : CRing, — Set
any functor equipped with a natural transformation o : F' — A. We will say that a ezhibits F' as an
algebraic space étale over Spec A it there exists an object F € Shvi, (A) and an isomorphism F ~ F in
Fun(CRingy, Set) /4.

Remark 2.6.5. Definition 2.6.4 is slightly more general than the usual definition of an algebraic space
étale over Spec A, as found in [6]. Let A be a commutative ring and let F € Shvg.,(A). Choosing a set of
sections 7, € F(A,) which generate F, we obtain an effective epimorphism

HAQ—L’?"

in the category of sheaves of sets on CRing;. However, the maps A, — F need not be relatively representable

by schemes. However, this is true if there exists a monomorphism ¥ — B, for some commutative k-algebra
B. For in this case, each fiber product

A, ><§rA/3 ~ A, XQA/j’iAa ®p Ag

is representable by an affine k-scheme.

In the general case, each fiber product F, 5 = A, x5 As is again relative algebraic space étale over A
(in the sense of Definition 2.6.4), which admits a monomorphism F, g — A, Q@i Ag. It follows that F, 3
is an algebraic space in the more restrictive sense of [6] (so that F can be described as the quotient of an
étale equivalence relation in this more restrictive setting).

Notation 2.6.6. We will abuse notation by identifying the corepresentable functor A : CRing, — Set
with the induced space-valued functor N(CRing,) — §; in this context we can identify A with the functor
corepresented by A in the co-category N(CRing,).

Given a functor F': N(CRing;,) — 8 and a natural transformation o : F' — A, we will say that o exhibits
F' as an algebraic space étale over Spec A if F(B) is a discrete object of 8 for every commutative k-algebra
B (in other words, m;(F(B), z) ~ * for every i > 0 and every base point € F'(B)), and the induced functor

CRing;, ~ hN(CRing,) — h8 ™% Set

is an algebraic space étale over Spec A, in the sense of Definition 2.6.4.
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Definition 2.6.7. Let k be a commutative ring. The étale topology on N(CRing;”) is defined as follows:
given a commutative k-algebra A and a sieve €° C N(CRing;") /4, we will say that @Y is covering if it contains
a finite collection of étale morphisms {A — A;}1<i<, such that the map A — ngign A; is faithfully flat.

Remark 2.6.8. We let Shv(CRing;”) denote the full subcategory of Fun(N(CRing;”),8) spanned by those
functors which are sheaves with respect to the étale topology of Definition 2.6.7. Though S8hv(N(CRing;)°P)
is not an oo-topos (because CRing,, is not a small category), it nevertheless behaves like one for practical
purposes; for example, there is a good theory of effective epimorphisms in S8hv(N(CRing;)°?) (see §2.4).

Definition 2.6.9. Let k be a commutative ring. We will say that a natural transformation o : F' — F’ in
Fun(N(CRingy,), 8) exhibits F' as a relative algebraic space étale over F' if the following condition is satisfied:

(*) Let A be a commutative k-algebra and n € F'(A), classifying a map A — F’. Then the induced map
F xpr A — A exhibits F' X g A as an algebraic space étale over Spec A.

A Deligne-Mumford stack over k is a functor F : N(CRing,) — 8 satisfying the following conditions:
(1) The functor F is a sheaf with respect to the étale topology of Definition 2.6.7.

(2) There exists a small collection of commutative k-algebras {A4,} and points 7, € F(A,) with the
following properties:

(a) For each index «, the induced map A, — F' is a relative algebraic space étale over F.
(b) The induced map

H Aq = F
is an effective epimorphism in Shv(N(CRing,,)°?).

Remark 2.6.10. Let us compare Definition 2.6.9 with the usual definitions of Deligne-Mumford stack, as
found (for example) in [8]. To begin, we consider here functors F' which take values in the co-category 8§
of spaces. However, this results in no additional generality: we have required the existence of an effective
epimorphism

¢:[[A4. = F

where the domain [],, A, is discrete and the fibers of ¢ are discrete. Consequently, F' is a 1-truncated object
of 8hv(N(CRing,,)°?), and therefore takes values in the oco-category 7<1 8 of l-truncated spaces, which is
equivalent to the 2-category of small groupoids.

The other principal difference in our definition is that we allow more freedom in our definition of an
algebraic space (see Remark 2.6.5).

Remark 2.6.11. Consider a pullback diagram
Fy——F
-]
F,——F'

in 8hv(N(CRing;)?). If a exhibits F' as a relative algebraic space étale over F”’, then g exhibits Fj as a
relative algebraic space étale over F.

We now reformulate the theory of Deligne-Mumford stacks using our language of geometries.

Definition 2.6.12. Let k be a commutative ring. We define a geometry G (k) as follows:
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(1) The underlying co-category is e (k) = N(CRingi™)P, the (nerve of the) category of affine k-schemes
of finite presentation.

(2) A morphism f in G (k) is admissible if and only if the corresponding morphism A — B is an étale map
of commutative k-algebras.

(3) The Grothendieck topology on G (k) is the (restriction of the) étale topology described in Definition
2.6.7.

Remark 2.6.13. As in Remark 2.5.6, we have a canonical equivalence Ind (S (k)°P) ~ N(CRingy,).

Remark 2.6.14. Let O be a left exact functor from G¢ (k) ~ G(k) to 8, corresponding to a commutative
k-algebra A. Then O defines a Gg;(k)-structure on § if and only if the following condition is satisfied:

(*) For every commutative k-algebra B of finite presentation, and every finite collection of étale morphisms
{B — B,} which induce a faithfully flat map B — [], Ba, the induced map

[To®.) — o(B)

is an effective epimorphism. In other words, every map of commutative k-algebras B — A factors
through some B, .

This definition is equivalent to the requirement that A be a strictly Henselian local ring.

More generally, let X be an oo-topos with enough points. Then a Gg; (k)-structure on X can be identified
with a commutative k-algebra A in the underlying topos h(7<¢ X) such that, for every point x of X, the stalk
Ay is strictly Henselian (see Remark 1.2.9). We may therefore refer informally to G¢; (k)-structures on X as
strictly Henselian sheaves of k-algebras on X.

Lemma 2.6.15. Let X be an co-topos and G a geometry. Suppose that O and O are G-structures on X, and
0:0 — O is a natural transformation with the following property:

(%) For every admissible morphism f : U — X in G, the induced map ¢y : O(U) — O'(U) xgr(x) O(X) is
an effective epimorphism.

Then for every admissible morphism f : U — X, the map ¢5 is co-connective. In particular, if O and o
take values in X", then 0 is a local morphism of G-structures.

Proof. We prove by induction on n that if f is admissible, then ¢; is n-connective. The case n = 0
follows from (x). For the inductive step, it will suffice to show that if n > 0, then the diagonal map
§:0(U) = O(U) X0/ () gr(x,0(x) O(U) is (n — 1)-connective. This follows from the inductive hypothesis,
since 0 is equivalent to ¢ where f’ denotes the diagonal map U — U xx U. O

Proposition 2.6.16. Let X be an oco-topos, and suppose we are given a pair of G (k)-structures O, 0" :
Ge(k) — X, so that O and O are strictly Henselian sheaves of k-algebras on X. Let f : O — O be an
arbitrary natural transformation. Then f is a local transformation of Ge(k)-structures if and only if f is a
local transformation of Gz, (k)-structures.

Proof. The “only if” direction is obvious. Conversely, assume that f is a local transformation of Gyz,.(k)-
structures. Since O and O take values in discrete objects of X, it will suffice to show that f satisfies the
criterion of Lemma 2.6.15: that is, we must show that if A — B is an étale map of finitely presented k-
algebras, then the induced map ¢ : O(B) — O(A) x¢r(4) O'(B) is an equivalence. Let u : “Spec(B) —
ZSpec(A) be the associated map of Zariski spectra. Then the image of u is a quasi-compact open subset U
of “Spec(A4). Write U = |, <,<,, “Spec A[ai] for some elements ay,...,a,. Since U contains the image of
ZSpec B, the elements f(a;) generate the unit ideal in B, so that the collection of maps {B — B[%]} is an

ai)
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admissible covering. Since O’ is local with respect to the Zariski topology, the map [], O'(B| f((lh_)]) — O0'(B)

is an effective epimorphism. It will therefore suffice to show that each of the induced maps

b1 O(B) xor(5) O (Blo—1) = O(4) xer(a) O' (B

f(ai) flai)

is an equivalence. Consider the composite map
1 1 1
Since f is local as a transformation of §z,, (k) structures, the first map in this diagram is an equivalence; it will

therefore suffice to show that the composite map is an equivalence. The composition admits a factorization

1 @’ 1 , 1 1
f(ai)]) - O(A[;i]) Xor(arx) 9 (B[m f(ai)])'

Invoking again our assumption that f is local as a transformation of Gz, (k)-structures, we see that the
second map is an equivalence; it will therefore suffice to show that ¢} is an equivalence. Replacing A by
A[1] and B by B [ﬁ], we are reduced to proving that ¢ is an equivalence in the special case where the
map u : “Spec(B) — %Spec(A) is surjective. Thus B is faithfully flat over A, so the map O(B) — O(A) is
an effective epimorphism. It will therefore suffice to show that the pullback map

O(Bl—]) = O(B) xo/(5) O'(Bl—]) & 0(A) x0r(a) O'([Bl—))-

O(B]

]) = O(A) xora) O'([B]

’(/) : O(B) XO(A) O(B) — O(B) XO(A) (O(A) XO’(A) O/(B)) ~ O(B) XO’(B) (OI(B> XO’(A) O/(B)>

is an equivalence. Using the assumption that © and O’ commute with étale pullback, we can identify ¢ with
the map

O(B®a B) = O(B) x¢/(B) O'(B®4 B).
Since the map f is étale , we have B ~ (B ®4 B)[1] for some idempotent element e € B ® 4 B, so that 1 is
an equivalence by virtue of our assumption that f is a local transformation of Gz, (k)-structures. O

Remark 2.6.17. We can identify the oo-category Pro(SGe¢;(k)) with (the nerve of) the category CRing;” of
affine k-schemes. Under this identification, a morphism A — B in CRing, is admissible (in the sense
of Notation 2.2.2) if and only if it is étale in the usual sense (this follows from the observation that
every étale homomorphism of k-algebras is the pushout of an étale homomorphism between finitely pre-
sented k-algebras; for a stronger version of this assertion we refer the reader to Proposition 4.3.9), and the
Grothendieck topology on Pro(Gg;(k)) reduces to the étale topology of Notation 2.6.2.

Theorem 2.6.18. Let k be a commutative ring, and let F : N(CRing,) — 8 be a functor. The following
conditions are equivalent:

(1) The functor F is a Deligne-Mumford stack over k (in the sense of Definition 2.6.9).
(2) The functor F is representable by a Gg(k)-scheme (X, Ox) such that X is 1-localic.
The proof will require a number of preliminaries.

Lemma 2.6.19. Let G be an n-truncated geometry, X an n-localic co-topos, and Ox : § — X a G-structure
on X. Then (X,Ox) is an n-truncated object of “Top(G)°P.

Proof. Let (Y, Oy) be any object of “Top(G)°?. We have a canonical map
¢ MapL‘J’op(S)OP((ya Oy), (xv Ox)) - MapL‘J’op"p (%, :X:)

Since X is n-localic, we can identify the right side with the space of geometric morphisms of n-topoi from
T<n Y to 7<p X, which is n-truncated. It will therefore suffice to show that the homotopy fibers of ¢ are n-
truncated. But the homotopy fiber of ¢ over a point f. : § — X can be identified with Mapgy, . (y) (f* Ox, Oy),
which is n-truncated since the geometry G is n-truncated. O
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Lemma 2.6.20. Let o : F' — F be a morphism in Shv(N(CRing,)°?), and suppose that F is representable
by a Ggi(k)-scheme (X, Ox). The following conditions are equivalent:

(1) The map « exhibits F' as a relative algebraic space étale over F.

(2) The functor F' is representable by a Gg(k)-scheme (Y, 0y), and a induces an equivalence (Y,0Oy) ~
(X, 0x [U) for some discrete object U € X.

Proof. We first show that (1) = (2). The problem is local on X, so we may assume without loss of generality
that (X, Ox) ~ Spec’* A is affine. In this case, condition (1) implies that F’ ~ F, where F is an étale sheaf
(of sets) on CRing%. Unwinding the definitions (see Remark 2.6.17), we can identify F with a discrete object
U of the oo-topos Shv(Pro(Ges (k‘))?i) Theorem 2.2.12 allows us to identify this co-topos X, and Remark
2.3.4 implies that the G (k)-scheme (X7, Ox |U) represents the functor F”.

The reverse implication is proven using exactly the same argument. Now suppose that (2) is satisfied.
We wish to show that F’ is a relative algebraic space étale over F. Using Remark 2.3.20, we can reduce
to the case where F' is representable by the affine scheme Specgét(k) A, for some commutative k-algebra A.
Using Theorem 2.2.12 and Remark 2.6.17, we can identify the discrete object U € X with a sheaf of sets &
on CRingi{“. Remark 2.3.4 now furnishes an equivalence F’ ~ F. O

Corollary 2.6.21. Suppose given a commutative diagram
7N

Y

F F/I

in Shv(N(CRing,,)°?), where 3 exhibits F' as a relative algebraic space étale over F'. Then « exhibits F as
a relative algebraic space étale over F' if and only if v exhibits F' as a relative algebraic space étale over F".

Proof. First we prove the “only if” direction. We wish to show that v exhibits F as a relative algebraic space
étale over F”. Without loss of generality, we may suppose that F” is representable by an affine G¢; (k)-scheme
Specgét(k;)A = (X, 0x). Applying Lemma 2.6.20 to the morphism (3, we conclude that F’ is representable
by (X,i,0x |U) for some discrete object U € X. Applying Lemma 2.6.20 again, we conclude that F' is
representable by (X,y, Ox [V') for some discrete object V' € X ;. Since U is discrete, we conclude that V is
discrete when viewed as an object of X, so the desired result follows from Lemma 2.6.20.

Let us now prove the “if” direction. We must show that for every pullback diagram

Fo—2> A

L

jQp——

the map g exhibits Fj, as a relative algebraic space étale over A. Pulling back by the composite map
A — F' — F” we may assume without loss of generality that F” is representable by the affine G (k)-
scheme Specé(®) 4 = (X, 0x). Applying Lemma 2.6.20, we conclude that F' and F’ are representable by
(X, Ox |U) and (X v, Ox |V'), respectively, for some pair of discrete objects U, V' € X. Using Remark 2.3.4,
we can identify a with the map induced by a morphism f: U — V in X. Since U and V are discrete, the
map [ exhibits U as a discrete object in X,;,. Applying Lemma 2.6.20, we deduce that o exhibits F' as a
relative algebraic space étale over F', as desired. O

Proof of Theorem 2.6.18. We first prove that (1) = (2). If (1) is satisfied, then there exists a collection of
commutative k-algebras A, and étale maps A, — F such that, if Fy denotes the coproduct of the family
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A, in 8hv(N(CRingy)°?), then the induced map f : Fy — F is an effective epimorphism. Note that Fp is
representable by the affine Gz, (k)-scheme [T Speciz® A, = (X, Ox, ).

Let F, be the simplicial object of Shv(N(CRing;,)P) given by the Cechnerve of f, so that F,, ~ Fy xp
... Xp Fy. Applying Remark 2.6.11 repeatedly, we deduce that each of the projection maps F,, — Fj exhibits
F, as a relative algebraic space étale over Fy. In particular, each F, is representable by a G (k)-scheme
which is étale over (Xo, Oy,) (Lemma 2.6.20). Applying Theorem 2.4.1, we may assume that F, is the image
of a simplicial object (Xo, Oy, ) in the co-category Sch(Ge;(k)) of Gey (k)-schemes.

Our next goal is to prove that the simplicial object (X, Ox,) actually takes values in the subcategory
Sch(Ge(k))st € Sch(Gei(k)); in other words, we claim that for each morphism 4 : [m] — [n] in A, the induced
map (X,,0x,) = (Xm,Ox,,) is étale . Choosing a map [0] — [m] and applying Proposition 2.3.5 to the
resulting diagram

(:X:mv Oxm)

T

(xnaoxn) (:X:Ovoxo),

we can reduce to the case where m = 0, which now follows from Lemma 2.6.20.

Let (X, Ox) be the geometric realization of the simplicial object (X, Ox,) in Sch(Sg (k)) (which exists
by virtue of Proposition 2.3.10). Lemma 2.4.13 implies that (X, Ox) represents the geometric realization
|Fo| € Shv(N(CRing)°?). Since Fy — F is an effective epimorphism, we can identify this geometric
realization with F'. To complete the proof, it will suffice to show that (X, Ox) is 1-localic.

Theorem 2.3.13 implies the existence of an equivalence (X,0x) ~ (Y,y,0y|U), where (Y,0y) is a 1-
localic Gg; (k)-scheme and U € Y is 2-connective. To complete the proof, we will show that U is a final object
of Y. Since U is 2-connective, it will suffice to show that U is 1-truncated. This question is local on Y; it
will therefore suffice to show that for every étale map ¢ : Specie®) 4 — (Y, 0y), the pullback ¢*U is a
final object in the underlying oco-topos of Specgét(k) A. Using Theorem 2.2.12 and Remark 2.6.17, we can
identify this co-topos with the oo-category of sheaves (of spaces) on the category of étale A-algebras. It will
therefore suffice to show that for every étale A-algebra B, the space ¢*(U)(B) is 1-truncated. Replacing A
by B and invoking Remark 2.3.4, we are reduced to showing that the homotopy fibers of the map

F(A) — MapSch(Sét(k))(Specgét(k) A, (Y,0y))

are l-truncated. We now complete the argument by observing that F'(A) is 1-truncated by assumption (1)
(see Remark 2.6.10), and the target Mapsch(gét(k)(Specgét(k) A, (Y, 0y) is 1-truncated by Lemma 2.6.19.

We now prove that (2) = (1). Assume that F' is representable by a 1-localic Gg;(k)-scheme (X, Ox).
Then there exists a collection of objects U, € X with the following properties:

(a) The canonical map [[U, — 1x is an effective epimorphism in X.
(b) Each of the G4 (k)-schemes (X,y, , Ox |Uy) is affine.

Let Fi, € 8hv(N(CRing;)°?) be the functor represented by (X, , Ox |Uy). It follows from (a) the the map
[ Fo — F is an effective epimorphism. It will therefore suffice to show that each F,, is a relative algebraic
space étale over F. In view of Lemma 2.6.20, we are reduced to proving that each of the objects U, is
discrete. Using Remark 2.3.4, this translates to the condition that for every commutative k-algebra B, the
homotopy fibers of the map F,,(B) — F(B) are discrete. To prove this, it suffices to observe that F(B) is 1-
truncated (by Lemma 2.6.19), and F,(B) is discrete (in fact, if F,, is represented by the affine G4 (k)-scheme
SpecY A,, then F,(B) is homotopy equivalent to the discrete set HomcRing, (Aa, B)). O

Warning 2.6.22. Fix a commutative ring k. We have an evident transformation of geometries Gz,.(k) —
Get (k) (which, at the level of the underlying oco-categories, is simply given by the identity functor). We

therefore have a relative spectrum functor Specg?(l&) : Sch(Gza:(k)) — Sch(Gei(k)). When restricted to
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O-localic Gz, (k)-schemes, we recover the usual embedding of the category of k-schemes into the 2-category of
Ger(k
Gzar(
because the cohomology of a scheme with respect to the Zariski topology (with constant coefficients, say)

generally does not agree with its cohomology with respect to the étale topology.

Deligne-Mumford stacks over k, which is fully faithful. However, Spec L) is not fully faithful in general,

Theorem 2.6.18 gives a description of the oo-category of 1-localic Gg;(k)-schemes in reasonably classi-
cal terms. It is natural to ask what happens if we consider more general G¢;(k)-schemes. The following
consequence of Theorem 2.3.13 implies that there is no essential gain in generality:

Proposition 2.6.23. Let k be a commutative ring, and let (X, Ox) € “Top(Gg(k)). The following conditions
are equivalent:

(1) The pair (X, 0x) is an Gg(k)-scheme.
(2) There exists a 1-localic G ¢ (k)-scheme (Y, Oy), a 2-connective object U € Y, and an equivalence

(X,Ox) = (y/UaoH |U)

3 Smoothness

Let k£ be a commutative ring, and € an oo-category which admits finite limits. Suppose that we wish to
define the notion of a commutative k-algebra in €. Following the ideas introduced in §1, we might proceed as
follows. Let G(k) be the (nerve of the) opposite of the category of finitely presented commutative k-algebras
(in other words, the category of affine k-schemes which are locally of finite presentation). Then we can
define a commutative k-algebra in € to be a left exact functor from G(k) to €. Note that because §(k) is the
nerve of an ordinary category, any left exact functor from §(k) to € automatically factors through the full
subcategory 7<o C C C spanned by the discrete objects (Proposition T.5.5.6.16).

Let T(k) C G(k) denote the full subcategory spanned by the free k-algebras: that is, k-algebras of the
form k[xq,...,2,]. The relationship between G(k) and T(k) can be summarized as follows:

(a) The oo-category T(k) admits finite products.
(b) The oco-category G(k) is discrete (that is, equivalent to the nerve of a category) and admits finite limits.

(¢) The inclusion T(k) C G(k) preserves finite products. Moreover, §(k) is universal among discrete oo-
categories which admit finite limits and receive a product-preserving functor from T (k) (see §3.4 for a
more detailed discussion of this universal property).

It follows from assertion (c) that we can also define a commutative k-algebra in an oo-category € to be
a product-preserving functor from 7 into 1< €. Consequently, we can view the category of commutative k-
algebras in € as a full subcategory of the larger oo-category Fun™ (T(k), €) of all product-preserving functors
from T(k) to C. In the case where C is the co-category of spaces, we can identify Fun™ (T(k), €) with the
oo-category underlying the model category of simplicial commutative k-algebras. Loosely speaking, we can
summarize the situation as follows: the category G(k) knows about algebraic geometry (over k), but the
category T(k) knows about derived algebraic geometry.

To pursue this idea further, we first observe that G(k) can be viewed as a geometry, in the sense of
Definition 1.2.5. In fact, it can be viewed as a geometry in several different ways (see §2.5 and §2.6); for
definiteness, let us regard G(k) as endowed with the étale topology described in §2.6. The subcategory
T(k) C S(k) does not interact well with the geometry structure on G(k). The problem is easy to describe:
if we identify G(k) with the category of affine k-schemes of finite presentation, then J(k) corresponds to the
subcategory spanned by the affine spaces over k: that is, finite products of the affine line with itself. The
étale topology on T (k) is not very interesting, because there are not many étale maps between affine spaces.
However, there is a natural replacement: the larger subcategory T¢: (k) C G(k) spanned by those affine k-
schemes which are étale over affine spaces (in particular, every object of T¢ (k) is a smooth k-scheme). This
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subcategory contains T and is not too much larger, by virtue of the fact that every smooth k-scheme can be
locally realized as an étale cover of an affine space.

The category Tet (k) is much like a geometry: it has a robust theory of admissible morphisms (in this case,
étale maps between k-schemes) and an associated Grothendieck topology. It fails to qualify as a geometry
only because T4 (k) does not admit finite limits. Instead, T4 (k) is an example of a pregeometry (see §3.1
for a precise definition). Moreover, this pregeometry determines the geometry G(k): namely, we will prove
an analogue of the universal property asserted in (c¢), which makes reference to the Grothendieck topologies
on Te (k) and G(k) (see Proposition 4.3.15). The situation can be summarized by saying that G(k) is a
0-truncated envelope of T4 (k): we refer the reader to §3.4 for an explanation of this terminology.

Our objective in this section is to describe a theory of pregeometries which is analogous to the theory of
geometries developed in §1. Although this material is not logically necessary for developing the foundations
of derived algebraic geometry, it has many uses:

(1) A single pregeometry T can generate a variety of geometries. For example, the pregeometry T
described above can give rise to either classical algebraic geometry or derived algebraic geometry,
depending on what discreteness conditions we impose.

(2) Often it is easier to describe a pregeometry T than it is to describe the associated geometry §. For
example, in the complex analytic setting, it is easier to describe the class of complex analytic manifolds
than the class of complex analytic spaces (see §4).

(3) If G is a geometry associated to a pregeometry T, then we can introduce an associated theory of smooth
morphisms between G-schemes, which specializes to the usual notion of smoothness when we take
{-T == ‘Iét'

We now outline the contents of this section. We will begin in §3.1 by introducing the definition of
a pregeometry. Given a pregeometry T and an oco-topos X, we will define an oo-category Strg(X) of T-
structures on X. In §3.2, we will discuss the functoriality of Stro(X) in T, and describe situations in which
two pregeometries T and T’ give rise to the same notion of “structure”. In §3.5, we will describe some
examples of T-structures, which are obtained by mirroring the constructions of §2.2.

Every pregeometry T admits a geometric envelope G: a geometry with the property that for every oo-
topos X, there is a canonical equivalence Strg(X) ~ Stry(X). We will provide a construction of § in §3.4.
Consequently, we can view the theory of pregeometries presented here as a less general version of our previous
theory of geometries. However, the oo-category Strg(X) has special features in the case where the geometry
G arises as the envelope of a pregeometry: for example, Strg(X) admits sifted colimits. We will establish
this and other properties in §3.3.

3.1 Pregeometries

Definition 3.1.1. A pregeometry is an oo-category T equipped with an admissibility structure (see Definition
1.2.1) such that T admits finite products.

Remark 3.1.2. In the situation of Definition 3.1.1, we will generally abuse terminology by identifying a
pregeometry with its underlying co-category T; we implicitly understand that a Grothendieck topology on
T and a class of admissible morphisms has been specified as well.

Example 3.1.3. Let T be any oo-category which admits finite products. Then we can regard T as a
pregeometry as follows:

e The Grothendieck topology on T is discrete: that is, a sieve ‘T(/) x € T/x is covering if and only if it
contains the whole of T x.

e A morphism in T is admissible if and only if it is an equivalence in 7.
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We will refer to a pregeometry as discrete if it arises via this construction.

Definition 3.1.4. Let T be a pregeometry, and let X be an oo-topos. A T-structure on X is a functor
O : T — X with the following properties:

(1) The functor O preserves finite products.

(2) Suppose given a pullback diagram
U——=U

b

in 7, where f is admissible. Then the induced diagram

OU") ——= O(U)

L

O(X") ——= 0(X)
is a pullback square in X.

(3) Let {Uy — X} be a collection of admissible morphisms in J which generate a covering sieve on X.
Then the induced map

[Tow.) = ox)

is an effective epimorphism in X.

Given a pair of J-structures O and O’, a morphism of T-structures o : O — O’ is local if the following
condition is satisfied: for every admissible morphism U — X in T, the resulting diagram

O(U) — O'(U)

O(X) —= 0'(X)

is a pullback square in X.
We let Strg(X) denote the full subcategory of Fun(T, X) spanned by the T-structures on X, and Strte¢(X)
the subcategory of Strg(X) spanned by the local morphisms of T-structures.

Warning 3.1.5. Let T be a pregeometry. If T admits finite limits, then we can also regard T as a geometry.
However, the notion of T-structure introduced in Definition 3.1.4 does not agree with Definition 1.2.8. To
avoid confusion, we will always use the symbol T to denote a pregeometry, so that Strg(X) and Stri®(X) are
defined via Definition 3.1.4 regardless of whether or not T is also a geometry.

Example 3.1.6. Let T be an co-category which admits finite products, regarded as a discrete geometry.
Then Stry(8) can be identified with the co-category Ps(T°7) defined in §T.5.5.8. Let € C Px(T°F) denote the
smallest full subcategory of Px(T°?) which contains the image of the Yoneda embedding j : T — Px(TP)
and is stable under finite colimits. Then, for every co-category X which admits small colimits, the functor

Fun(€°?, X) — Fun(7,X)

given by composition with j induces an equivalence from Fun'® (€7, X) to the full subcategory of Fun(T,X)
spanned by those functor which preserve finite products. In the case where X is an oco-topos, we obtain
equivalences

Stryr(X) = Fun'* (€%, X) ~ 8hvypy (gor)(X).
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Definition 3.1.7. Let T be a pregeometry. We will say that a morphism f: X — S in T is smooth if there
exists a collection of commutative diagrams

U

U, X
-
SxV,——S8

where u,, and v, are admissible, the bottom horizontal map is given by projection onto the first factor, and
the morphisms u,, generate a covering sieve on X.

Proposition 3.1.8. Let T be a pregeometry, and let
X —X
lf’ lf
S —— 5
be a pullback diagram in T, where f is smooth. Then:
(1) The map f' is smooth.

(2) Let X be an arbitrary co-topos, and O : T — X a T-structure in X. Then the diagram

O(X") —= O(X)

L

0(8") ——=0(9)

s a pullback square in X.
Proof. Choose a collection of commutative diagrams

U

U, X
!
SxVy,——S8

such that the morphisms {U, — X}a,ca generate a covering sieve on X. Let U/, = U, xx X'. Then the
collection of commutative diagrams

U, —X'
L)
S’ xV, ——=5'

shows that f’ is smooth. This proves (1). }
We now prove (2). Let Wy = [[,c4 O(Us) and Wy = [[,c4 O(UY,). Let W, denote the Cech nerve of the
canonical map ¢ : Wy — O(X), and define W/ to be the Cechnerve of the canonical map ¢’ : W, — O(X").
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Since ¢ and ¢’ are effective epimorphisms, we have a commutative diagram

We| —— [W,|

0(8") ——=0(9)

in which the upper vertical arrows are equivalences. It will therefore suffice to show that the outer square is
a pullback.

For each @ = (ag,...,ap) € A" let Uy = Uy Xx .. xx Uy
canonical equivalences

and define UL = Uz xx X'. We have

n?

W~ [ o)

FEAn+

w,~ [ owh.
FEAn+

Since colimits in X are universal, it will suffice to show that each of the diagrams

O(U%) — O(Ux)

L

0(8") ——=0(9)
is a pullback square. To prove this, we consider the larger diagram

0(U%) 0(Uz)

| |

O(S" X Vo) —= 0(S x V4,)

l |

O(S") ——> O(S).

The upper square is a pullback because the projection Uz — S x V,, is admissible, and the lower square is
a pullback because the functor O preserves finite products. O

We conclude this section by introducing a bit of notation:
Definition 3.1.9. Let T be a pregeometry. We define a subcategory
LTOP(T) C Fun(7, %) X Fun(K,LTop) LTOP
as follows:

(a) Let f* € Fun(T,%Top) X pyn(7 L Top) LTop be an object, which we can identify with a functor @ : T — X,
where X is an oo-topos. Then O belongs to “Top(T) if and only if O is a T-structure on X.

b) Let a: O — O be a morphism in Fun(T,LTop) X pun(T L7op) “Top, where O and O’ belong to “Top(7T),
(7,%Top)
and let f* : X — Y denote the image of a in “Jop. Then « belongs to “Top(T) if and only if the
induced map f*o O — O is a morphism of Str¢(Y).
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Remark 3.1.10. Let T be a pregeometry. The oo-category “Top(7T) is equipped with a canonical coCartesian
fibration p : “Top(T) — “Top. The fiber over an object X € “Top is isomorphic to Strie®(X’), where
X' = LTop XLgop {X} is an co-topos canonically equivalent to X. If f* : X — Y is a geometric morphism of
oo-topoi, then the coCartesian fibration associates to f* the functor

Strloe (') =~ Strl9°(X0) 2 Strlee(y) ~ Strlee(y').

Remark 3.1.11. Our notation is somewhat abusive, since the notations of Definitions 1.4.8, 1.4.9, and 3.1.9
overlap. However, there should not be any cause for confusion: as explained in Warning 3.1.5, the symbol T
will always denote a pregeometry, so that “Top(7) is always defined via Definition 3.1.9.

3.2 Transformations and Morita Equivalence

The theory of pregeometries is a formalism which allows us to begin with a collection of “smooth” objects
(namely, the objects of a pregeometry T) and to extrapolate an oo-category consisting of “singular” versions
of the same objects (namely, the co-category “Top(T)°P of T-structured oo-topoi). Often there are many
different choices for the pregeometry J which give rise to the same theory of T-structures. Our goal in this
section is to give a precise account of this phenomenon. We begin by introducing a few definitions.

Definition 3.2.1. Let T and T’ be pregeometries. A transformation of pregeometries from T to T’ is a
functor F : T — T’ satisfying the following conditions:

(¢) The functor F preserves finite products.
(ii) The functor F carries admissible morphisms in 7 to admissible morphisms in J”.

(791) Let {uq : Uy — X} be a collection of admissible morphisms in T which generates a covering sieve on
X. Then the morphisms {F(u,) : FU, — FX} generate a covering sieve on FX € T".

(iv) Suppose given a pullback diagram

U——=U
L)
X —=X

in 7, where f is admissible. Then the induced diagram

FU ——=FU

L

FX'—=FX

is a pullback square in 7"

Definition 3.2.2. Let F : T — 7’ be a transformation of pregeometries. Then, for any co-topos X,

composition with F' induces a functor
Strics(X) — Strie(X).

We will say that F'is a Morita equivalence of pregeometries if this functor is an equivalence of co-categories,
for every oco-topos X.

Remark 3.2.3. Let F : T — T’ be a Morita equivalence of pregeometries. Then F induces equivalences
Strgs (X) — Strg(X) for every co-topos X; see Remark 3.4.14.

87



Remark 3.2.4. The notion of Morita equivalence is most naturally formulated in the language of classifying
oo-topoi. We will later see that a transformation F : T — T’ is a Morita equivalence if and only if it induces an
equivalence X — X’ of co-topoi with geometric structure (Remark 3.4.14). Here X is a classifying oo-topos
for T-structures (Definition 3.4.13) and X’ is defined similarly.

The main results of this section are Propositions 3.2.5 and 3.2.8, which give criteria for establishing that
a transformation of pregeometries is a Morita equivalence.

Proposition 3.2.5. Let F : T — T’ be a transformation of pregeometries. Suppose that:
(1) The underlying oco-categories of T and T’ coincide, and F is the identity functor. Moreover, the

Grothendieck topologies on T and T’ are the same.

(2) For every T'-admissible morphism U — X, there exists a collection of T-admissible morphisms {V, —
U} which generate a covering sieve on U, such that each composite map V,, — X is T-admissible.

Then F is a Morita equivalence.

Proof. Let X be an oo-topos. We will show that the subcategories Stric®(X), Strief(X) € Fun(T,X) coincide.
Our first step is to show that if O : T — X is a T-structure on X, then O is also a T’-structure. In other
words, we must show that for every pullback diagram

U ——=U

b

X —X
in T, if f is 7’-admissible, then the associated diagram

oU’) ——=0(U)

L

O(X") ——= 0(X)

is a pullback square in X. Choose a collection of T-admissible morphisms {g, : Vi, = U}4ca which cover U,
such that each composition f o g, : V,, — X is again T-admissible. For each « € A, let V! denote the fiber
product V, xy U/ ~V, xx X'.

For every finite sequence @ = («, . . ., a, ) of elements of A, set

Vaz Vao Xy ... Xy Van,
/ ’ ’
VEZ Vao Xyur ... Xy’ Van.

We then have a pullback diagram

|

X ——= X.

Let Zo = [[,c4 O(Va), and define Z§ similarly. Let Z, denote the Cechnerve of the canonical map ¢ : Zy —
O(U), and Z, the Cechnerve of the canonical map ¢’ : Z, — O(U’). Since each map g, is T-admissible, we
can identify each Z, with the coproduct JJ;c 4ni1 O(Vy) and each Z], with the coproduct [[c 4n+1 O(Va).
It follows that each diagram

Z! Zn
|
O(X") —= O(X)



is a pullback square in X. Since colimits in X are universal, we deduce that the outer rectangle in the diagram

|1 Z| ——1Z.]

L

OU") —— O(U)

L

O(X'") — O(X)

is a pullback square. Because the morphisms {V,, — U} form a covering of U, the maps ¢ and ¢’ are effective
epimorphisms. It follows that the upper vertical maps in the preceding diagram are equivalences, so that
the lower square is a pullback as well. This completes the proof that O is a T’-structure on X.

We now show that every morphism f : 0" — O in Str'e®(X) belongs to Strif(X). In other words, we must
show that if f: U — X is T-admissible, then the diagram

0'(U) —= O(U)

O0'(X) ——= O(X)

is a pullback square in X. Choose a covering {g. : Va - U}aea and define Z, as in the first part of the
proof, but now set Zj = [[,c4 0 (Vo) and let Z, be Cechnerve of the map Zj — O'(U). As above, we
deduce that each

O'(X) —= 0(X)

is a pullback square. Since colimits in X are universal, the outer rectangle in the diagram

|Ze| —— 17|

L

0'(U) ——= 0(U)

|

O'(X) —= O(X)

is a pullback square, and the upper vertical arrows are equivalences. It follows that the lower square is a
pullback as well, as desired. O

Lemma 3.2.6. Let X be an oco-topos. Suppose given a finite collection of small diagrams {f; : J; = X}ier.

Let J = Hiel di, and for each i € I let g; denote the composition §J — J; Q X. Let f € Fun(d,X) be a
product of the functors {g;}icr. Then the canonical map

colim(f) — Hcolim(gi) — HCOlim(fi)

il icl

is an equivalence in X.
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Proof. Choose colimit diagrams f; : J; — X extending f;, for each i € I. Let § = [[;c;d7,let g, : J = X
be the composition of ?l with the projection J - H'f, and let ? € Fun(g, X) be a product of the functors
{3, }ier- Tt will suffice to show that f is a left Kan extension of f = f|J.

Without loss of generality, we may suppose that I = {1,...,n} for some nonnegative integer n. For
0 <i < n,let J(i) denote the product

X X P X1 X x

so that we have a filtration B B B B

§=3(0)CF1)C...Can)=7.
In view of Proposition T.4.3.2.8, it will suffice to show that f|J(i) is a left Kan extension of f|J(i — 1) for
each 0 < ¢ < n. Since f; is a colimit diagram, this follows from the fact that colimits in X are stable under
products. [

Lemma 3.2.7. Let T — Al be an (essentially small) correspondence from a pregeometry To = T x A1{0} to
another pregeometry T1 = T xa1{1}. Assume that T satisfies conditions (i) and (ii) of Proposition 1.2.1/,
together with the following additional condition:

(7i7) The inclusion T1 C T preserves finite products.

(This condition is automatically satisfied if T is the correspondence associated to a functor Tg — T1.) Let X
be an co-topos, and let F : Fun(Tg, X) — Fun(T1,X) be given by left Kan extension along the correspondence
T. Then F carries To-structures on X to Ti-structures on X.

Proof. Let Qg : Tg — X be a Tp-structure, and let O : T — X be a left Kan extension of Og. We wish to
show that O; = 0|77 is a Ty-structure on X. In view of Proposition 1.2.14, it will suffice to show that O
preserves finite products.

Let I be a finite set, and let {X;};c; be a finite collection of objects of T7. We regard I as a discrete
simplicial set, and the collection {X;};cs as a diagram p : I — T7. Extend this to a limit diagram p : 19 — T7.
Set X = p(v), where v denotes the cone point of /9, so that X ~ [[,.; X; in T} (and also in T, by virtue of
assumption (ii7)). Let J denote the full subcategory of

Funa: (Iq X Al,ﬂ') X Fun(I4x{1},71) {ﬁ}

spanned by those functors F such that F|(I< x {0}) is a limit diagram in Ty. Let ¢ : J — ‘J'(/)X be given by
evaluation at v. The functor ¢ admits a left adjoint, and is therefore left cofinal (by Theorem T.4.1.3.1).
Let f denote the composite functor

33T 57,8,

Using Proposition T.4.3.2.15, we deduce that evaluation at the points of 4 induces a trivial Kan fibration
¢i 2 d = [Lics ‘J'éXi. For each 7 € I, let f; denote the composition

TN Ty B
We have a homotopy commutative diagram

colim(f) 01(X)

)

[Lic; colim(f;) ——=[I;c; O1(Xi).

Since O is a left Kan extension of Qg, the horizontal arrows are equivalences in X. Consequently, to show that
1 is an equivalence, it will suffice to show that v’ is an equivalence, which follows from Lemma 3.2.6. O
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Proposition 3.2.8. Let To C T be pregeometries satisfying the following conditions:
(1) The oco-category To is a full subcategory of T, which is stable under finite products.
(2) A morphism f:U — X in Ty is admissible in Ty if and only if it is admissible in 7.

(3) A collection of admissible morphisms {fs : Uy — X} in Ty generate a covering sieve on X in Ty if
and only if they generate a covering sieve on X in 7.

(4) Suppose given a pullback diagram
U——=U

N
X —X
in T, where [ is admissible. If U and X' belong to Ty, then U’ belongs to T.

(5) For every X € T, there exists a collection of admissible morphisms {U, — X} which generates a
covering sieve on X, such that each U, € Ty.

Then the inclusion To C T is a Morita equivalence.
Proof. Let X be an oo-topos. We define a subcategory Striy(X) C Fun(T, X) as follows:

(a) A functor O : T — X belongs to Str-(X) if and only if O[Ty € Strg, (X), and O is a left Kan extension
of O | r.To.

(b) A natural transformation a : O — O between objects of Str’;(X) belongs to Str’(X) if and only if the
induced transformation O | Ty — O | Ty belongs to StrITOOC(DC).

Proposition T.4.3.2.15 implies that the restriction functor Strf(X) — Strl}’oc(DC) is a trivial Kan fibration. It
will therefore suffice to show that Stri¢(X) = Strfy(X). We first show that the equality holds at the level of
objects. Lemma 3.2.7 implies that every object of Strfy(X) belongs to Strie®(X).

To prove the reverse inclusion, we begin by studying an arbitrary functor O : T — X. Fix an object
X € X. Using (5), we can choose a covering of X by admissible morphisms {uy, : Uy — X }aca, where each
Uy € Tp. Let Af denote the category whose objects are finite linearly ordered sets I equipped with a map
I — A, and whose morphisms are commutative diagrams

f

NS

A

1 J

where f is an order-preserving map. Let Aﬁ’gn denote the full subcategory of Af spanned by those objects

whose underlying linearly ordered set I has cardinality < n 4+ 1, and A4 the subcategory spanned by those
objects whose underlying linearly ordered set I is nonempty. The admissible morphisms u, determine a map
U, : N(Ai’go)"p — X. We let ut : N(Af)”’ — X be a right Kan extension of ul,, so that u™ associates
to an ordered sequence @ = (ap, . .., @, ) of elements of A the iterated fiber product

+_
Up = Uqgy Xx X ... Xx U,g,.

Finally, let u = u| N(A?)°P. Condition (4) guarantees that u takes values in To € T. We will prove the
following:

(x) Suppose that Og = O | Ty € Stra, (X). Then O is a left Kan extension of Oy at X if and only if O ou™
exhibits O(X) as a colimit of the diagram O ou.
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Let Uy : N(A)? — X/ 9(x) be obtained by left Kan extension of OoU along the canonical projection
N(AY)P — N(A)°P, so that we can identify each U, with the coproduct [zean+r O(Ug). Then we can
identify colim(O ou) with the geometric realization of U,.

Let 7" denote the full subcategory of T, x spanned by those morphisms g : V' — X which belong to the
sieve generated by the maps {U, — X}, and such that V € Ty. Since Qg is a sheaf with respect to the
topology on Tg, the restriction Qg |(T,x x5 To) is a left Kan extension of Qg | T’. In view of Lemma T.4.3.2.7,
it will suffice to show that U, induces a left cofinal map N(A)°? — T'. According to Corollary T.4.1.3.1,
we must show that for every morphism V — X in T, the oo-category ¥ = N(A)P xq ‘.T’V/ is a weakly
contractible simplicial set. We observe that the projection Y — N(A)°P is a left fibration, classified by a
simplicial object Y, in the co-category 8 of spaces. In view of Corollary T.3.3.4.6, it will suffice to show that
the geometric realization |Y,| is weakly contractible. We note that Y, can be identified with a Cech nerve of
the projection Yy — *. Since 8 is an oo-topos, we are reduced to showing that p is an effective epimorphism.
In other words, we must show that the space Y} is nonempty; this follows from our assumption that the map
W — X belongs to the sieve generated by the morphisms {U, — X }. This completes the proof of (x).

Suppose now that O € Strg(X). Replacing T by T and applying the proof of (x), we conclude that O oU™
is a colimit diagram. Invoking (x), we deduce that O € Strf(X). This completes the proof that Strq(X) and
Str(X) have the same objects.

It is obvious that every morphism of Stri?®(X) is also a morphism of Str’(X). It remains to show that
every morphism of Strf(X) belongs to Stre¢(X). Let o : O — O be a natural transformation in Fun(7,X),
where O and O’ are T-structures on X. Suppose further that the induced map O’ | Ty — O | T is a morphism
of Str?{f(%). We wish to show that « belongs to Strie®(X). For this, we must show that if U — X is an
admissible morphism in T, then the diagram 7 :

is a pullback square.

We begin by treating the special case where U € Tj. Choose an admissible covering {V, — X}aca,
where each V,, belongs to Ty. Let {W, — U}sca be the induced covering, where W, ~ U xx V,. Let
v,w : N(A?)? — X be defined as in the proof of (x) using the functor O, and let v/, w’ : N(A?)°? — X be
defined using the functor O’. We then have a commutative diagram of functors

|

—

/H

~—8

<

)

which is a pullback square in virtue of our assumption on a. Moreover, the vertical arrows carry morphisms
in A* to pullback squares in X. Using Lemma 1.2.15, we deduce that the induced diagram

colim w’ —— colimw

L

colim v/ —— colimv

is a pullback square in X. Combining this with (x), we deduce that 7 is a pullback square as desired.
We now treat the general case. Choose an admissible covering {V,, — U}aca by objects of Tg. Let
v,v" : N(A?)°P — X be defined as in the proof of (%), using the functors © and O’ respectively. For each
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@ e A%, we have a commutative diagram

-
-

0'(X) —= O(X).

The special case treated above guarantees that this is a pullback square. Since colimits in X are universal,
we obtain a pullback square
colim v —— colim v

|
O'(X) — O(X).

Assertion (x) allows us to identify this square with 7 and complete the proof.

3.3 oo-Categories of T-Structures

Our goal in this section is to study the oo-category Stry(X), where T is a pregeometry and X an co-topos.
Proposition 3.4.7 implies the existence of an equivalence Strg(X) ~ Strg(X), where § is a geometric envelope
of T (see §3.4); consequently, many of the results of §1.5 can be applied to Stro(X). For example, Remark
1.4.12 implies thatStrlf?C(DC) admits filtered colimits. However, we can prove a stronger result in the setting
of pregeometries:

Proposition 3.3.1. Let T be a pregeometry, and X an oo-topos. Then:
(i) The oo-category Strie®(X) admits sifted colimits.
(i1) The inclusion Stri¢(X) € Fun(T,X) preserves sifted colimits.

Proof. Let C be a (small) sifted co-category, let F' : € — Stri?®(X) be a diagram, and let O be a colimit of
F' in the oo-category Fun(7,X). We must show:

(a) The functor O belongs to Stric¢(X).

(b) For every object C' € €, the canonical map ac¢ : F(C) — O is local.

loc

(¢) Given any object O" € Strsy
is local, then § is local.

(X) and a morphism £ : O — O in Fun(7T,X), if each composition 3 o ac

Assertions (b) and (c) follow immediately from Lemma 1.2.15. To prove (a), we must show that O
satisfies conditions (1), (2) and (3) of Definition 3.1.4. Since C is sifted, the formation of finite products in X
is compatible with C-indexed colimits. It follows immediately that O preserves finite products, which proves
(1).

To prove (2), we must show that for every pullback diagram

U ——=U

b

X ——=X
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in 7 such that f is admissible, the associated diagram

OU") —= O(U)

L

0(X') —— 0(X)
is a pullback in X. In view of Lemma 1.2.15, it suffices to show that each of the diagrams

FO)U) —0(U)

L

F(C)(X') —— 0(X)
is a pullback square. These diagrams can be enlarged to commutative rectangles

FO)U") —=F(C)(U) —= 0(U)

l l

FO)X') —= F(C)(X) — 0(X)

S

where the left square is a pullback because F(C) € Stry(X), and the right square is a pullback by Lemma
1.2.15.

It remains to show that O satisfies condition (3). Let X be an object of T and let {U, — X} be a
collection of admissible morphisms which generate a covering sieve on X. We wish to show that the induced
map [, O0(Us) = O(X) is an effective epiomorphism in X. Since O(X) =~ colim¢ F(C)(X), we have an
effective epimorphism [[, F(C)(X) — O(X). It will therefore suffice to show that, for each C' € C, the
induced map

[T(0Wa) xox) F(C)(X)) = F(C)(X)
is an effective epimorphism. Using (b), we can identify the left side with [[, F'(C)(Ua), so that the desired
result follows from the assumption that F(C) € Strie®(X). O

We now study the behavior of J-structures under truncation.

Definition 3.3.2. Let T be a pregeometry, and X an oo-topos, and n > —1 an integer. A T-structure O on
X is n-truncated if, for every object X € T, the image O(X) is an n-truncated object of X. We let Str?"(%)
denote the full subcategory of Stry(X) spanned by the n-truncated T-structures on X.

We will say that T is compatible with n-truncations if, for every oco-topos X, every T-structure O : T — X,
and every admissible morphism U — X in 7, the induced diagram

O(U) ——= 1<, O(U)
L]
O(X) — 1<, O(X)

is a pullback square in X.

Proposition 3.3.3. Let n > —1 be an integer, T a pregeometry which is compatible with n-truncations, X
an co-topos, and O an object of Stro(X). Then:

(1) The composition T<, 0 Q is a T-structure on X, where 7<p, : X — X denotes the n-truncation functor.
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(2) The canonical map o : O — (7<,, 0 O) is local.
3) For every object O’ € Str="(X , composition with o induces a homotopy equivalence
T

MapStrlg‘?C(ﬁ)C) (TSn 00, OI) — Mapstrlggc(x) (07 O/)

(4) Composition with 1<, induces a functor Stri(X) — Str,‘?n(X) N Strie(X), which is left adjoint to the
inclusion Str3"(X) N Striec(X) C Strige(X).

The proof is based on the following lemma:

Lemma 3.3.4. Let X be an co-topos and n > —2. Suppose given a commutative diagram

U—— 1<, U——=U'

]

X—s1, X — X/,

n X, where U’ and X' are n-truncated. If the outer square and the left square are pullback diagrams, then
the right square is a pullback diagram as well.

Proof. We wish to show that the canonical map a : U — U’ xx/ 7<, X exhibits U’ xx: 7<, X as an
n-truncation of U in the co-topos X. Because U’ is n-truncated, it will suffice to show that o exhibits
U' xx1 T<pX as an n-truncation of U in the oco-topos X, (this follows from Lemma T.5.5.6.14). This
follows from Proposition T.5.5.6.28, since the functor U’ X x e preserves small colimits and finite limits. [

Proof of Proposition 3.3.3. Assertion (2) is simply a reformulation of the condition that T is compatible with
n-truncations, and assertion (4) follows immediately from (1), (2) and (3). It will therefore suffice to prove
(1) and (3).

To prove (1), we must show that 7<, o O satisfies the conditions of Definition 3.1.4:

e The functor 7<, 0 O preserves finite products. This follows from the fact that O and 7<,, preserve finite
products (the second assertion follows from Lemma T.6.5.1.2).

e The functor 7<, o O preserves pullbacks by admissible morphisms. Suppose given a pullback diagram

U——=U

L

X —X

in T, where the vertical arrows are admissible. We wish to show that the right square appearing in the
diagram
OU") ——71<n O(U") ——7<n O(U)

L i
O(X') —= 7<n O(X') ——= 7<, O(X)

is a pullback square. The left square is a pullback because 7T is compatible with n-truncations. In view
of Lemma 3.3.4, it will suffice to show that the outer square is a pullback. For this, we consider the

diagram
O(U") —— O(U) —— 72, O(U)
0(X") 0(X) T<n O(X)




The left square is a pullback diagram because O € Strq(X), and the right square is a pullback diagram
because T is compatible with n-truncations. It follows that the outer square is a pullback diagram, as
desired.

e The functor 7<, o O carries every covering sieve {U, — X} to an effective epimorphism

[ < 0(Ua) = 7<0 0(X).

To prove this, we consider the commutative diagram

[T0(Ua)

|

[[7<n O(Us) — 7<n O(X).

It will suffice to show that the map « is an effective epiomorphism. The upper horizontal morphism is an
effective epimorphism since O € Stry(X), and the right vertical morphism is an effective epimorphism
since n > —1.

To prove (3), we consider a map a : O — O’ in Strit®(X). Let U — X be an admissible morphism in T,
and consider the induced diagram

O(U) —7<n O(U) ——=0'(U)

N

O(X) —= 7<, O(X) —= O'(X).

We wish to show that the right square is a pullback. Here the outer square is a pullback since « is a
transformation of T-structures, and the left square is a pullback since T is compatible with n-truncations.
The desired result now follows from Lemma 3.3.4. O

The following result is often useful in verifying the hypotheses of Proposition 3.3.3:

Proposition 3.3.5. Let n > —1 and let T be a pregeometry. Suppose that every admissible morphism in T
is (n — 1)-truncated. Then T is compatible with n-truncations.

We first need some preliminary results.

Lemma 3.3.6. Let T be a pregeometry, and let O : T — X be a T-structure on an co-topos X. Ifa: U — X
is an n-truncated admissible morphism in T, then the induced map O(U) — O(X) is again n-truncated.

Proof. We work by induction on n. If n = —2, then « is an equivalence and the result is obvious. If n > —2,
then it will suffice to show that the canonical map

is (n — 1)-truncated (Lemma T.5.5.6.15). In view of the inductive hypothesis, it will suffice to show that the
map U — U xx U is an (n — 1)-truncated admissible morphism in X. The (n — 1)-truncatedness follows
from Lemma T.5.5.6.15, and the admissibility from Remark 1.2.3. O

Lemma 3.3.7. Let X be an oo-topos, n > —1 an integer, and let f : U — X be an (n — 1)-truncated
morphism in X. Then the induced diagram

UHTSnU

.

X —5 X

is a pullback square in X.
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Proof. Lemma T.7.2.1.13 implies that the pullback functor g* : X/;,_ x — X, x induces an equivalence when
restricted to (n — 1)-truncated objects. Consequently, there exists a pullback diagram

g

U V

b

X HTSnX,

where the morphism f is (n — 1)-truncated. To complete the proof, it will suffice to show that this diagram
exhibits V' as an n-truncation of U in X. Using Lemma T.5.5.6.14, we see that this is equivalent to showing
that g exhibits V' as an n-truncation of U in X,,_ . Since f is n-truncated, it will suffice to show that g
induces an equivalence

Xjren X XjrenX
Tep U — Tep V,

which follows immediately from Lemma T.6.5.1.2 (applied in the oco-topos x/ran)~ O

Proof of Proposition 3.3.5. Let X be an oo-topos, O a T-structure on X, and U — X an admissible morphism
in T. We wish to show that the diagram

O(U) ——7<n O(U)

L

O(X) —— 7<n O(X)

is a pullback square. This follows immediately from Lemmas 3.3.6 and 3.3.7. O

3.4 Geometric Envelopes

Let T be a pregeometry. Our goal in this section is to introduce a geometry § which is “freely generated by
T, so that for every oo-topos X we have a canonical equivalence of co-categories Strg(X) ~ Str(X).

Definition 3.4.1. Let T be a pregeometry. For any oco-category C which admits finite limits, we let
Funad(‘J', C) denote the full subcategory of Fun(T,€) spanned by those functors f : T — C with the fol-
lowing properties:

(a) The functor f preserves finite products.

(b) Let
U ——=U
X —=X

be a pullback diagram in 7 such that the vertical morphisms are admissible. Then

fU —— fU

.

fX' —fX
is a pullback diagram in C.

We will say that a functor f : T — G exhibits G as a geometric envelope of T if the following conditions
are satisfied:
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(1) The oo-category G is idempotent complete and admits finite limits.
(2) The functor f belongs to Fun®! (7T, g).

(3) For every idempotent complete oo-category € which admits finite limits, composition with f induces
an equivalence of oco-categories
Fun'®*(g, @) — Fun®!(T, @).

Here Fun'™(§, @) denotes the full subcategory of Fun(§, @) spanned by those functors which preserve
finite limits.

In this case, we regard G as endowed with the coarsest geometry structure such that f is a transformation
of pregeometries (see Remark 1.2.7).

Remark 3.4.2. In the situation of Definition 3.4.1, we will abuse terminology by saying that G is a geometric
envelope of T; in this case, the functor f : T — G is implicitly understood to be specified.

Let T be a pregeometry. The universal property demanded of a geometric envelope G of T ensures that
§ is determined uniquely up to equivalence, provided that G exists. The existence is a consequence of the
following result:

Lemma 3.4.3. Let T be a pregeometry. Then there exists a geometric envelope f : T — G. Moreover, f is
fully faithful.

Proof. This is a special case of Proposition T.5.3.6.2. O

Remark 3.4.4. In the situation of Lemma 3.4.3, the oo-category G is generated under finite limits and
retracts by the essential image of f. In other words, if G9 C G is a full subcategory which is stable under
retracts and finite limits and which contains the essential image of f, then Gy = G.

The following criterion is useful for recognizing the existence of geometric envelopes:
Proposition 3.4.5. Let G be a geometry containing a full subcategory Tg C G. Assume that:
(1) The oco-category To admits finite products.
(2) The inclusion To C G preserves finite products.
(3) For every idempotent-complete co-category C which admits finite limits, the restriction functor
Fun'®*(g, €) — Fun"™(To, ©)

is an equivalence of co-categories. Here Fun™ (T, C) denotes the full subcategory of Fun(Ty, C) spanned
by those functors which preserve finite products.

Let T be the full subcategory of G spanned by those objects X for which there exists an admissible morphism
X — Xo, where Xg € Ty. We will say that a morphism in T is admissible if it is admissible as a morphism in
G, and we will say that a collection of admissible morphisms {X, — X} in T is a covering if it is a covering
in G. Then the collection of admissible morphisms and admissible coverings endows T with the structure of
a pregeometry.

Assume further that:

(4) For every admissible morphism f: X =Y in C, there exists a pullback diagram

X—Y

i,

Xo——Y)

where fy is admissible and Yy € T.
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(5) The Grothendieck topology on G is generated by the collection of admissible coverings in 7.

(6) Let C be an idempotent-complete co-category which admits finite limits, and let « : f — [’ be a natural
transformation of functors f, f' € Fun®(T,@). If o induces an equivalence f|To — f'|To, then a is
an equivalence.

Then the inclusion T C G exhibits G as a geometric envelope of T.

Remark 3.4.6. In the situation of Proposition 3.4.5, condition (3) shows that the underlying oo-category of
G is determined up to equivalence by the co-category Ty. Let us make this determination more explicit. Fix
an oo-category Ty which admits finite products. Let G denote the opposite of the smallest full subcategory
of Px(T¢P) which contains the essential image of the Yoneda embedding j : TP — Px(T?) and is closed
under retracts and finite colimits. We claim that for any idempotent-complete oo-category € which admits
finite limits, composition with j induces an equivalence of co-categories # : Fun'® (g, @) — Fun™ (T, @). To
prove this, choose a left-exact fully faithful embedding € — €', where €’ admits small limits. Then we have
fully faithful embeddings

io : Fun'®(g, @) — Fun'*™*(g, ®) i1 : Fun™(Tp, €) — Fun™ (T, ).

Since the essential image of € is stable under retracts and finite limits in €', a left-exact functor f: G — €’
belongs to the essential image of i if and only if f| Ty belongs to the essential image of 41. It will therefore
suffice to show that the restriction functor Fun'® (G, €") — Fun™(Ty, €) is an equivalence of oo-categories;
in other words, we may reduce to the case where € admits small limits.

Let Fun'(Px(TgP)°P, €) denote the full subcategory of Fun(Ps(Tg?)°F, €) spanned by those functors which
preserve small limits, so we have a commutative diagram

o'

Fun'(Ps(Tg7)°F, €) Fun'**(g, @)

9"
[%

Fun™ (T, ©).

Proposition T.5.5.8.15 implies that 6’ is an equivalence of oc-categories. It will therefore suffice to show
that 6” is an equivalence of oo-categories. In view of Propositions T.5.3.5.10 and T.5.5.1.9, it will suffice
to show that the fully faithful inclusion §% C Px(Ty’) induces an equivalence F : Ind(§?) — Px(T).
Note that the essential image of j consists of compact projective objects of Px(T("), so that G consists of
compact objects of Ind(G°?); it follows from Proposition T.5.3.5.11 that F is fully faithful. Since F' preserves
small colimits (Proposition T.5.5.1.9), it admits a right adjoint G (Corollary T.5.5.2.9); to prove that F is
essentially surjective, it suffices to show that G is conservative. That is, we must show that if « : X - Y
is a morphism in Px(T7") which induces homotopy equivalences Mapg,, (gory(Z, X) = Mapg, (gory(Z,Y) for
every object Z € G°P, then « is an equivalence. This is clear, since §°” contains the essential image of Tg".

Proof of Proposition 8.4.5. We first show that T is stable under finite products in G. Since T contains Ty, it
contains the initial object of §. It will therefore suffice to show that for every pair of objects X,Y € T, the
product X x Y lies in 7. By assumption, we have admissible morphisms o : X — Xy, 8 :Y — Y, where
Xo,Yy € Ty and therefore admit a product Xy x Yy € Tg. The map a x §: X XY — Xg x Yy factors as a
composition

XxY 3 XoxY L Xo x Yy,

here ~y is a pullback of o and 4’ is a pullback of 3, so that v and 7’ are admissible and therefore o x 3 is
admissible This proves that X x Y € T as desired.
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To complete the proof that T is a pregeometry, the only nontrivial point is to show that if we are given
a pullback diagram

U/ fH’ X/

L,

U——X

where X, X’ and U belong to T and f is admissible, then U’ € T. To prove this, we choose an admissible
morphism ¢ : X' — X} where X{; € Ty. Then the composite map go f' : U — X is admissible, so that
U’ € T as desired.

It is clear from the construction that the inclusion T C G is a morphism of pregeometries. Now suppose
that conditions (4), (5), and (6) are satisfied. It is clear that G is endowed with the coarsest admissibility
structure compatible with the admissibility structure on 7. We must prove that, for any idempotent-complete
oo-category C which admits finite limits, the restriction map 6 : Fun'™ (9, €) — Fun®(T, @) is an equivalence
of oo-categories. This map fits into a commutative diagram

Fun'®(G, @) ¢

o’
o

Fun™ (T, C).

Fun®!(T, @)

Since #' is an equivalence of oo-categories (by (3)), it will suffice to show that #” is an equivalence of
oo-categories.
In view of Proposition T.4.3.2.15, it will suffice to show the following:

(a) Every functor fq : 9 — € which preserves finite products admits a right Kan extension f : Tg — C.

(b) A functor f : T — @ belongs to Fun®(Jz..(k), @) if and only if fo = f|To preserves finite products,
and f is a right Kan extension of fj.

To prove (a), we first invoke (3) to assume without loss of generality that fo = f'| T, where f': § — €
is a left exact functor. We will prove that f’ is a right Kan extension of fy, so that f = f/| T is the functor
whose existence is asserted by (a). To prove this, let j : € — P(€) be the Yoneda embedding. Since j detects
limits, it will suffice to show that jo f’ is a right Kan extension of j o fy; we may therefore replace € by P(€)
and thereby reduce to the case where C admits small limits.

Remark 3.4.6 provides a left-exact, fully faithful embedding i : §%7 — Px(TF) C P(TGF). Let F :
P(TP)P — € be a right Kan extension of fy along the Yoneda embedding Ty — P(Tg")°P. Accord-
ing to Lemma T.5.1.5.5, the functor F' preserves small limits. It follows from Proposition T.5.5.8.10 that
F|Ps(TyP)oP preserves sifted limits. Combining this with the observation that fo preserves finite products,
we deduce that F| Ps(TgP)°P preserves small limits (Proposition T.5.5.8.15 again). It follows that f” = Foi°
is left-exact functor T9 — € which is a right Kan extension of fo = f”|Ty. Thus f/ ~ f” and f’ is also a
right Kan extension of fy, as desired. This proves (a). It also shows that if fo : To — € preserves finite
products and f : T — € is a right Kan extension of fy, then f is the restriction of a left-exact functor from
G to C, so that f is admissible. To complete the proof of (b), we must show the converse: that is, that if
f 7T — € is admissible, then f is a right Kan extension of fo = f|Cy. To prove this, we let f’ be a right
Kan extension of fj, so we have a natural transformation « : f — f’ which is the identity on fy. The first
part of the proof shows that f’ is admissible, so that « is an equivalence by (6). It follows that f ~ f’ is
also a right Kan extension fj. O

We will now show that the geometric envelope of a pregeometry T loses no information about J-structures
on oo-topoi.
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Proposition 3.4.7. Let T be a pregeometry and f : T — G a functor which exhibits G as a geometric
envelope of T. Then, for every co-topos X, composition with f induces an equivalences of co-categories

Strg(X) — Strg(X)  Strg®(X) — Striec(X).
Proof. We have a commutative diagram of co-categories

Strlgoc(DC) ———> Strc(X)

| |

Strg(X) ——— Stry(X)

i |

Fun'®* (g, X) —E5 Fun? (7,%X)

Here the functor F' is an equivalence, and the vertical arrows are inclusions of subcategories. It will therefore
suffice to show that these subcategories correspond to one another under the equivalence F'. In other words,
we must show the following:

(1) Let O : G — X be a left exact functor such that Oof is a T-structure on X. Then O is a G-structure
on X.

(2) Let a: O — O be a natural transformation between G-structures on X, and suppose that the induced
map Oof — O of is a morphism of Strl¢®(X). Then « is a morphism of Strg’C(DC).

We first prove (1). Let U denote the Grothendieck topology on 7T, and V the induced Grothendieck
topology on G. We define a new Grothendieck topology V' on G as follows: a collection of morphisms
{Va — Y} is a covering with respect to § if and only if the induced map [, O(Vy) — O(Y) is an effective
epimorphism in X. We wish to prove that O is a G-structure on X: in other words, that V' is a refinement of
V. Since V is generated by U, it will suffice to show that V contains all coverings of the form {fU, — fX},
where {U, — X} is a collection of morphisms in T which is covering with respect to the topology U. This
follows from our assumption that O of is a T-structure.

The proof of (2) is similar. Let us say that a morphism U — X in § is special if the diagram

OU) — O'(U)
(X

is a pullback square in X. The following assertions are all easy to verify:

0(X) — 0'(X)

(a) Every equivalence in § is special.

(b) Let

be a diagram in G, and suppose that p is special. Then ¢ is special if and only if r is special.
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(¢) Let
U——=U
X —X
be a pullback diagram in G. If u is special, then u/ is also special.

We wish to show that every admissible morphism in G is special. Since the collection of admissible morphisms
in G is generated (in the sense of Remark 1.2.7) by morphisms of the form f(u), where u is an admissible
morphism of T, it will suffice to show that each f(u) is special. This is just a translation of our assumption
that the induced map Oof — O’ of is a morphism of Stri¢(X). O

Definition 3.4.8. Let T be a pregeometry. A T-scheme is a T-structured oo-topos (X, Ox ) with the following
property:

(¥) Choose a geometric envelope f : T — G and an equivalence Oy ~ 0% of, where 0% € Strg(X) (the
existence and uniqueness of O" up to equivalence follow from Proposition 3.4.7). Then (X, 0%) is a
G-scheme.

We let Sch(T) denote the full subcategory of “Top(7T)°P spanned by the T-schemes. We will say that a
T-scheme (X, Ox) is affine if the corresponding G-scheme (X, 0’) is affine.

We now introduce a variation on Definition 3.4.1:

Definition 3.4.9. Let T be a pregeometry and n > —1 an integer. We will say that a functor f : T — G
exhibits G as an n-truncated geometric envelope if the following conditions are satisfied:

(1) The oco-category G admits finite limits, and is equivalent to an n-category (in other words, each of the
mapping spaces Mapg(X,Y) is n-truncated).

(2) The functor f belongs to Fun® (7T, g).

(3) For every n-category € which admits finite limits, composition with f induces an equivalence of co-
categories
Fun'**(g, €) — Fun®!(T, €).

Here Fun'™(§, @) denotes the full subcategory of Fun(§, @) spanned by those functors which preserve
finite limits.

In this case, we regard G as endowed with the coarsest geometry structure such that f is a transformation
of pregeometries (see Remark 1.2.7).

Remark 3.4.10. By convention, we will refer to a geometric envelope of a pregeometry T (in the sense of
Definition 3.4.1) as an co-truncated geometric envelope.

It is clear from the definition that an n-truncated geometric envelope of a pregeometry T is uniquely
determined up to equivalence if it exists. The existence follows immediately from Lemma 3.4.3, Proposition
1.5.11, and the following elementary observation:

Lemma 3.4.11. Let T be a pregeometry, let f : T — G’ exhibit G’ as an geometric envelope of T, and let
g:G — G exhibit G as an n-stub of the geometry G'. Then g o f exhibits G as an n-truncated geometric
envelope of T.

The role of n-truncated geometric envelopes is explicated by the following result:
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Proposition 3.4.12. Let T be a pregeometry, n > —1 an integer, and let f : T — G exhibit § as an n-
truncated geometric envelope of T. Then for every co-topos X, composition with f induces a equivalences of
00-categories

Strg (X) — Strs"(X)

Strig°(X) — Stry="(2X).
Proof. Without loss of generality, we may assume that f factors as a composition
Thglig,

where f’ exhibits G’ as a geometric envelope of T, and f” exhibits G as an n-stub of the geometry G'. We
have a commutative diagram

Strle® (o) —2% Srl9 =1 (X0) —— Strloe=n

Strg (1) —— StrE/(X) ——— Strs"(X).

Proposition 1.5.14 implies that the horizontal arrows on the left are equivalences of co-categories. It will
therefore suffice to show that the functors ¢ and ¢y are equivalences. We will give the argument for ¢; the
proof for ¢q is identical. The functor ¢ fits into a commutative diagram

Strs/(X) —= Str3"(X)

|

Strg (X) —— Strg(X)

where the vertical arrows are inclusions of full subcategories, and the bottom horizontal arrow is an equiva-
lence of oo-categories by Proposition 3.4.7. To complete the proof, it will suffice to show that if O : §' — X is
a G'-structure such that O of’ is n-truncated, then O is itself n-truncated. Let Gj denote the full subcategory
of §’ spanned by those objects U such that O(U) C X is n-truncated. Since O is left exact, the subcategory
96 C G is stable under finite limits. Our assumption that O of’ is n-truncated guarantees that % contains
the essential image of f’. It follows from Remark 3.4.4 that 96 =G’ so that O is n-truncated as desired. O

The theory of pregeometries can also be described in the language of classifying oo-topoi:

Definition 3.4.13. Let T be a pregeometry and let —1 < n < oco. We will say that a functor O : T — K is
a universal n-truncated T-structure if the following conditions are satisfied:

(1) The oo-category K is an oo-topos, and the functor O is an n-truncated T-structure on X.

(2) For every oco-topos X, composition with O induces an equivalence of co-categories
Strac(X) — Strs" ().

In this case, we will say that X is a classifying co-topos for n-truncated T-structures. In the case n = oo, we
will simply say that O is a universal T-structure and that X is a classifying co-topos for T-structures. The
equivalence of (2) then determines a factorization system on each co-category Stra(X), so that X is endowed
with a geometric structure.
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Let T be a pregeometry and let —1 < n < oco. It is clear that a universal n-truncated T-structure is
uniquely determined up to equivalence, if it exists. The existence follows from Proposition 3.4.12 together
with the corresponding result for geometries (Proposition 1.4.2).

Remark 3.4.14. Let f : T — T’ be a transformation of pregeometries, and choose universal structures

T = K, 7 = K'. The composition T — T — K’ is classified by a geometric morphism of oo-topoi

¢* : K — K'. Unwinding the definitions, we deduce that f is a Morita equivalence if and only if ¢* is an
equivalence of co-topoi which identifies the geometric structures on X and K'. In particular, the assertion
that ¢* is an equivalence guarantees that, for any oo-topos X, the restriction map

Strgs (X) ~ Fun* (X', X) — Fun*(X, X) — Stro(X)
is an equivalence of oco-categories.

We conclude this section by establishing a criterion which guarantees that the collection of T-schemes is
closed under the formation of truncations.

Proposition 3.4.15. Let T be a pregeometry having a geometric envelope G and let n > —1. Assume the
following:

(a) The pregeometry T is compatible with n-truncations.
(b) For every admissible morphism f : A — B in Ind(§), if A is n-truncated, then B is also n-truncated.

Let X be an co-topos and Oy : G — X a G-structure on X, and choose a local transformation Oyx — le mn
Strléjc(DC) which induces an equivalence T<,, Ox(U) ~ O (U) for each U lying in the essential image of T (so
that O% is an n-truncated G-structure on X). Then:

(1) Let f: A — T(X;Ox) be a morphism in Ind(G°?) which determines an equivalence Spec? A ~ (X, Ox)
in “Top(G). Then the induced map <, A — T(X;0%) determines an equivalence Spec’ (1<, A) ~
(X, 0%) in “Top(9).

(2) If (X, 0x) is an affine G-scheme, then (X,0%) is an affine G-scheme.
(3) If (X,0x) is a G-scheme, then (X, 0%) is a G-scheme.
Proof. The implication (1) = (2) is obvious, and the implication (2) = (3) follows by working locally on

X. We will prove (1). According to Corollary 2.2.15, the spectrum Specg(TgnA) is n-truncated. It will
therefore suffice to show that the canonical map

MapLﬂ'op(S)((x7 0%), (Y,0y)) — MapLTop(S)(Specg(TSnA)v (Y,0y)) ~ Maplnd(S”p)(TSnAa I'(Y,0y))

is a homotopy equivalence for every n-truncated G-structure Oy : § — Y. Since I'(Y, Oy) is n-truncated, we
can identify the target with

Maplnd(g"p)(Aa F(y, OB)) = MapL‘J’op(S)((xa OX)7 (%, OH))
Consequently, we just need to show that for every geometric morphism 7* : X — Y, the induced map
Mapsulgc(g)(w* 0%, Oy) — Mapsnlgou(y)(ﬂ* Ox, Oy)

is a homotopy equivalence. This follows from Propositions 3.4.12 and 3.3.3. O
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3.5 Smooth Affine Schemes

Let T be a pregeometry. We think of the objects of T as being smooth geometric objects of some kind (such
as algebraic varieties or manifolds), and of T-structured oo-topoi (Y, Oy : T — Y) as being (possibly) singular
geometric objects of the same type. These perspectives are connected as follows: if X is an object of T,
then we think of Oy(X) € Y as the sheaf of “X-valued functions on Y”. To make this idea more precise, we
would like to be able to extract from X another T-structured oo-topos Spec” X such that we have natural
homotopy equivalences

Ma‘p‘j (Ua Oy (X)) - MapL‘Top(‘T) (Specg- X, (y/Ua OH |U))
for each object U € Y. Our goal in this section is to produce (by explicit construction) a T-structured
oo-topos Spec” X with this universal property.
Remark 3.5.1. Replacing (Y, Oy) by (4,7, Oy |U) in the discussion above, we see that it suffices to verify
the universal property of SpecTX in the case where U is final in Y.
Remark 3.5.2. Let T be a pregeometry, and choose a geometric envelope f : T — G. Let SpecT denote

the composition
Spec9

T 6 Pro(S) Sch () ~ Sch(T).

It follows from Proposition 3.4.7 that, for every object X € T, the T-scheme Spec(‘TX has the desired
universal property. The reader who is content with this description of Spec‘I can safely skip the remainder
of this section. Our efforts will be directed to providing a more direct construction of Spec” X, which does
not make reference to the geometric envelope G: instead, we will mimic the constructions of §2.2 using 7 in
place of G.

For the remainder of this section, we fix a pregeometry T and an object X € J. Let ‘3'7‘)1( denote the full
subcategory of T,x spanned by the admissible morphisms U — X. We regard ‘.TE/“;( as endowed with the
Grothendieck topology induced by the Grothendieck topology on J. Let L : T(‘T‘}g{) — 8hv(‘.]'7§() denote a
left adjoint to the inclusion of ShV(TJ'%i() into ‘P(‘J’}}) We let Ox denote the composition

T4 P(T) = PII%) 5 Shw(T9%),
where j denotes the Yoneda embedding.

Remark 3.5.3. Suppose that the topology on T is precanonical: that is, that every object Y € T represents
a sheaf on J. Then the composite map

T 5 P(T) = P(T%)
already factors through Shv(‘J’%i(). This composition can therefore be identified with Ox.

Proposition 3.5.4. Let T be a pregeometry containing an object X. Then the functor Ox : T — Shv(‘.Ta/“;()
is a T-structure on the co-topos Shv(‘J"‘/“)i().

Proof. The Yoneda embedding j : T — P(T) preserves all limits which exist in T (Proposition T.5.1.3.2),
the functor P(T) — T(T?}) preserves small limits, and the localization functor L : P(T 7‘)1() — ShV(T}()i()
is left exact. It follows that Ox preserves all finite limits which exist in 7. In particular, Ox preserves
finite products and pullbacks by admissible morphisms. To complete the proof, it will suffice to show that
if {V, — Y} is a collection of admissible morphisms which generate a covering sieve on an object Y € T,
then the induced map [[Ox(V,) — Ox(Y) is an effective epimorphism in 8hv(‘.]'7§(). Let U € ‘3'7‘%(, and let
n € m Ox (Y)(U); we wish to show that, locally on U, the section 1 belongs to the image of mo Ox (V,)(U)
for some index «. Without loss of generality, we may suppose that 7 arises from a map U — Y in 7. Then
the fiber products U, = V,, xy U form an admissible cover of U, and each n, = n|U, € 7o Ox (Y)(U,) lifts
to Kx) Ox(va)(Ua). O]
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Let T be a pregeometry containing an object X. We will denote the T-structured co-topos (Shv(‘J’%l(), Ox)
by Spec” X.

Warning 3.5.5. We now have two definitions for Spec” X: the first given in Remark 3.5.2 using a geometric
envelope for T, and the second via the direct construction above. We will show eventually that these
definitions are (canonically) equivalent to one another; this is a consequence of Proposition 3.5.7 below. In
the meanwhile, we will use the second of these definitions.

Definition 3.5.6. Let T be a pregeometry. We will say that a T-scheme (X, Ox) is smooth if there exists a
collection of objects {U,} of X with the following properties:

(a) The objects {U,} cover X: that is, the canonical map [[, Uy — 1y is an effective epimorphism, where
1y denotes the final object of X.

(b) For every index a, the T-structured oco-topos (X,y,, Ox |Us) is equivalent to Spec” X, for some object
X,eT.

By construction, the object Ox(X) has a canonical point when evaluated at idx € 77()1(; we will denote

this point by nx. Our goal is to prove that Spec” X is universal among T-structured co-topoi equipped
with such a point. More precisely, we will prove the following:

Proposition 3.5.7. Let T be a pregeometry containing an object X. Let (Y, Oy) be an arbitrary T-structured
oo-topos, and let T : Y — 8 denote the global sections functor (that is, the functor co-represented by the final
object 1y ). Then evaluation at the point nx induces a homotopy equivalence

0: MapL‘J’op(‘J‘) (Xa (ya O‘zﬂ)) —T O‘é(X)
Before giving the proof, we must establish a few preliminaries.

Lemma 3.5.8. Let f : C — D be a functor between small co-categories, and let je : C — P(C) and
jo : D —= P(D) denote the Yoneda embeddings, and let G denote the composition

D73 p(D) 4 p(e).
Then there exists a canonical natural transformation
a:je—Gof
which exhibits G as a left Kan extension of je along f.

Proof. Let € = Sing | €[€]| be a fibrant replacement for the simplicial category €[C], and let D be defined
likewise. By definition, the Yoneda embedding je classifies the composite map

u: €[C x %] — €[€] x €[€]P — € x €7 L Kan,

where Kan denotes the simplicial category of Kan complexes and the functor h is given by the formula
(X,Y) = Mapg(Y, X). Similarly, the composition G o f classifies the composition

v €l x €] 5 ¢[€] x €[€]P — D x D ™ %can,

where b/ is given by the formula (X,Y) — Mapg (Y, X). The evident maps Mapg(X,Y) — Mapg(fX, fY)
determine a natural transformation u — v of simplicial functors, which gives rise to a natural transformation
a:je—>Gof.

We claim that « exhibits G as a left Kan extension of je along f. Since colimits in P(€) = Fun(C,8)
are computed pointwise, it will suffice to show that for every object C' € C, the map a exhibits efc o jp o f
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as a left Kan extension of ec o je along f, where ec : P(C) — 8 and ef¢ : P(D) — 8 are given by evaluation

at C' € C and fC € D, respectively.
e
N

We have a commutative diagram
where 7 denotes the inclusion {C'} < €. Since the formation of left Kan extensions is transitive, to prove
the result for f, it will suffice to prove it for the functors f and f oi. In other words, we may assume that
€ ~ AP consists of a single vertex C. The result now follows from a simple calculation. O

AO

D,

Lemma 3.5.9. Let T be a pregeometry containing an object X. Let j denote the composition
Ti% = P(T%) 5 Shv(TH%),

where L denotes a left adjoint to the inclusion Shv(‘J'%() C T(T}%{). Then there is a canonical natural
transformation o @ j — Ox \‘IE/‘(;(, which exhibits Ox as a left Kan extension of j along the projection
T 7‘}( — 7.

Proof. Because the localization functor L preserves small colimits (and therefore left Kan extensions), this
follows immediately from Lemma 3.5.8. O

Proof of Proposition 3.5.7. Let Oy denote the composition
T - T XY,

Let Jy denote the simplicial set

({Xpxalh T @5 =1,
(X1}

and let J denote the essential image of Jy in ‘3'7()1( x A, Since the inclusion Jy C J is a categorical equivalence,
the induced map
Fun(7,Y) — Fun(Jo, Y)

is a trivial Kan fibration.
Let € denote the the full subcategory of Fun(‘J“';“)i( xA',Y) spanned by those functors F' which satisfy the
following conditions:

(¢) The functor F is a right Kan extension of F'|J. More concretely, for every admissible morphism U — X,
the diagram
F(U,0) —— F(U,1)

L

F(X,0) —= F(X,1)
is a pullback diagram in Y.
(#4) The object F(X,0) is final in Y.
Using Proposition T.4.3.2.15, we deduce that the forgetful functors

€ — Fun®(7,Y) — Fun®(Jy, Y)
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are trivial Kan fibrations, where Fun®(J,Y) and Fun®(Jy,Y) denote the full subcategories of Fun(J,Y) and
Fun(Jp,Y) spanned by those functors F' which satisfy condition (i¢). Form a pullback diagram

Co Z {OO}

| |

€ —— Fun’(Jo, Y) — Fun(T5% x{1},Y).

Then Z is a Kan complex, which we can identify with the space I' Oy(X). The projection map Cy — Z is a
trivial Kan fibration, so that €y is also a Kan complex which we can identify with I" Oy (X).

The inclusion ‘.T?g( x{0} C ‘.T?g( x Al induces a functor 9 : Gy — Fun(77§(7 Y). In terms of the identifica-
tion above, we can view this functor as associating to each global section 1y — Oy(X) the functor

Uw— Old(U) X @y (X) ].y.
It follows that the essential image of ¥ belongs to Fun® (‘J‘E}g(,‘é), where Fun(® (‘.T?/“)i(, Y) C Fun(‘T"/“)i(,H) is
the full subcategory spanned by those functors F' which satisfy the following conditions:
(a) The functor F carries X to a final object of Y.

(b) The functor F preserves pullback squares (since every pullback square in ‘T?‘;{ gives rise to an admissible
pullback square in 7).

(c) For every covering {U, — V'} of an object V' € T, x, the induced map [[ F(Uy) — F(V) is an effective
epimorphism in Y.

The map 6 fits into a homotopy pullback diagram

0
Mapryop () (X (8, 0y)) ————— Co

| )

Fun® (Shv(‘f/}g(), Y) ¥ Pun©® (‘J"‘/";(, Y).

Here Fun(o)(Shv(‘J’é/“)i()7 Y) denotes the full subcategory of Fun(Shv(‘J'%i(), Y) spanned by those functors which
preserve small colimits and finite limits, and #’ is induced by composition with the map

T3 L P(T%) B Shv(T%),

where j is the Yoneda embedding and L is a left adjoint to the inclusion Shv(‘.]'?()i() C T(Tj‘g(). Using
Propositions T.6.1.5.2 and T.6.2.3.20, we deduce that #’ is an equivalence of co-categories. Consequently, to
show that 6 is a homotopy equivalence, it will suffice to show that it induces a homotopy equivalence after
passing to the fiber over every geometric morphism f* : Shv(‘J’%i() — Y. In other words, we must show that

the canonical map
Mapgi,toc(y) (f* © Ox, Oy) — MaPFun/(T;g(,y)(i o f*o0x,io0y)

is a homotopy equivalence, where 7 : ‘J"‘/“;( — 7 denotes the projection and Fun'(‘T"/“;(, Y) denotes the subcat-

egory of Fun(‘T‘}()i(, Y) spanned by those morphisms which correspond to functors ‘J";“;( x Al — Y satisfying

(). This follows immediately from Lemmas 3.5.9 and Proposition 1.2.14. O
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4 Examples of Pregeometries

In §2.5 and §2.6, we described some examples of O-truncated geometries G and their relationship with classical
algebraic geometry. In this section, we will see that each of these geometries arises as the O-truncated
geometric envelope of a pregeometry T. Consequently, we can identify the co-category Sch(G) with the full
subcategory of Sch(T) spanned by the O-truncated T-schemes. We can then view the entire oco-category
Sch(T) as “derived version” of the theory of G-schemes.

As the simplest instance of the above paradigm, we consider a commutative ring k and let §(k) denote the
discrete geometry consisting of affine k-schemes of finite presentation. Then Ind(S(k)°P) can be identified
with (the nerve of) the category CRing; of commutative k-algebras. We can identify G(k) with the O-
truncated geometric envelope of the full subcategory T C G(k) spanned by the affine spaces over k. The
(discrete) pregeometry T has a geometric envelope G, so that SCRy, = Ind(G°?) is a presentable co-category
with 7<9 SCRy ~ N(CRing,,). We can therefore view objects of SCRy, as “generalized” k-algebras. In fact,
we can be quite a bit more precise: objects of SCRy can be identified with simplicial commutative k-algebras.
We will review the theory of simplicial commutative k-algebras in §4.1.

The oco-category SCRy, admits various Grothendieck topologies, generalizing several of the natural topolo-
gies on the ordinary category CRing; of commutative k-algebras. In §4.2 and §4.3 we will consider the Zariski
and étale topologies. To each of these topologies we can associate a pregeometry T, which gives rise to the
notion of a T-scheme. In the case of the Zariski topology, we obtain the theory of derived k-schemes outlined
in the introduction to this paper.

4.1 Simplicial Commutative Rings

To pass from classical algebraic geometry to derived algebraic geometry, we must replace the category of
commutative rings with some homotopy-theoretic generalization. In this section, we will describe one such
generalization: the oo-category SCR of simplicial commutative rings.

Definition 4.1.1. Let k be a commutative ring. We let Poly,. denote the full subcategory of CRing;, spanned
by those commutative k-algebras of the form k[x1,...,x,], for n > 0. We let SCRy, denote the oo-category
Ps (N Poly,) (see §T.5.5.8 for an explanation of this notation, or Remark 4.1.2 for a summary). We will refer
to SCRy, as the co-category of simplicial commutative k-algebras. In the special case where k is the ring Z
of integers, we will denote SCRy simply by SCR.

Remark 4.1.2. Let k£ be a commutative ring. In view of Proposition T.5.5.8.22, the co-category SCRy can
be characterized up to equivalence by the following properties:

(1) The oco-category SCRy, is presentable.
(2) There exists a coproduct-preserving, fully faithful functor ¢ : N(Poly,) — SCRy.

(3) The essential image of ¢ consists of compact, projective objects of SCRy, which generate SCRy, under
sifted colimits.

Our choice of terminology is motivated by the following observation, which follows immediately from
Corollary T.5.5.9.3:

(*) Let A be the ordinary category of simplicial commutative k-algebras, regarded as a simplicial model
category in the usual way (see Proposition T.5.5.9.1 or [13]), and let A° denote the full subcate-
gory spanned by the fibrant-cofibrant objects. Then there is a canonical equivalence of co-categories
N(AO) — SCRy.

Remark 4.1.3. Using (%), we deduce that the oo-category of discrete objects of SCRy, is canonically equiv-
alent with (the nerve of) the category CRing, of commutative k-algebras. We will generally abuse notation
and not distinguish between commutative k-algebras and the corresponding discrete objects of SCRy. In
particular, we will view the polynomial algebras k[z1,...,z,] as objects of SCRy; these objects constitute a
class of compact, projective generators for SCRy.
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Remark 4.1.4. The forgetful functor from A to simplicial sets determines a functor 6 : SCR;, — 8. This
functor is also given more directly by the composition

SCRy, = Ps(NPoly,,) € Fun((N Poly,)°?,8) — 8,

where the final map is given by evaluation on the object k[z] € Poly,. We will often abuse notation by
identifying an object A € SCRj with its image under the functor 8. In particular, to every simplicial
commutative k-algebra A we can associate a collection of homotopy groups 7. A (the additive structure on
A implies that the homotopy groups m.(A,z) do not depend on the choice of a basepoint x € A; unless
otherwise specified, we take the base point to be the additive identity in A).

Note that the functor 6 is conservative: a map f : A — B of simplicial commutative k-algebras is an
equivalence if and only if 6(f) is a homotopy equivalence of spaces. This follows from the observation that
every object of Poly, can be obtained as the coproduct of a finite number of copies of k[z].

Remark 4.1.5. The geometric realization functor from simplicial sets to (compactly generated) topological
spaces preserves products, and therefore carries simplicial commutative k-algebras to topological commu-
tative k-algebras. Combining this observation with (%), we can extract from every object A € SCRy an
underlying topological space equipped with a commutative k-algebra structure, such that the addition and
multiplication operations are given by continuous maps.

Remark 4.1.6. Let us analyze the structure of 7, A, where A is an object of SCR;. We will think of A
as given by a topological commutative k-algebra (see Remark 4.1.5). The addition map + : A x A — A
preserves the base point of A, and therefore determines a commutative group structure on each homotopy
group m; A. These group structures coincide with the usual group structure for i > 0.

We can identify 7, A with the set of homotopy classes of maps of pairs ([0, 1], 9[0,1]") — (A,0). Given
a pair of elements x € m,, A, y € m, A, we can use the multiplication in A to extract a map

([0, 1], 9[0, ™) — (A,0),

which represents an element xy € 7,1, A. This multiplication on 7, A is additive in each variable, associative,
and commutative in the graded sense: we have we have xy = (—=1)""yz € T, 1nA (the sign results from
the fact that the natural map from the sphere S™*" to itself given by permuting the coordinates has degree
(=1)™"). Consequently, 7, A has the structure of a graded commutative ring. In particular, mgA has the
structure of a commutative ring, and each m; A the structure of a module over mA.

Let us fix a pair of points a,b € A, and analyze the map

¢:mn(A,a) X m,(A,b) = 7, (A, ab)

induced by the multiplication in A. If n = 0, this map is simply given by the multiplication on myA. If
n > 0, then this map is necessarily a group homomorphism. We therefore have

o(z,y) = (x,0) + (0, y) = Y (b)z + (a)y,
where ¢ : A — mpA is the map which collapses every path component of A to a point.

Remark 4.1.7. Let A be a simplicial commutative k-algebra. The homotopy groups 7, A can be identified
with the homotopy groups of the mapping space Mapgcg, (k[z], A). In particular, we have a canonical
bijection

HOthCRk(k[x], A) — 7TQA

given by applying the functor my and evaluating at the element x. More generally, evaluation separately on
each variable induces a homotopy equivalence

Mapgcr,, (k[z1, .. zn], A) =~ Mapgcr,, (k[z], A)™

and a bijection Homygscr, (k[z1, ..., 2n], A) = (moA)™.
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Remark 4.1.8. Let f: k[z1,...,2,] = k[y1, ..., Ym] be a map of polynomial rings, given by
i = filyr, -y Ym)-
For any simplicial commutative ring A, composition with f induces a map of spaces
Mapgcr,, (kly1, -y yml], A) — Mapgcr, (k[z1,...,zn), A).

Passing to homotopy groups at some point € Mapgcg, (k[y1,- - -, Uml, A), we get a map (m.A)™ — (m.A)".
For « = 0, this map is given by
(a1,... am) = (filar,... am),. .., fa(ar,... am)).

For = > 0, it is given instead by the action of the Jacobian matrix [g g ] (which we regard as a matrix taking
J

values in mgA using the morphism 7). This follows from repeated application of Remark 4.1.6.
The following result is an immediate consequence of Proposition T.5.5.8.15 and its proof:

Proposition 4.1.9. Let j : NPoly, — SCRy denote the Yoneda embedding. Let C be an oo-category which
admits small sifted colimits, and Fung(SCRy, C) the full subcategory of Fun(SCRy, C) spanned by those
functors which preserve sifted colimits. Then:

(1) Composition with j induces an equivalence of co-categories

Funy (SCRy, €) — Fun(N Poly,, ©).
(2) A functor F : SCRy — C belongs to Funs(SCRg, C) if and only if F is a left Kan extension of F o j
along j.

(3) Suppose € admits finite coproducts, and let F : SCRy — € preserve sifted colimits. Then F preserves
finite coproducts if and only if F o j preserves finite coproducts.

Remark 4.1.10. All of the results of this section can be generalized without essential change to the case
where k is a simplicial commutative ring, not assumed to be discrete. This does not really lead to any
additional generality, since the universal base ring k = Z is already discrete.

The oo-category SCRy, is closely related to the oo-category CAlgy" of connective E-algebras over k
(here we identify k& with the corresponding discrete Eo.-rings). To see this, we recall that full subcategory of
CAlgy" spanned by the discrete objects is equivalent to the (nerve of the) category CRing,, of commutative
k-algebras, via the functor A — myA (this follows immediately from Proposition A.7.1.3.18). Choosing a
homotopy inverse to this equivalence and restricting to polynomial algebras over k, we obtain a functor

6o : N Poly, — CAlg;".
Using Proposition 4.1.9, we deduce that 6, is equivalent to a composition
N Poly, — SCRy, 2 CAlg",
where the functor 8 preserves small sifted colimits.

Proposition 4.1.11. Let k be a commutative ring, and let 6 : SCRy, — CAlg;" be the functor defined above.
Then:

(1) The functor 0 preserves small limits and colimits.

(2) The functor 0 is conservative.
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(3) The functor 6 admits both left and right adjoints.
(4) If k is a Q-algebra, then 0 is an equivalence of co-categories.

Proof. We first prove (1). To prove that 6 preserves small colimits, it will suffice to show that 6y preserves
finite coproducts (Proposition 4.1.9). Since coproducts in CAlg{" are computed by relative tensor products
over k, this follows from the fact that every polynomial algebra k[x1,...,x,] is flat as a k-module.

To complete the proof of (1), let us consider the functor Consider the functor ¢ : CAlgy" — 8 defined by
the composition

CAlgS™ ~ CAlg(ModS™) — Mod$™ — (Sp)so = 8.

Using Corollary A.3.2.2.5 and Corollary A.4.2.3.3, we deduce that ¢ is conservative and preserves small limits.
It will therefore suffice to show that 1) = ¢o0 is conservative and preserves small limits. Let ¢’ : SCRy — 8 be
given by evaluation on k[z] € Poly,. The functor ¢’ obviously preserves small limits, and is conservative by
Remark 4.1.4. To complete the proof of (1) and (2), it will suffice to show that 1) and ¢’ are equivalent. The
functor ¢’ obviously preserves small sifted colimits. Combining Proposition A.1.4.3.14, Corollary A.4.2.3.5,
and Corollary A.3.2.3.2, we conclude that ¥ : SCRy — 8 preserves small sifted colimits as well. In view
of Proposition 4.1.9, it will suffice to show that the composite functors ¢ o j ¢/’ o j : N(Poly,) — 8 are
equivalent. We now simply observe that both of these compositions can be identified with the functor which
associates to each polynomial ring k[z1,...,z,] its underlying set of elements, regarded as a discrete space.

The implication (1) = (3) follows immediately from Corollary T.5.5.2.9. Let us prove (4). Suppose that
k is a Q-algebra. Then, for every n > 0, every flat k-module M, and every ¢ > 0, the homology group
H;(X,,; M®™) vanishes. It follows that the symmetric power Symj (M) € Modj" is discrete, so that the E-
algebra Sym; (k™) can be identified with the (discrete) polynomial ring k[z1,...,2,]. Using Proposition
A.7.2.5.27, we conclude that the essential image of 6 consists of compact projective objects of CAlgf" which
generate CAlg;" under colimits, so that # is an equivalence by Proposition T.5.5.8.25. O

Remark 4.1.12. Maintaining the notation of the proof of Proposition 4.1.11, we observe that the proof
gives a natural identification

Mapgcg, (k[z], A) >~ ¢(6(A)).

In particular, the homotopy groups 7, A are canonically isomorphic to the homotopy groups m,.6(A) of the
associated Eqo-ring 0(A).

Remark 4.1.13. Let k be a commutative ring, and let 6 : SCR;, — CAlgy" be as in Proposition 4.1.11.
Then 6 admits a right adjoint G. Let A be a connective E.-algebra over k. The underlying space of the
simplicial commutative k-algebra G(A) can be identified with

Mapgcg, (k[z], G(A)) ~ Mapgaigen (k[z], A).

Note that this is generally different from the underlying space ¢(A) € 8 (with notation as in the proof
of Proposition 4.1.11), because the discrete k-algebra k[x| generally does not agree with the symmet-
ric algebra Symj (k) € CAlg)" (though they do coincide whenever k is a Q-algebra). We can think of
Mapcayg, (k[z], G(A)) as the space of “very commutative” points A, which generally differs from the space
¢(A) = Mapcyg, (Symy(k), A) of all points of A. The difference between these spaces can be regarded as a
measure of the failure of k[z] to be free as an E-algebra over k, or as a measure of the failure of Symjy, (k)
to be flat over k.

We can interpret the situation as follows. The affine line Spec k[x] has the structure of ring scheme: in
other words, k[z] is a commutative k-algebra object in the category Poly;”. Since the functor 6y : N Poly, —
CAlg;" preserves finite coproducts, we can also view k[z] as a commutative k-algebra object in the opposite
oo-category of CAlg;". In other words, the functor CAlg;" — 8 corepresented by k[z] can naturally be lifted
to a functor taking values in a suitable co-category of “commutative k-algebras in 8”: this is the co-category
SCRy, of simplicial commutative k-algebras, and the lifting is provided by the functor G.
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The composition T' = 6 o G has the structure of a comonad on CAlg;". Using the Barr-Beck theorem
(Theorem A.6.2.0.6), we can identify SCRy with the oco-category of T-comodules in CAlgy". In other words,
the oco-category SCRy, arises naturally when we attempt to correct the disparity between the E..-algebras
k[xz] and Symj (k) (which is also measured by the failure of T' to be the identity functor). In the co-category
SCRy, the polynomial ring k[z] is both flat over k and free (Remark 4.1.7).

The functor 6 also admits a left adjoint F', and the composition 7" = fo F has the structure of a monad on
CAlgy". We can use Theorem A.6.2.0.6 to deduce that SCRy, is equivalent to the co-category of T'-modules
in CAlg}", but this observation seems to be of a more formal (and less useful) nature.

Corollary 4.1.14. Suppose given a pushout diagram

A——B

o

AI - S B/
in the co-category of simplicial commutative rings. Then there exists a convergent spectral sequence
EPY = TOI”;*A(TF*B,TF*A/)q = TprqB’.

Proof. Applying Proposition 4.1.11 in the case k = Z, we obtain a pushout diagram of connective E..-
algebras. The desired result now follows from Remark 4.1.12 and Proposition A.7.2.1.19 (since pushouts of
E-rings are computed by relative tensor products). O

Notation 4.1.15. Given a diagram of simplicial commutative k-algebras
AQ — A— Al,

we let Ag ® 4 A1 denote the pushout of Ay and A; over A in the oco-category SCRy. In view of the fact
that pushouts of E..-algebras are computed by relative tensor products, this notation is compatible with the
functor 6 : SCRy, — CAlgy" of Proposition 4.1.11.

Warning 4.1.16. Notation 4.1.15 introduces some danger of confusion in combination with the convention
of identifying commutative k-algebras with the associated discrete objects of SCRy. Namely, if we are given
a diagram

AO +— A— Aq

of discrete commutative k-algebras, then the relative tensor product Ag ® 4 A; in the oo-category SCRy,
generally does not coincide with the analogous pushout in the ordinary category CRing;. To avoid confusion,
we will sometimes denote this latter pushout by Torf;1 (Ap, A1). However, these two notions of tensor product
are closely related: we have a canonical isomorphism (A ®4 A1) ~ T01r64(AO7 Ay). In fact, Corollary 4.1.14
implies the existence of canonical isomorphisms

Tn(Ag @4 Ay) ~ Tor? (Ao, Ay)

for each n > 0. It follows that Ay ®4 A; is discrete (and therefore equivalent to the ordinary commutative
k-algebra Torg (Ag, A1)) if and only if each of the higher Tor-groups Tori'(Ag, A1) vanish; this holds in
particular if either Ag or Ay is flat over A.

Remark 4.1.17. Let A be a simplicial commutative k-algebra, and let B,C,C’" € (SCRy)4,. Then the
canonical map B®4 (C x C') = (B®4 C) x (B®4 C') is an equivalence in SCRy,. To see this, we invoke
Proposition 4.1.11 to reduce to the corresponding assertion for E..-algebras, which follows from the fact that
the relative tensor product functor M — B ®4 M is exact (as a functor from A-modules to B-modules).

Proposition 4.1.18. Let f : A — B be a morphism of simplicial commutative k-algebras, and let a € mgA
such that f(a) is invertible in moB. The following conditions are equivalent:
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(1) For every object C € SCRy, composition with f induces a homotopy equivalence
Mapgcg, (B, C) — Mapdcg, (4,C),

where MangRk (A, C) denotes the union of those connected components of Mapgcr, (A4, C) spanned by
those maps g : A — C such that g(a) is invertible in myC.

(2) For every nonnegative integer n, the map

1
TnA Qnoa (WoA)[E] — m,B
is an isomorphism of abelian groups.

Moreover, given A and a € myA, there exists a morphism f : A — B satisfying both (1) and (2).
Proof. We first show that (2) = (1). Form a pushout diagram

f

A——B

if g
B—2~B.
Using Corollary 4.1.14 (and the observation that B is flat over m,.A, by virtue of (2)), we conclude that
m.B' ~ m,B, so that the maps g and ¢’ are both equivalences. In other words, the map f is a monomorphism
in SCR}”. Thus, for every simplicial commutative k-algebra C, we can identify Mapgcg, (B, C) with a union
of connected components Mapgcg, (4, C) € Mapgcg, (4,C). Since f(a) is invertible in 7, B, we must have
MapéCRk_ (A,C) C MangRk (A, C). To complete the proof that (2) = (1), it will suffice to verify the reverse
inclusion. In other words, we must show that if h : A — C is a morphism such that h(a) is invertible in
m«C, then h factors through f (up to homotopy). For this, we form a pushout diagram

A—"L

'

B——C(C".

It now suffices to show that f’ is an equivalence, which follows immediately from Corollary 4.1.14 (again
using the flatness of 7, B over m, A).

We now prove the final assertion. Fix A € SCRy and a € mgA. Using Remark 4.1.7, we can choose a
map k[z] — A carrying z to a € mgA. We now form a pushout diagram

kg —— A

|k

k[z,»7!] —— B.

It follows immediately from Corollary 4.1.14 that f satisfies (2). The first part of the proof shows that f
also satisfies (1).

We now prove that (1) = (2). Let f: A — B satisfy (1), and let f' : A — B satisfy both (1) and (2).
Since f and f’ both satisfy (1), we must have f ~ f’ in (SCRg)4,, so that f satisfies (2) as well. O

We will say that a morphism f : A — B ezhibits B as a localization of A with respect to a € moA if the
equivalent conditions of Proposition 4.1.18 are satisfied. It follows from characterization (1) of Proposition
4.1.18 that B is then determined up to equivalence by A and a. We will denote the localization B by A[%]
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Proposition 4.1.19. Let k be a commutative ring, A a compact object of SCRy, and a € mgA. Then A[%]
is also a compact object of SCRy.

Proof. Using Proposition 4.1.18, we deduce the existence of a commutative diagram

I

klz,r71] —— A|

ko] — >

Q|-

]

such that f(z) = a. Using Corollary 4.1.14 (and the flatness of the vertical maps), we deduce that this
diagram is a pushout square in SCRy. Since the collection of compact objects of SCRy is stable under finite
colimits (Corollary T.5.3.4.15), it will suffice to show that k[z] and k[x,z71]. The first of these statements
is obvious. For the second, we consider the commutative diagram

=

Kl y) — kle,a~1).

Because k[z], k, and k[x, y] are compact objects of SCRy, it will suffice to show that this diagram is a pushout
square in SCRg. Since it is evidently a pushout square in the category of ordinary commutative rings, it is
sufficient (by virtue of the spectral sequence of Corollary 4.1.14) to show that the groups Torf[z}(k:7 klz,y])
vanish for ¢ > 0. This follows from the observation that zy is a not a zero divisor in the commutative ring
klx,y]. O

We conclude this section by recording the following observation, which can be deduced immediately from
characterization (1) of Proposition 4.1.18 (or characterization (2), together with Corollary 4.1.14):

Proposition 4.1.20. Suppose given commutative diagram

A4f>B

b
li fl !
A ——B
of simplicial commutative k-algebras. Suppose that f exhibits B as the localization of A with respect to
a € mgA. Then the following conditions are equivalent:

(a) The map f' exhibits B’ as the localization of A’ with respect to g(a) € moA’.

(b) The above diagram is a pushout square.

4.2 Derived Algebraic Geometry (Zariski topology)

Let k be a commutative ring. In this section, we will introduce an oco-category Sch%‘;(k:) of derived k-schemes,
which includes the (nerve of the) usual category of k-schemes as a full subcategory.

Our first step is to introduce a pregeometry Tza. (k). Let CRing?* denote the category of all commutative
k-algebras of the form k[z1, ..., 2,, m], where f is a polynomial with coefficients in k. We let Tz, (k)

Zar

denote the oo-category N(CRingi®")°P; we can identify Tz, (k) with a full subcategory of the (nerve of
the) category of affine k-schemes: namely, those affine k-schemes which appear as the complement of a
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hypersurface in some affine space Aj. If A is a commutative k-algebra which belongs to CRingéar, then we
let Spec A denote the corresponding object of Tz,,(k) (this notation is potentially in conflict with that of
§2.2, but will hopefully not lead to any confusion).

We regard Tz, (k) as a pregeometry as follows:

e A morphism Spec A — Spec B is admissible if and only if it induces an isomorphism of commutative
rings B[3] ~ A, for some element b € B.

e A collection of admissible morphisms {Spec B[] — Spec B} generates a covering sieve on Spec B €
Tzar (k) if and only if the elements {b,} generate the unit ideal of B.

Remark 4.2.1. It is possible to make several variations on the definition of J7z,,(k) without changing the
resulting theory of Tz, (k)-structures. For example, we can define a pregeometry J7,. (k) as follows:

e The underlying oo-category of T7, (k) agrees with that of Tz, (k).
e The Grothendieck topology on T7, (k) agrees with that of Tz, (k).

e A morphism Spec A — Spec B is T7,(k)-admissible if and only if it is an open immersion (in the sense
of classical algebraic geometry over k).

There is an evident transformation of pregeometries Tz, (k) — T7,.(k). Proposition 3.2.5 implies that this
transformation is a Morita equivalence.
We can define a larger pregeometry Ty, (k) as follows:

e The underlying oo-category of T7, (k) is the nerve of the category of all k-schemes which appear as
open subschemes of some affine space A} ~ Speck[z1,...,z,].

e A morphism in T7,, (k) is admissible if and only if it is an open immersion of k-schemes.

e A collection of admissible morphisms {j, : U, — X} generates a covering sieve on X € T7, (k) if and
only if every point of X lies in the image of some j,.

We have a fully faithful inclusion J7,.(k) C T7,.(k), which is a transformation of pregeometries. Propo-
sition 3.2.8 guarantees that this inclusion is a Morita equivalence, so that the theories of T7, (k)-structures
and Ty, (k)-structures are equivalent. However, we note that this equivalence does not restrict to an equiv-
alence between the theory of 77, (k)-schemes and the theory of T, (k)-schemes (the latter class is strictly
larger, and does not compare well with the scheme theory of classical algebraic geometry).

Remark 4.2.2. The pair of admissible morphisms

1

L 1
1—2x }

K[z, ] & klz] 2 kla, o™
in CRing%ar generates a covering sieve on k[z]. In fact, this admissible covering together with the empty
covering of the zero ring 0 € CRing%&r generate the Grothendieck topology on Tz, (k). To prove this, let T be
another pregeometry with the same underlying co-category as Tz.,(k) and the same admissible morphisms,
such that a and /3 generate a covering sieve on k[x] € T, and the empty sieve is a covering of 0 € T. We will
show that Tz..(k) — T is a transformation of pregeometries.

Let R € CRingZ", and let {z4}aca be a collection of elements of R which generate the unit ideal. We
wish to show that the maps S = {R — R[i]} generate a T-covering sieve on R. Without loss of generality,
we may suppose that A = {1,...,n} for some nonnegative integer n; we work by induction on n. Write
1 =xy1 + ...+ znyn. Replacing each x; by the product x;y;, we may suppose that 1 = x1 + ... + x,.
If n =0, then R ~ 0 and S is a covering sieve by hypothesis. If n = 1, then S contains an isomorphism
and therefore generates a covering sieve. If n = 2, we have a map ¢ : k[z] — R given by « + x;. Then S
is obtained from the admissible covering {a, 8} by base change along ¢, and therefore generates a covering
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sieve. Suppose ﬁnally that n > 2, and set y = 2 + ...+ x,. The inductive hypothesis implies that the maps
R[ ]« R— R[ -] generate a J-covering sieve on R It will therefore suffice to show that the base change

of S to R[ ] and R[ -] generate covering sieve, which again follows from the inductive hypothesis.

Let X be an oo- topos, and let O € Fun®(Tz.:(k),X). The above analysis shows that O is a Tza.(k)-
structure on X if and only if the following conditions are satisfied:

(1) The object O(0) is initial in X.
(2) The map O(k[z,z~']) [1O(k[z, 12=]) — O(k[z]) is an effective epimorphism.

Let G (k) denote the opposite of the full subcategory of SCRy, spanned by the compact objects. As

before, if A € SCRy, is compact then we let Spec A denote the corresponding object of G9°% (k). We will view
G (k) as a geometry via an analogous prescription:

(a) A morphism f : Spec A — Spec B in Gy (k) is admissible if and only if there exists an element b € w9 B
such that f carries b to an invertible element in 71y A, and the induced map B[%] — A is an equivalence

(b) A collection of admissible morphisms {Spec B[z~ — Spec B} generates a covering sieve on B if and
only if the elements b, generate the unit ideal in the commutative ring myB.

We can identify CRlngZdr with the full subcategory of SCRy spanned by those objects A such that
mA € CRing? and m; A vanishes for i > 0. Proposition 4.1.19 implies that every object of CRing?™" is
compact in SCRy,. We can therefore identify Tz.,(k) ~ N(CRingZ* )P with a full subcategory of S%er( ).
The main result of this section is the following:

Proposition 4.2.3. The above identification exhibits G5 (k) as a geometric envelope of Tza: (k).

The proof of Proposition 4.2.3 will require a few preliminaries. Let € be a category which admits finite
products. Recall that a monoid object of € is an object C' € € equipped with a unit map 1¢ — C (here
le denotes a final object of €) and a multiplication map C x C — C, which satisfy the usual unit and
associativity axioms for monoids. Equivalently, a monoid object of C is an object C' € C together with a
monoid structure on each of the sets Home (D, C'), depending functorially on D.

Let C € € be a monoid object. A unit subobject of C is a map i : C* — C with the following property:
for every object D € €, composition with ¢ induces a bijection from Home(D,C*) to the set of invertible
elements of the monoid Home (D, C). In particular, ¢ is a monomorphism (so we are justified in describing
C* as a subobject of C'), and C* is uniquely determined up to canonical isomorphism.

Now suppose that € is an oo-category which admits finite products. A homotopy associative monoid
object of € is a monoid object of the homotopy category hC. Given a homotopy associative monoid object
C € C, a unit subobject of C in € is a monomorphism i : C* — C which is a unit subobject of C' in the
homotopy category hC. In other words, a unit subobject of C is a final object of G(}C, where G(/JC denotes the
full subcategory of €, spanned by those morphisms D — C which correspond to invertible elements of the
monoid 7o Mape (D, C). From this description, it is clear that C* and the map i : C* — C are determined
by C up to equivalence, if they exist.

Example 4.2.4. The affine line Spec k[z] is a homotopy associative monoid object of the co-category Tz, (k),
with respect to the multiplicative monoid structure determined by the maps

Spec k[x] < Speck

z—1
Spec k[z] « Spec k[zg, 1] ~ Spec k[x] x Spec k[x]

T Tox1.
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Consequently, if € is any oo-category which admits finite products and f : Ty, (k) — C is a functor which
preserves finite products, then f(Speck[z]) € € inherits the structure of a homotopy associative monoid
object of €. (In fact, the object f(Speck|z]) inherits the structure of a monoid object of € itself: the
associativity of multiplication holds not only up to homotopy, but up to coherent homotopy. However, this
is irrelevant for our immediate purposes.)

Lemma 4.2.5. Let C be an oco-category which admits finite limits, and let [ : Tyza(k) — € be a functor
which belongs to Fun®(Tz,..(k), C). Then the induced map

a: f(Speck[z,z']) — f(Speck[z])
is a unit subobject of the homotopy associative monoid object f(Speck[z]) € C (see Example 4.2.4).

Proof. To simplify the notation, we let X = f(Speck[z]) € € and let X = f(Speck[z,z7!]) € €. We have
a pullback diagram in Open,,

Spec k[z, 1] —4 Spec K[z, 271

T

Spec k[x, 71] ——— Spec k[z],

where the vertical arrows are admissible. Since f belongs to Funb‘d(‘J'Zar(k)7 C), the induced diagram

XO 1Hd-)(o

b

Xo——> X

is a pullback square in C. This proves that « is a monomorphism.

We observe that the homotopy associative monoid structure on Spec k[z] described in Example 4.2.4
determines a homotopy associative monoid structure on the subobject Spec k[x,z71]. Moreover, this ho-
motopy associative monoid structure is actually a homotopy associative group structure: the inversion map
from Spec k[x, 2z~ !] is induced by the ring involution which exchanges z with x=!. Since f preserves finite
products, we conclude that X inherits the structure of a homotopy associative group object of €, and that
« is compatible with the homotopy associative monoid structure. It follows that if p : C'— X is a morphism
in € which factors through Xy up to homotopy, then p determines an invertible element of the monoid
mo Mape(C, X). To complete the proof, we need to establish the converse of this result. Let us therefore
assume that p : C' — X is a morphism in € which determines an invertible element of w9 Mape(C, X); we
wish to show that p factors (up to homotopy) through «.

Let p' : C — X represent a multiplicative inverse to p in mo Mape(C, X). We wish to show that the
product map (p,p’) : C x C — X x X factors (up to homotopy) through the monomorphism « x « :
Xo x Xo — X x X. We observe that the multiplication map Spec k[z] x Spec k[x] — Spec k[z] fits into a
pullback diagram

Spec k[x, 271 x Spec k[z, x~!] —— Spec k[z] x Spec k[z]

l |

Spec klx, 271 Spec k[z]

in which the horizontal morphisms are admissible. Since f € Fun®!(T7.,(k), €), we conclude that the induced
diagram
X() X Xo — X x X

L

Xg— =X
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is a pullback square in €, where the vertical arrows are given by multiplication. It will therefore suffice to
show that the product map pp’ : C x C — X factors (up to homotopy) through X,. By definition, this
product map is homotopic to the composition

CXC—)leﬂX,

where u : 1l¢ — X is the unit map. It therefore suffices to show that u factors through «. The desired
factorization is an immediate consequence of the commutativity of the following diagram in Tz, (k):

Spec k vl Spec k[x, 271

1

T—x

Spec k[z].

O

Proof of Proposition 4.2.3. Let Ty C S(Zi‘:r(k) denote the full subcategory spanned by the objects of the
form Speck[z1,...,x,]. It will suffice to show that this inclusion satisfied hypotheses (1) through (6) of
Proposition 3.4.5. Assertions (1) and (2) are obvious, assertion (3) follows from Remark 3.4.6. To verify (4),
it suffices to note that every admissible morphism Spec Ala=!] — Spec A is the pullback of the admissible
morphism Spec k[x, 27| — Spec k[z] along the map Spec A — Spec k[z], determined up to homotopy by the
requirement that x — a € myA.

We now prove (5). Suppose we are given an admissible covering {f; : Spec A[a%] — Spec Abi<i<p in
G5 (k), where the elements a; € moA generate the unit ideal in 7oA. We therefore have an equation of the
form

arb1 +...+axb, =1

in the commutative ring mgA. Let B = k[x1,..., Tn, Y1, .-+ Yn, M] € SCRg. Using Remark 4.1.7
and Proposition 4.1.18, we deduce the existence of a morphism B — A in SCRy carrying each z; € mgB
to a; € mpA, and each y; € moB to b; € mgA. Using Proposition 4.1.20, we deduce that each f; fits into a
pullback diagram

Spec A[a%] LN Spec A

L,

Spec B[x%] 2~ SpecB.
It now suffices to observe that Spec B € T7,,(k), and that the elements x; generate the unit ideal of B.

It remains to verify condition (6) of Proposition 3.4.5. Let C be an idempotent-complete oo-category which
admits finite limits, and let « : f — f’ be a natural transformation of admissible functors f, f’ : Ty, (k) = €
such that a induces an equivalence f| Ty ~ f’| To; we wish to prove that « is an equivalence. Fix an arbitrary
object Spec R € Tz, (k), where R = k[xq, .. ——1 -] We have a pullback diagram

T Bl )

Spec R ——— Speck[p,p ]

| |

Speck[x1, ..., x,] — Spec k[p]
where the vertical arrows are admissible. Since f and f’ are admissible, to prove that ag : f(Spec R) —

J'(Spec R) is an equivalence, it will suffice to show that agpeckfes,....zn]s XSpeck[p]s AN ASpeck[p,p-1] are
equivalences. The first two cases are evident, and the third follows from Lemma 4.2.5.
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Corollary 4.2.6. For each n > 0, let SCR,%" denote the full subcategory of SCRy spanned by the n-
truncated objects, and let S%ZZ’Sn(k) denote the opposite of the full subcategory of SCR%” spanned by the
compact objects. Then the functor ¢ : Tzar(k) — G9ov="(k) exhibits G- ="(k) as an n-truncated geometric
envelope of Tzax(k).

Proof. Combine Lemma 3.4.11, Proposition 4.2.3, and the proof of Proposition 1.5.11. O

Remark 4.2.7. Applying Corollary 4.2.6 in the case where n = 0 and k is the ring Z of integers, we recover
the geometry Gz, of Definition 2.5.8. We may therefore identify a O-truncated Tz, (Z)-structure on an
oo-topos X with a local sheaf of commutative rings on X, as explained in §2.5.

Definition 4.2.8. Let k£ be a commutative ring. A derived k-scheme is a pair (X, Ox), where X is an
oo-topos, Ox : Tzar(k) — X is an Tyza(k)-structure on X, and the pair (X, Ox) is an Tz, (k)-scheme in the
sense of Definition 3.4.8.

Fix n > 0. We will say that a derived scheme (X, Ox) is n-truncated if the Ty, (k)-structure Oy is
n-truncated (Definition 3.3.2). We will say that (X, Ox) is n-localic if the co-topos X is n-localic (Definition
T.6.4.5.8).

Combining Remark 4.2.7 with Theorem 2.5.16, we obtain the following relationship between classical and
derived algebraic geometry:

Proposition 4.2.9. Let k be a commutative ring, and let Schig(‘.TZar(k)) denote the full subcategory of

Sch(Tzar(k)) spanned by the 0-localic, O-truncated derived k-schemes. Then Schég(ﬂ’z&r(k)) is canonically
equivalent to (the nerve of ) the category of k-schemes. -

Warning 4.2.10. In view of Proposition 4.2.9, we can imagine the theory of derived schemes as generalizing
classical scheme theory in two different ways:

(a) The “underlying space” of a derived scheme (X, Ox) is an co-topos X, which need not be 0-localic (and
so need not come from any underlying topological space).

(b) The structure sheaf Ox of a derived scheme (X, Ox) can be identified with a sheaf of simplicial com-
mutative rings on X, which need not be discrete.

Generalization (b) leads to a well-behaved theory, but generalization (a) often leads to pathologies (even in
the case of a discrete structure sheaf: see Warning 2.5.23). For this reason, we will generally never consider
derived schemes which are not 0-localic. When this restriction needs to be lifted (for example, in the study
of algebraic stacks), it is better to work with the étale topology described in §4.3.

Remark 4.2.11. Every admissible morphism in J7z,.(k) is a monomorphism. It follows from Proposition
3.3.5 that the pregeometry JT7z,,(k) is compatible with n-truncations, for each 0 < n < co. In particular,
to every JTzar(k)-structure Oy on an co-topos X we can associate an n-truncated Tz, (k)-structure 7<,, Ox;
when n = 0, we can view this as a local sheaf of commutative rings on X (Remark 4.2.7). Using Proposition
3.4.15, we conclude that each (X,7<y, Ox) is a derived k-scheme. In particular, if X is 0-localic, then we
can identify (X, m9 Ox) with an ordinary k-scheme (Theorem 2.5.16); we will refer to this as the underlying
ordinary scheme of (X, Ox).

Remark 4.2.12. Let X be an co-topos. Proposition 4.2.3 implies the existence of a fully faithful embedding
6 : Strg,. (k) (X) — Fun'™ (95 (), X) ~ Shvscr, (X). We will often invoke this equivalence implicitly, and
identify a Tz, (k)-structure on X with the associated sheaf of simplicial commutative k-algebras on X. We
will say that a sheaf of simplicial commutative k-algebras O on X is local if belongs to the essential image of
this embedding.

We will also abuse notation by identifying a Tz, (k)-structure O on X with the underlying object O(k[z]) €
X. Note that both these identifications are compatible with the truncation functors 7<,,, for each n > 0 (see
Remark 4.3.29).
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Remark 4.2.13. The condition that a sheaf O of sheaf of commutative k-algebras be local depends only on
the underlying sheaf 7y O of ordinary commutative k-algebras. More precisely, let X be an oco-topos and O
an object of Fun®(Tz..(k), X). Then:

(1) For each n > 0, the composition
T<n

Ten @ Tzar(k) > X 5 X
belongs to Fun®! (T2, (k), X).
(2) The sheaf O belongs to Strgy, () (X) if and only if 7<, O belongs to Strgy, () (X).
Assertion (1) follows immediately from Remark 4.3.29, and (2) follows from Proposition T.7.2.1.14.

Remark 4.2.14. Let A be a simplicial commutative k-algebra, and consider the affine derived scheme
(X,0x) = Specgé?r(k) A. The underlying co-topos X can be identified with Shv(X), where X is the Zariski
spectrum of the ordinary commutative ring mgA. This follows from Proposition 3.4.15, but can also be
deduced from the explicit construction provided by Theorem 2.2.12, since the oo-category of admissible
A-algebras in SCRy, is equivalent to the co-category of admissible myA-algebras in SCRy, (this follows from
Proposition 4.1.18). In other words, the topology of derived schemes is no more complicated than the
topology of ordinary schemes, so long as we confine our attention to 0-localic derived schemes.

We conclude this section by proving a converse to Remark 4.2.11:

Theorem 4.2.15. Let X = 8hv(X) be a 0-localic co-topos, and let Ox be a sheaf of simplicial commutative
k-algebras on X, viewed (via Proposition 4.2.3) as an object of Funad(‘J'Zar(k'), X). Then (X,0x) is a derived
k-scheme if and only if the following conditions are satisfied:

(1) The truncation (X, 7o Ox) is a k-scheme.
(2) For each i >0, m; Ox is a quasi-coherent sheaf of mo Ox-modules.
(3) The structure sheaf O is hypercomplete, when regarded as an object of X (see §T.6.5.2).

Proof. First suppose that (X, Ox) is a derived k-scheme. We will prove that (1), (2), and (3) are satisfied.
Assertion (1) follows immediately from Remark 4.2.11. The remaining assertions are local on X (for assertion
(3), this follows from Remark T.6.5.2.22), so we may assume without loss of generality that (X, Ox) is an
affine derived k-scheme, given by the spectrum of a simplicial commutative k-algebra A. Then we can
identify X with the set of prime ideals in the commutative ring myA, with a basis of open sets given by
Ur ={p C mgA : f ¢ p}. Using Theorem 2.2.12 and Proposition 4.3.23, we can identify Ox with the
SCRg-valued sheaf described by the formula

Up— A[f71].

In particular, m; Oy is the sheafification of the presheaf of myA-modules described by the formula Uy —
(m;A)[f~1], which is the quasi-coherent sheaf associated to m;A; this proves (2). To prove (3), choose a
Postnikov tower

. TSQA*)TglA*)TS()A,

for A, and let

o= 077 = 05— 030
be the associated SCRy-valued sheaves on X. Using the formula above, we conclude that the canonical
map Ox — lim{O5"} is an equivalence. To prove (3), it will therefore suffice to show that each O%" is
hypercomplete. It now suffices to observe that ODSC” is n-truncated, by Corollary 2.2.15.

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X, Ox) is a
derived k-scheme. The assertion is local on X, so we may assume without loss of generality that (X, 7o Ox) =
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Spec R is an affine k-scheme. Applying (2), we conclude that each 7; Oy is the quasi-coherent sheaf associated
to an R-module M;. For each n > 0, let A<,, € SCRy, denote the global sections I'(X; 7<,, Ox). There is a
convergent spectral sequence

EPT =HP(X;7y(1<n Ox)) = Tg—pA<n.

Since X is affine, the quasi-coherent sheaves m; Ox have no cohomology in positive degrees, and the above
spectral sequence degenerates to yield isomorphisms

A M,; ifi<n
5 ~
whsn 0 otherwise.

In particular, mgA<, ~ R.

Fix n > 0, and let (X,,, Ox, ) be the spectrum of A<,. The equivalence A, ~ I'(X;7<, Ox) induces a
map ¢y, : (Xn, O, ) = (X, 7<p Ox) in “Top(G5 (k)). The above argument shows that the induced geometric
morphism ¢} : X,, = X is an equivalence of co-topoi, and that ¢,, induces an isomorphism of quasi-coherent
sheaves ¢ (m; Ox, ) ~ m; Ox for 0 < i < n. Since the structure sheaves on both sides are n-truncated, we
conclude that ¢,, is an equivalence.

Let A € SCRy denote the inverse limit of the tower
—>AS2 —>A§1 —>A§Oa

so that m9A ~ R. We can therefore identify the spectrum of A with (X, O%). The first part of the proof
shows that Of is the inverse limit of its truncations

T<n O’x ~ ¢y Oy, =~ T<p Ox .
Passing to the inverse limit, we obtain a map

¥ Ox — lim{7<, Ox} ~ 0% .

By construction, ¢ induces an isomorphism on all (sheaves of) homotopy groups, and is therefore oo-
connective. The sheaf 0% is hypercomplete (since it is an inverse limit of truncated objects of X), and
the sheaf Oy is hypercomplete by assumption (3). It follows that ¢ is an equivalence, so that (X, Ox) =~

der
Specgzﬂr A is an affine derived k-scheme as desired. O

Remark 4.2.16. It is not difficult to formulate an analogue of Theorem 4.2.15 in the case where the
underlying oco-topos X is not 0-localic. We have refrained from doing so, because we do not wish to discuss
the appropriate generalization of the theory of quasi-coherent sheaves. The proof in general involves no
additional difficulties: as in the argument given above, it immediately reduces to the case of affine (and
therefore O-localic) schemes. We leave the details to the reader.

4.3 Derived Algebraic Geometry (Etale topology)

In this section, we present a variant on the theory of derived schemes, using the étale topology in place of
the Zariski topology.

Definition 4.3.1. Let k& be a commutative ring. We let CRing;" denote the full subcategory of CRing,
spanned by those commutative k-algebras A for which there exists an étale map klxq,...,2,] — A. We
define a pregeometry T (k) as follows:

(1) The underlying co-category of Tg (k) is N(CRingj™)°P.

(2) A morphism in T (k) is admissible if and only if the corresponding map of k-algebras A — B is étale .
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(3) A collection of admissible morphisms {A — A,} in T¢ (k) generates a covering sieve on A if and only if
there exists a finite set of indices {;}1<i<n such that the induced map A — [],_,,, Aq, is faithfully
flat. T

Remark 4.3.2. As in Remark 4.2.1, it is possible to make several variations on Definition 4.3.1 which give
rise to Morita-equivalent pregeometries. For example, Proposition 3.2.8 shows that we could enlarge T (k)
to include all smooth affine k-schemes, or even all smooth k-schemes.

We now describe a geometric envelope for the pregeometry Ty (k). First, we need to introduce a few
definitions.

Definition 4.3.3. Let f : A — B be a morphism of simplicial commutative rings. We will say that f is
étale if the following conditions are satisfied:

(1) The underlying map myA — mpB is an étale map of ordinary commutative rings.
(2) For each i > 0, the induced map m;A ®,,4 0B — m;B is an isomorphism of abelian groups.

Remark 4.3.4. Let f : A — B be a map of simplicial commutative rings, and suppose that A is discrete.
Then f is étale if and only if B is discrete, and f is étale in the sense of classical commutative algebra.

Remark 4.3.5. Let f : A — B be a map of simplicial commutative rings. Then f is étale in the sense of
Definition 4.3.3 if and only if the induced map between the underlying E..-rings (see §4.1) is étale , in the
sense of Definition A.7.5.0.4.

Remark 4.3.6. The collection of étale morphisms between simplicial commutative rings contains all equiv-
alences and is closed under composition and the formation of retracts.

Notation 4.3.7. If A is a simplicial commutative k-algebra, we let (SCRk)i‘t / denote the full subcategory
of (SCRy) .4, spanned by the étale morphisms f: A — B.

Lemma 4.3.8. Suppose given a pushout diagram
A——s A
b
B—— B

of simplicial commutative rings. If f is étale , then f' is also étale .

Proof. Since every étale morphism of ordinary commutative rings is flat, the spectral sequence of Corollary
4.1.14 degenerates and yields an isomorphism m, B’ ~ (7w, A’) ®x, 4 (7« B). The result now follows from the
analogous assertion for ordinary commutative rings. O

Proposition 4.3.9. Let k be a commutative ring, and let ¢ : A — B be a morphism of simplicial commutative
k-algebras. The following conditions are equivalent:

(1) The map ¢ is étale .

(2) There exists a pushout diagram
Elxi,...,xn] — A

itﬁo ldi
k[yla o 7yn7A_1] —_— B

in SCRy, where ¢o(z;) = fi(y1,-..,Yn) and A denotes the determinant of the Jacobian matriz
dfi

[afyj]lgm'gn

(in particular, ¢o is a map of smooth discrete commutative k-algebras).
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Proof. The implication (2) = (1) follows from Lemma 4.3.8 and Remark 4.3.4. For the converse, suppose
that ¢ is étale . The structure theorem for étale morphisms of ordinary commutative rings implies the
existence of an isomorphism

7T()B ~ (WOA)[ylw'~aym]/(f17'~-7fm)a

such that the determinant of the Jacobian matrix [2—5?]1<i’j<m is invertible in myB. Let {a;}1<i<k be the
J11<i i< <i<

nonzero coefficients appearing in the polynomials f;. Using Remark 4.1.7, we can choose a commutative
diagram

klzy, ... o) 90 A
g1
k[mlw“axlﬁyla" 7ym] _—
where g carries each x; to a; € mpA. Choose, for each 1 < i < m, a polynomial f; € k[y1, ..., Ym,T1,..., Tk

lifting fi,fo that ¢1(f;) =0 € moB. Let A € k[y1,.-.,Ym,1,...,2k] be the determinant of the Jacobian

matrix [%]1<i.j<n- Using Remark 4.1.7 and Proposition 4.1.18, we deduce the existence of a commutative
;1< <

diagram

K21, s @ 215 - - 2m] ——— k[21,..., 2] — A

g ’

_ g
E[z1, . @, yty e Y, AT : B

where h(z;) = f, and €(z;) = 0 for 1 <4 < m. We claim that the outer square appearing in this diagram is
a pushout. To see this, form a pushout diagram

kX1, ..., Tk, 21,y 2m] ——> A
l |
k'[xla"'axlmyla"'aymaAil] HB/

so that we have a canonical map ¢ : B’ — B; we wish to show that 1 is an equivalence. Since ¢q is flat, the
spectral sequence of Corollary 4.1.14 implies the existence of a canonical isomorphism

7TiBI = (7(-7,14) ®k[m1 ..... Tk, 215001 2m] k[xla"-7xk7y17'-‘>ym7A_1] = (WiA) QA (WOB>-

Combining this with our assumption that ¢ is étale , we conclude that ¢ induces an isomorphism m; B’ ~ 7; B
for each ¢ > 0, as desired. O

Corollary 4.3.10. Let k be a commutative ring, A a compact object of SCRy, and f : A — B an étale map.
Then B is a compact object of SCRy.

Proof. Corollary T.5.3.4.15 asserts that the collection of compact objects of SCRy is stable under finite
colimits. Using Proposition 4.3.9, we may assume without loss of generality that A = k[y1,...,ym] and
that R is a discrete A-algebra. The classical structure theory for étale morphisms implies the existence of
an isomorphism R ~ Alxy,...,2n, A7Y/(f1,..., fa), Where A is the determinant of the Jacobian matrix
[%]1§i,j§n~ We have a pushout diagram of ordinary commutative rings

Alz1,y ..., 2] f4>A
P

Alzy, .., 20, A7 ——=R
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where f(z;) =0 and g(z;) = f; for 1 <4 <n. The map f is étale and therefore flat, so the spectral sequence
of Corollary 4.1.14 implies that the above diagram is also a pushout square in SCRy. It will therefore suffice
to show that A, A[z1,...,2,], and A[xy,...,2,, A are compact objects ofq SCRy. In the first two cases,
this is clear; in the third, it follows from Proposition 4.1.19. O

Proposition 4.3.11. Let k be a commutative ring, f : A — B an étale morphism in SCRy, and let R
another object in SCRy.

MapSCRk (B, R) —_— HomCRingk (7T()B, ’/T()R)

| |
Mapgcg, (A, R) —— HomcRing, (M0 A, Mo R)

is a homotopy pullback square.

Proof. Using Proposition 4.3.9, we may suppose that A = k[z1,...,7,] and B = k[y1,...,yn, A71], with
f(x;) = fily1,--.,yn) and A the determinant of the Jacobian matrix [25;]19,19-

Fix a morphism 1 : A — R. We wish to show that the homotopy fiber F' of ¢ over the point 7 is homotopy
equivalent to the discrete set Homcring , (B, moR). Let X = Mapgcg, (k[t], R) be the underlying space of R.

Using Remark 4.1.7 and Proposition 4.1.18, we conclude that F fits into a homotopy fiber sequence

F (X" % xn

where (X™)" is the union of those connected components of X" corresponding to n-tuples (ry,...,r,) €
(moR)™ where the polynomial A does not vanish, and v is induced by the collection polynomials {f;}1<i<n-
In particular, for any base point 7 in F' and i > 0, we have a long exact sequence

Using Remark 4.1.8 and the invertibility of A in myR, we conclude that g; is an isomorphism for 4 > 0. This

proves that F' is homotopy equivalent to a discrete space: namely, the fiber of the map mo(X™)’ oy moX".

This fiber can be identified with Homcgring , (B, moR) by construction. O

From this, we can deduce the following analogue of Theorem A.7.5.0.6 (note that the proof in this context
is considerably easier):

Corollary 4.3.12. Let f : A — B be a morphism of simplicial commutative k-algebras which induces
an isomorphism moA ~ moB, and let F : (SCRg)a; — (SCRy)p, be the functor described by the formula
A" A'®4 B. Then F induces an equivalence of co-categories F¢ : (SCRk)f’Z/ — (SCRk)]égt/.

Proof. Proposition 4.3.11 implies that F°* is fully faithful. To prove that F¢* is fully faithful, we consider
an arbitrary étale map B — B’. Proposition 4.3.9 implies the existence of a pushout diagram

k[ml,...,xn] n4>B

| |

K[y, .- yn, A7 —— B’

Using Remark 4.1.7, we can lift n to a map 7 : k[x1,...,2,] = A. Form another pushout diagram

Kz, .. 2n] = A
k[ylv <. 'aynaAil] — A
Then F(A') ~ B'. O
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Definition 4.3.13. Let k be a commutative ring. We define a geometry G5 (k) as follows:

(1) The underlying oo-category of G4 (k) coincides with G52 (k), the (opposite of) the co-category of

compact objects of SCR.

(2) A morphism in 9der( ) is admissible if and only if the corresponding map of simplicial commutative
k-algebras is étale .

(3) A collection of admissible morphisms {4 — Ay} in G4 (k) generates a covering sieve on A if and only
if there exists a finite set of indices {c;}1<i<n such that the induced map moA — [[,<;<, 04, is
faithfully flat. o

Remark 4.3.14. The proof of Proposition 1.5.11 shows that the truncation functor 7y : SCR, — N(CRingy,)
induces a transformation of geometries G4 (k) — g (k), which exhibits Gu( (k) as a O-stub of G4 (k).

If A is a smooth commutative k-algebra, then A is compact when regarded as a discrete object of SCRy.
By a mild abuse of notation, we may use this observation to identify T (k) with a full subcategory of Sder( ).
Our main result can then be stated as follows:

Proposition 4.3.15. Let k be a commutative ring. The inclusion T (k) C G5 (k) exhibits G5 (k) as a
geometric envelope of Ts(k).

We will postpone the proof of Proposition 4.3.15 for a moment, and develop some consequences.

Corollary 4.3.16. The inclusion Tg(k) C Ge(k) exhibits Gg(k) as a 0-truncated geometric envelope of
Ter(k).

Proof. Combine Proposition 4.3.15, Lemma 3.4.11, and Remark 4.3.14. O
Remark 4.3.17. Let X be an co-topos. Proposition 4.3.15 implies the existence of a fully faithful embedding
6 : Strg,, () (X) — Fun'®™ (G4 (k), X) ~ Shvscr, (X). We will often invoke this equivalence implicitly, and
identify a T (k)-structure on X with the associated sheaf of simplicial commutative k-algebras on X. We will

say that a sheaf of simplicial commutative k-algebras O on X is strictly Henselian if belongs to the essential
image of this embedding.

Remark 4.3.18. The condition that a sheaf O of sheaf of commutative k-algebras be strictly Henselian
depends only on the underlying sheaf 7y O of discrete commutative k-algebras. More precisely, let X be an
oco-topos and O an object of Fun® (T (k), X). Then:

(1) For each n > 0, the composition
T<n

Ten O Ter(k) S X=X
belongs to Fun® (T4 (k), X).
(2) The sheaf O belongs to Strq,, () (X) if and only if 7<,, O belongs to Strq,, (4)(X).

12 . . . /e . . .
) Te ) .
(3) If 0,0" € Strg, (1) (X), then a natural transformation f : O — O is local if and only if the induced
natural transformation 7<, O = T7<y, @’ is local.

Assertions (1) and (3) follow immediately from Remark 4.3.29 and Proposition 3.3.3, and (2) follows from
Proposition T.7.2.1.14.

Combining Remark 4.3.18 with Proposition 2.6.16, we obtain the following;:

Proposition 4.3.19. Let X be an oo-topos and let O,0" € Strg,, k) (X) be strictly Henselian sheaves of
commutative k-algebras on X. A natural transformation f : O — O is local with respect T ¢ (k) if and only
if it is local with respect to Tzar (k).
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Definition 4.3.20. Let k& be a commutative ring. A derived Deligne-Mumford stack over k is a Tg (k)-
scheme.

The following result shows that the theory of derived Deligne-Mumford stacks really does generalize the
classical theory of Deligne-Mumford stacks:

Proposition 4.3.21. Let Sché?(ﬂ'ét(k)) denote the full subcategory of Sch(Ts(k)) spanned by those T g (k)-

schemes which are 0-truncated and 1-localic. Then SChE?(‘Iét(k})) is canonically equivalent to the co-category
of Deligne-Mumford stacks over k, as defined in Definition 2.6.9.

Proof. Combine Corollary 4.3.16 with Theorem 2.6.18. O

Remark 4.3.22. Let k be a commutative ring. There is an evident transformation of geometries G5 (k) —
92t°r(k) (which is the identity functor on the underlying co-categories), which induces a relative spectrum
functor gder (1)
& . der der
SpecS%Zi(k) : Sch(G5 (k) — Sch(Ss™ (k).

This functor associates a derived Deligne-Mumford stack over k to every derived k-scheme. This functor is
not fully faithful in general. However, it is fully faithful when restricted to 0-localic derived k-schemes (see
Warning 4.2.10).

Proof of Proposition 4.3.15. We proceed as in the proof of Proposition 4.2.3. Let Ty C G5 (k) denote the
full subcategory spanned by the objects of the form Speck[zy,...,z,]; we will show that this inclusion
satisfied hypotheses (1) through (6) of Proposition 3.4.5. Assertions (1) and (2) are obvious, assertion (3)
follows from Remark 3.4.6. Assertion (4) follows from Proposition 4.3.9. To prove (5), let us suppose we
are given an admissible covering {Spec A, — Spec A} in 925 "(k). Without loss of generality, we may assume
that the set of indices « is finite. Using Proposition 4.3.9, we conclude that each of the underlying maps
A — A, fits into a pushout diagram

k1, ... o] — A

|

R Aa,

where the vertical maps are étale . Let B be the tensor product of the polynomial algebras {k[x1, ..., 2},
and let
Bo = B @pjay,...,z,] Ba-

Each of the maps Spec B, — Spec B is étale , and therefore has open image U, C SpecB. Let V, C
SpecmoA be the inverse image of U,, so that |JV, = ZSpecmoA. It follows that there exists a collection
of elements by,...,b, € B whose images generate the unit ideal in mgA, such that each of the open sets
Wy, ={p C B:b; ¢p} is contained in U = |JU,.

For 1 < i < n, let a; € mgA denote the image of b;. The proof of Proposition 4.2.3 shows that the
collection of maps {Spec A[a%] — Spec A} generates a covering sieve with respect to the topology generated
by the collection of admissible coverings in T (k). It will therefore suffice to prove (5) after replacing A by
A[ai}, in other words, we may assume that the image of SpecmyA in Spec B is contained in W, C U for
some element b € B. The desired result now follows from the observation that the maps {B[}] — Ba[3]}
generate a Te; (k)-covering sieve on B[3] € Tg (k).

It remains to verify condition (6). Let € be an idempotent-complete co-category which admits finite
limits, and let o : f — f’ be a natural transformation between admissible functors f, f’ : T¢ (k) — € which
induces an equivalence f|Ty ~ f/'|Ty. We wish to show that « is an equivalence. Fix an object of T (k),
corresponding to a commutative k-algebra A. Then there exists an étale map k[z1,...,2m,] — A. Using the
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structure theory for étale morphisms (see Proposition 4.3.9), we deduce the existence of a pushout diagram

Kz, .. @n) ——> k21, 2]

J |

k[y17"'ayn5A_1] A

where ¢(z;) = fi(y1,...,yn) and A is the determinant of the Jacobian matrix [gT]:;]lSiyjén- We wish to
show that «(A) is an equivalence. Since f, f’ : T¢ (k) both preserve pullbacks by étale morphisms, it will
suffice to show that a(k[z1,...,2m]), a(k[z1,...,2,]), and a(k[y1,...,yn, A7Y]) are equivalences. In the
first two cases, this is clear (since «| Ty is an equivalence), and in the third case it follows from the proof of

Proposition 4.2.3. ]

To make a more detailed study of the theory of derived Deligne-Mumford stacks, it is essential to observe
the following:

Proposition 4.3.23. Let k be a commutative ring. Then the étale topology on SCRy is precanonical. In
other words, for every A € SCRy, the corresponding corepresentable functor

Pro(G4r)°? ~ SCRy, — $
belongs to Shv(Pro(S%" (k))) (see Definition 2.4.3).
Before giving the proof of Proposition 4.3.23, we introduce a bit of terminology.

Notation 4.3.24. Let R* : N(A,) — CAlg be an augmented cosimplicial E,-ring. For each n > 0, we let
Ai” denote the full subcategory of A spanned by the objects [m] with m < n. The nth comatching object
of R® is defined to be a colimit of the diagram

n R®
N(AT") xn(a;) N(A1) ) — N(A4) = CAlg.

If we denote this object by M™, then we have a canonical map of E..-rings e,, : M™ — R™.
We will say that R® is a flat hypercovering if, for every n > 0, the map e, is faithfully flat: that is, the
underlying map of ordinary commutative rings moM™ — moR™ is faithfully flat, and the maps

T M™ @nopin (moR") — mR™

are isomorphisms for every integer i. In this case, we will also say that the underlying cosimplicial object is
a flat hypercovering of R~ € CAlg.

Let R* : N(A;) — SCRy, be a cosimplicial object of the co-category of simplicial commutative k-algebras.
We will say that R® is a flat hypercovering (or that the underlying cosimplicial object is a flat hypercovering
of R~! € SCRy,) if the composition

N(A.) = SCRy, % CAlgS™ — CAlg
is a flat hypercover, where the functor 6 is defined as in Proposition 4.1.11.

Example 4.3.25. Let f : R~! — R be a faithfully flat map of E-rings. Let R® : N(A,) — SCR;, be
the Cechnerve of f, regarded as a morphism in CAlg®”. More informally, R® is the cosimplicial Eoo-ring
described by the formula

Rn - RO ®R—1 PP ®R—1 RO.

Then R* is a flat hypercovering: in fact, the map M™ — R™ appearing in Notation 4.3.24 is an equivalence
for n > 0, and can be identified with f for n = 0. The same reasoning can be applied if f is instead a map
of simplicial commutative k-algebras.
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Our interest in the class of flat hypercoverings stems from the following result, whose proof we will give
in a sequel to this paper:

Proposition 4.3.26. Let R* : N(A) — CAlgp be a flat hypercovering of an Eoo-algebra R. Then the
induced map R — @R' is an equivalence of Eoo-rings.

Corollary 4.3.27. Let R* : N(A) — (SCRg) g, be a flat hypercovering of a simplicial commutative k-algebra
R. Then the induced map R — @R' s an equivalence of simplicial commutative k-algebras.

Proof. Combine Propositions 4.3.26 and 4.1.11. O

Proof of Proposition 4.3.25. Fix an object R € SCRg, let € denote the full subcategory of (SCRx)r, spanned
by the étale R-algebras, let e cepea covering sieve on R, and let ¢g denote the composition

e® c e — SCRy.

R — I'&nqbo is an equivalence in SCRy. We first treat the case where € ig the sieve generated by a finite

collection of étale morphisms {R — R;};cs such that the map R — [], g R; is faithfully flat. Let A denote
the category whose objects are finite, nonempty linearly ordered sets [n] equipped with a map ¢ : [n] — 5,
and A=Y the full subcategory spanned by those objects with n = 0 (which we can identify with the discrete
set of objects of §). The collection of objects {R; }ics determines a functor 1 : N(A%=0) — (SCRy) R, -

Let ¢ : N(A®) — (SCRy) R/ be a left Kan extension of 1y, so that 1) can be described by the formula
Y(e:[n] = 8)— RC(O) ®Rr Rc(l) RR ... R Rc(n).

Note that ¢ factors through e, Using Corollary T.4.1.3.1, we deduce that the map 1) : N(AS) — (G(O))
is right cofinal. It will therefore suffice to show that the canonical map R — %in(% o %) is a homotopy
equivalence. Let R*® denote the cosimplicial object N(A) — (SCRy)g, be the functor obtained from ¢ by

right Kan extension along the forgetful functor A% — A. Then R ~ [I;cs Rs. Using the distributive law
of Remark 4.1.17, we conclude that the canonical map R’ ® g R ®g ... ®g R® — R™ is an equivalence for
each n. In particular, R® is a flat hypercovering of R (Example 4.3.25). We can identify r&l(gﬁo o 1)) with

the limit of the cosimplicial object ¢g o : N(A) — SCRg. The desired result now follows from Proposition
4.3.27.

We now treat the case of an arbitrary covering sieve € C € on R. Choose a finite collection of
étale morphisms {¢; : R — R;}1<i<,» which belong to € such that the induced map R — [] R; is faithfully

flat, and let ¢ C € be the sieve generated by the morphisms «;. We have a commutative diagram

f

\
f//

1&H¢| e

$(R) ©

limg| €

We wish to show that f is a homotopy equivalence. The first part of the proof shows that f’ is a homotopy
equivalence, so it will suffice to show that f” is a homotopy equivalence. In view of Lemma T.4.3.2.6, it
will suffice to show that ¢| e is a right Kan extension of ¢| W, Unwinding the definitions, this reduces
to the following assertion: if R — R’ is an étale morphism belonging to the sieve €O and €' C (SCRy) R/
is the sieve given by the inverse image of 6(1)7 then the map ¢(R') — 1&n¢| €’ is a homotopy equivalence.
This follows from the first part of the proof, since the sieve € is generated by the morphisms {R' —
R ®Rr Ri}lgign- L]

We conclude this section with a few remarks about the relationship between ngr(k) and its zero stub

Ger (k).
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Proposition 4.3.28. Let k be a commutative ring. The pregeometry T (k) is compatible with n-truncations
for each n > 0.

Proof. If n > 0, then this follows from Proposition 3.3.5. Let us therefore suppose that n = 0. Let X be an
oo-topos, let Og € Strg, 1)(X), and let U — X be an admissible morphism in Tg; (k). We wish to show that
the diagram

Oo(U) ——7<0 00(U)

L

00(X) —— 7<0 Oo(X)

is a pullback square in X. In view of Proposition 4.3.15, we may assume that Qg = O | Tg
a G4 (k)-structure on X. Let G5 (k) denote the discrete geometry underlying G4 (k). I

disc
suffice to prove the following assertion:

(k), where O is
t will evidently

() Let O : G9 (k) — X be a G4 (k)-structure on an oo-topos X. Then the diagram

disc disc

O(U) ——1<00(U)

L

0(X) —— <0 0(X)

is a pullback square in X.

Note that if 7* : Y — X is a geometric morphism of co-topoi and O’ is a G5, (k)-structure on Y satisfying

(), then 7* O’ also satisfies (). We may suppose that X is a left exact localization of the presheaf co-category
P(€), for some small oo-category €, so that we have an adjunction

T(@)?fx.

The counit map 7*m, O — O is an equivalence. It will therefore suffice to show that 0" = 7, O satisfies (x).
In other words, we may reduce to the case where X = P(C). In particular, X has enough points (given by the
evaluation functors P(€) — § corresponding to objects of €), and we may reduce to the case where X = 8.
We can identify the object O € Strgg_e;_(k)(S) ~ SCRy with a simplicial commutative k-algebra R. Sim-

ilarly, we can identify the map U — X with an étale map A — B in SCR;. We wish to show that the
diagram

Mapgcg, (B, R) ——mo Mapgcr, (B,R)

X |

Mapgcg, (4, R) — mo Mapgcr, (4, R).

is a homotopy pullback square in §. Unwinding the definitions, we must show:

(%) For every point 17 € Mapgcg, (A4, R), the homotopy fiber F' of ¢ over the point 7 is homotopy equivalent
to the discrete space moF, and the action of 71 (Mapgcg, (4, R),n) on 7ok is trivial.

This follows from the existence of the homotopy pullback diagram

Mapgcg, (B, R) — HomcRing, (7B, T R)

| |

Mapgcg, (A4, R) — HomcRing, (Mo 4, m0 R),

(see Proposition 4.3.11). O
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Remark 4.3.29. Let k£ be a commutative ring and X an co-topos. Propositions 4.2.3 and 4.3.15 imply that
the restriction functors

Fun'** (G (k), X) —  Fun®(Tee(k), X)
— Funad({‘TZar() X)
—  Fun™(N(Poly}”), X)

are equivalences of co-categories (here Fun”™ (N(Poly;”), X) denotes the full subcategory of Fun(N(Poly;”), X)
spanned by those functors which preserve finite products). Remarks 1.1.5 and 1.1.6 allow us to identify the
oco-category Fun'® (G4 (k), X) with the co-category Shvgcr, (X) of SCRy-valued sheaves X. In particular,
for each n > 0, we have a truncation functor 7<, : Fun'® (G4 (k),X) — Fun'**(35 (k), X). This induces
truncation functors

T : Fun® (T (k), X) — Fun® (T (k), X)
n : Fun® (Tza.(k), X) = Fun®(T 2. (), X)
T<pn : Fun” (N(Poly;”), X) — Fun™ (N(Poly;”), X).

We claim that each of these truncation functors is simply given by composition with the truncation functor

T%Cn on X. Unwinding the definitions, this amounts to the following assertion:

(%) Let O : G (k) — X be a left exact functor, and O’ its n-truncation in Fun'® (G4 (k), X). Then, for
every A € T4 (k), the induced map O(A) — O'(A) exhibits O’(A) as an n-truncation of O(A) in X.

Note that if 7* : Y — X is a geometric morphism and O € Fun'**(G¢ (k),Y) satisfies (), then 7* O also

satisfies (x) (because the induced map Fun'® (G4 (k),Y) — Fun'® (597 (k), X) commutes with n-truncation,
by Proposition T.5.5.6.28).

Without loss of generality, we may suppose that X arises as a left-exact localization of a presheaf oco-
category P(C). Let n* : P(€) — X be the localization functor, and 7, : X — P(C) its right adjoint. Then, for
each O € Fun'™ (G4 (k), X), the counit map m*m, O — O is an equivalence. In view of the above remark, it
will suffice to prove that (P(C), . O) satisfies (x). In particular, we may assume that X has enough points
(given by evaluation at objects of €), and can therefore reduce to the case X = 8. In this case, we can
identify O with a simplicial commutative k-algebra R, and assertion (x) can be reformulated as follows:

(+') Let R be a simplicial commutative k-algebra, and let A € T¢ (k). Then the map
Mapgcg, (A, R) = Mapgcg, (4, T<nR)
exhibits Mapgcg, (4, 7<nR) as an n-truncation of the mapping space Mapgcg, (4, R).

If A is a polynomial ring over k, this follows from Remark T.5.5.8.26. In the general case we may assume
that there exists an étale map k[z1,...,2,] — A, and the result follows from Proposition 4.3.11.

Combining Propositions 4.3.28 and 3.4.15, we obtain the following result:

Corollary 4.3.30. Let (X,0x) be a derived Deligne-Mumford stack, and let n > 0. Then (X,7<, Ox) is a
derived Deligne-Mumford stack.

Remark 4.3.31. Let (X, Ox) be a 1-localic derived Deligne-Mumford stack over k. Using Corollary 4.3.30
and Proposition 4.3.21, we can identify the 0-truncation (X, 7o Ox) with an ordinary Deligne-Mumford stack

over k. We will refer to this ordinary Deligne-Mumford stack as the underlying ordinary Deligne- Mumford
stack of (X, Ox).

We conclude this section by proving an analogue of Theorem 4.2.15:
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Theorem 4.3.32. Let X be an oco-topos and Ox a strictly Henselian sheaf of simplicial commutative k-
algebras on X, viewed (via Proposition 4.3.15) as an object of Fun® (T &(k), X). Then (X,0O0x) is a derived
Deligne-Mumford stack over k if and only if the following conditions are satisfied:

(1) Let ¢, : X — X be geometric morphism of oo-topoi, where X' is 1-localic and ¢, is an equivalence on
discrete objects (so that ¢, exhibits X' as the 1-localic reflection of X). Then (X', .79 Ox) is a derived
Deligne-Mumford stack over k (which is 1-localic and 0-truncated, and can therefore be identified with
an ordinary Deligne-Mumford stack X over k by Proposition 4.5.21).

(2) For each i > 0, m; Ox is a quasi-coherent sheaf on X.

(3) The structure sheaf O is hypercomplete, when regarded as an object of X (see §T.6.5.2).

Proof. The proof follows the same lines as that of Theorem 4.2.15. Suppose first that (X, Oy) is a derived
Deligne-Mumford stack over k. We will prove that (1), (2), and (3) are satisfied. Corollary 4.3.30 implies
that (X, mp Ox) is a derived Deligne-Mumford stack over k. Since (X, 7 Ox) is O-truncated, Corollary 4.3.16
allows us to identify my Ox with a Gg((k)-structure on X. Let ¢, : X — X be the 1-localic reflection of X;
then Theorem 2.3.13 implies that (X', ¢.(m Ox-)) is again a derived Deligne-Mumford stack over k, and that
the map (X, 79 Ox) — (X', ¢ (mo Ox)) is étale . This proves (1).

We now prove (3). By virtue of Remark T.6.5.2.22, we can work locally on X and we may therefore
suppose that (X, Q) is the affine T (k)-scheme associated to a simplicial commutative k-algebra A. Choose
a Postnikov tower

e TSQA — TSIA — TS()A,

for A. Corollary 4.3.12 implies that for each n, the oo-category (SCRk)iinA/ is equivalent to (SCRk)‘i/.

Consequently, Theorem 2.2.12 implies that we can identify Specggter(k)(TgnA) with (X, (93%”)7 for some
sheaf Oaécn of simplicial commutative k-algebras on X. Moreover, if we identify X with the oo-category
Shv(((SCRk)fif/)o ), Proposition 4.3.23 shows that 05" can be described by the formula A’ + 7, A’, where
A’ ranges over the oo-category of étale A-algebras. Similarly, O can be identified with the sheaf given by
the forgetful functor (SCRk)‘;t — SCRy,. It follows that the canonical map Oy — Lﬂl ODSC" is an equivalence.
Thus O« is an inverse limit of truncated objects of X, and therefore hypercomplete.

To prove (2), we consider a collection of objects {U, € X} such that [[U, — 1y is an effective epi-
morphism, and each of the T (k)-schemes (X, ,Ox |Uy) is affine, equivalent to Specggter(k) A, for some
simplicial commutative k-algebra A,. The composite geometric morphisms

Xy, > X=X

are étale and cover X'. Since assertion (2) is local on X', it is sufficient to show that the restriction of each
7; Ox to Xy, is a quasi-coherent sheaf on ordinary Deligne-Mumford stack given by (X,y, ,m0(Ox |Us)) (in
other words, the affine scheme SpecmyA, ). This follows immediately from Theorem 2.2.12: the restriction of
m; O is the quasi-coherent sheaf associated to m; A, viewed as a module over the commutative ring mgA,,.

We now prove the converse. Suppose that (1), (2), and (3) are satisfied; we wish to prove that (X, Ox) is a
derived Deligne-Mumford stack over k. The assertion is local on X’. The étale geometric morphism X — X’
determines an equivalence X ~ DC'/U, for some 2-connective object U in X'. Passing to a cover of X', we may
assume without loss of generality that U admits a global section s : 1y — U; since U is 1-connective, this
map is an effective epimorphism. This section determines a geometric morphism of co-topoi s, : X' — X.
In view of Proposition 2.3.10, it will suffice to show that (X', s* Ox) is a derived Deligne-Mumford stack
over k. Replacing X by X', we are reduced to the case where X is 1-localic and (X, 7o Ox) is a derived
Deligne-Mumford stack over k. Passing to a cover of X again if necessary, we may suppose that (X, Ox)
is the spectrum of a (discrete) k-algebra R.

Applying (2), we conclude that each m; O is the quasi-coherent sheaf associated to an R-module M;.

We then have isomorphisms
0 otherwise.

H"(X;m; Ox) ~ {
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(see §T.7.2.2 for a discussion of the cohomology of an oo-topos, and Remark T.7.2.2.17 for a comparison
with the usual theory of sheaf cohomology.) For each n > 0, let A<,, € SCRy denote the global sections
I'(X; 7<p, Ox). There is a convergent spectral sequence

EPY =HP(X;7y(T<pn Ox)) = Tq—pA<n.

It follows that this spectral sequence degenerates to yield isomorphisms

e ~
isn 0 otherwise.

In particular, mpA<, ~ R.

Fix n > 0, and let (X,,, Ox,) be the spectrum of A<,,. The equivalence A, ~ I'(X;7<, Ox) induces a
map ¢, : (X, Ox, ) = (X, 7<n Ox) in “Top(G4* (k)). Since mA, ~ R, the analysis of SpecSé’ ) 4, given
in the first part of the proof shows that ¢} : X,, — X is an equivalence of co-topoi, and that ¢,, induces an
isomorphism of quasi-coherent sheaves ¢ (m; Ox, ) ~ m; Oy for 0 < 4 < n. Since the structure sheaves on
both sides are n-truncated, we conclude that ¢,, is an equivalence.

Let A € SCRy denote the inverse limit of the tower

o> Ay = Ay = Aco,

so that myA ~ R. We can therefore identify the spectrum of A with (X, %). The first part of the proof
shows that Of is the inverse limit of its truncations

T<n O = ¢F Ox, =~ T<p, Ox .
Passing to the inverse limit, we obtain a map
¥ Ox — lim{7<, Ox} ~ O%.

By construction, ¢ induces an isomorphism on all (sheaves of) homotopy groups, and is therefore oo-
connective. The sheaf 0% is hypercomplete (since it is an inverse limit of truncated objects of X), and
the sheaf Oy is hypercomplete by assumption (3). It follows that 1 is an equivalence, so that (X, Ox) ~

Specggte " A is an affine derived k-scheme as desired. O

4.4 Derived Differential Topology

Let Diff denote the category whose objects are smooth submanifolds of some Euclidean space R", and whose
morphisms are smooth maps. We regard the oo-category Tpig = N(Diff) as a pregeometry as follows:

(a) A morphism f:U — X in Diff is admissible if it identifies U with an open submanifold of X.

(b) A collection of admissible morphisms {U, — X} generates a covering sieve on X if and only if, for
every point z € X, some preimage U, X x {x} is nonempty.

Remark 4.4.1. The exact definition of the category Diff is not very important. For example, we would
obtain a Morita equivalent pregeometry if we replace Diff by the category of all smooth manifolds (Proposi-
tion 3.2.5), or if we were to allow all local homeomorphisms as admissible morphisms in Tpig (Proposition
3.2.8).

Example 4.4.2. Let M be an object of Diff. We define a Tp;g-structure Oy on Shv(M) by the formula
O (X)(U) = Hom(U, X); here U ranges over the open subsets of M and the set of morphisms is computed
in the category of all smooth manifolds. Then (8hv(M),O,s) is a smooth Tpig-scheme: in fact, it can be
identified with the absolute spectrum Spec” ™ (M) (Proposition 3.5.7).

The same definition makes sense for any smooth manifold M. Via this construction, we can identify the
category of smooth manifolds with the co-category of 0-localic, smooth Tp;g-schemes.
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In view of Definition 4.4.2, we can regard Sch(TP') as an enlargement of the category of smooth man-
ifolds. In addition to ordinary smooth manifolds, it contains orbifolds and their higher-categorical cousins
(these can be identified with the smooth Tpig-schemes), and many other objects which are relevant to their
study; for example, some of the basic constructs of synthetic differential geometry find their home here. For
a more detailed exposition of the theory of derived smooth manifolds, we refer the reader to [?].
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