LECTURE 5: v,-PERIODIC HOMOTOPY GROUPS

Throughout this lecture, we fix a prime number p, an integer n > 0, and a finite
space A of type (n + 1) which can be written as XB, for some other space B.
We let d = cn(A) + 1 denote the smallest integer for which the group Hy(A;Z) is
nonzero. In the previous lecture, we defined the co-category LS id) whose objects
are pointed spaces X which are P4-local, p-local, and d-connected. This space is
equipped with a functor

Lf:8, > LIS,

given by the formula L} (X) = P4(X (d)(py). Our first goal in this lecture is to
address the following:

Question 1. What information about a space X is captured by the object
Li(X) e L1 87

Let us begin by addressing Question [I]when n = 0. In this case, we can identify
L1(X) with the rationalization (X (d))q. We therefore obtain the following:

Proposition 2. Let u: X - Y be a map of pointed spaces. Then Lg(u) s a
homotopy equivalence if and only if, for each m > d, the induced map of rational
homotopy groups (1, X)q = (mmY)q is an isomorphism.

We will regard Proposition [2] as an answer to Question [} roughly speaking, it
says that the information captured by Lg(X ) is exactly the set of rational ho-
motopy groups {(m,X)q }msa- (Of course, this paraphrase is slightly misleading,
because the space L{; (X)) cannot be reconstructed from the rational homotopy
groups of X alone.) We would like to establish a “higher” version of Proposition
, which articulates what “extra” information is captured by LfL(X ) for n > 0.
First, we review a construction from Lecture 3. Suppose that V' is a finite pointed
space of type m, equipped with a v,,-self map v : 3!V — V. For any pointed space
X, the v,,-periodic homotopy groups of X are defined by the formula

v'ma(X; V) = lim(mg Map, (V, X) = mgee Map, (V, X) = mge0 Map, (V, X) = ---).

Note that these groups are well-defined (and abelian) for every integer d. In fact,
they can be regarded as the homotopy groups of a spectrum.

Remark 3 (Periodic Spectra). Fix an integer ¢ > 0. We can identify a spectrum
E with a sequence of spaces {Z(n)},ez, together with homotopy equivalences
Z(n) ~ QZ(n+1). Under this identification, we see the following data are

equivalent:
1
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(a) The datum of a spectrum FE together with a homotopy equivalence of
spectra E ~ QUE.

(b) The datum of a pointed space Z together with a homotopy equivalence
Z~Q7.

Example 4. The periodic complex K-theory spectrum can be obtained from
the equivalence Remark [3| noting that Bott periodicity supplies a homotopy
equivalence Z x BU ~ Q2(Z x BU).

Construction 5. Let V be a finite pointed space of type m, equipped with a
vp-self map v : 3tV — V. For any pointed space X, the direct limit

Map, (V, X) - Map, (2'V, X) - Map, (Z*'V, X) — -

can be identified with the ¢-fold loop space of itself. We can therefore regard this
direct limit as the Oth space of a spectrum &, (X)), which is periodic of period ¢.
Note that the homotopy groups of ®,(X) can be identified with the v,,-periodic
homotopy v=17m, (X; V).

We now study the dependence of the construction X ~ ®,(X) on the datum
of the map v : XtV - V.

Remark 6. Let V' be a finite pointed space equipped with a v,,, self-map v : XtV —
V. Then the suspension ¥V is equipped with the v,,-self self-map ¥(v); X1V —
Y V. It follows easily from the definitions that for any pointed space X, we have
canonical equivalence ®y5,)(X) = Qd,(X).

Remark 7. Let V be a finite pointed space equipped with a v, self-map v :
YtV — V. For any k > 1, we let v* denote the kth iterate

E(k_l)t(v) v
sy 2 S nkDy L LRt SV

For any space X, we have a canonical homotopy equivalence @, (X) ~ &, (X).

Remark 8 (Uniqueness). Let V be a finite pointed space of type m. Recall that,
if v: 3V -V and v’ : 'V — V are v,,-self maps, then there exist integers k and
k" such that v* and v’¥" are stably homotopic. Using Remarks @ and , we obtain
an equivalence between the functors ®, and ®,,. In other words, for a pointed
space X, the spectrum ®,(X) depends only on the space V. We will henceforth
emphasize this dependence by denoting it by ®y (X)), rather than ®,(X).

The notation of Remark [8| is a priori dangerous: it is not yet clear to what
extent ®y (X)) depends functorially on V| since its construction involves auxiliary
choices. We will discuss this point in more detail in the next lecture, when we
introduce the Bousfield-Kuhn functor. For the moment, we note the following
weak form of functoriality. Suppose we are given spaces V and V' of type m,
equipped with v,,-self maps v : ¥V - V and v’ : X'V’ - V. For any map
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f:V = V' we can arrange, after replacing V' and V' by suitable suspensions and
the maps v and v’ by suitable powers, that ¢t = ¢’ and the diagram

sy =L sy
vi—L v

commutes up to homotopy. In this case, the above diagram (and the homotopy)
induce a vy,-self map v” : XtV - V" where V" = cofib(f). For any space X,
this supplies a fiber sequence

(I)v”(X) - q)U(X) - (I)v’(X)

Warning 9. In the situation above, it is possible that V" has type > m (this
would happen, for example, if V’ = X4V and f : V' - V was another v,,-self
map). In this case, the spectrum ®,(X) is still well-defined, but is automatically
nullhomotopic (since some power of v” is stably nullhomotopic). In what follows,
it will be convenient to extend our definition of ®y (X)) to the case where V' has
type > m, setting @y (X) =0 when the type of V is strictly larger than m. This
convention is somewhat dangerous (because @y (X') might have another meaning,
arising from a v,-self map of V' where m’ is the type of V'), but hopefully will
not result in any confusion.

Remark 10. Let V be a finite pointed space of type m equipped with a v,,-self
map v : %tV — V. For any finite pointed space W, v induces another v,,-self map
(vAaidy) : SV AW) - V AW. For any space X, the canonical equivalence
Map, (V AW, X)) ~ Map, (V, X))V induces an equivalence

Py (X)W = D, (X)W = Pypiay (X) = Pyvaw (X),

where the last term is defined using the convention of Warning |§] (that is, it
vanishes if V' AW has type > m).

Combining the preceding remarks with the thick subcategory theorem, we ob-
tain the following:

Proposition 11. Let g : X —= Y be a map of pointed spaces and let m be a
nonnegative integer. The following conditions are equivalent:

(a) There exists a finite pointed space V' of type m and a v,,-self map v :
SV -V such that ®,(g) : ©,(X) = &,(Y) is a homotopy equivalence.

(b) For every finite pointed space V' of type m and every v,,-self map v : LtV —
V', the map ®,(g) : ®,(X) = ®,(Y) is a homotopy equivalence.

Definition 12. We will say that a map of pointed spaces f: X - Y is a v,,-
periodic homotopy equivalence if it satisfies the equivalent conditions of Proposi-

tion 11l
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Proposition 13. Let V' be a finite pointed space of type m equipped with a v,,-self
map v: XV - V. For any pointed space X, the spectrum @y (X) is T'(m)-local.

Proof. We first show that &,(X) is Ll -local. Let W be a finite space of type
(m+1); we wish to show that the spectrum of maps from W into ®y (X') vanishes.
This follows from Remark [10l

Now suppose that W is a finite space of type k < m, equipped with a v;-self map
w: X*W - W. We wish to show that the spectrum of maps from X (WW)[w]
into @y (X) vanishes. Unwinding the definitions, we see that this spectrum is
given as the inverse limit of a tower

= YO ( X))V - 200y (X)) - @y (X)),
where the transition maps are induced by w. Rewriting this sequence as
e BBy (X)) = D8Py (X) = Dy (X)),

we see that the desired result follows from the observation that the map idy Aw
is stably nilpotent (since it is a vi-self map of a pointed space of type m > k). O

We now study the relationship with the localization Lfl S id>. We begin with
the following:

Proposition 14. Let V' be a finite pointed space of type m, where 0 < m < n,
which is equipped with a v,,-self map v : XtV - V. Then, for any pointed space
X, we have a canonical homotopy equivalence v (X)) ~ <I>V(L£X).

Proof. 1t will suffice to verify the following:

(1) For any pointed space X, the canonical map X(d) - X induces a homo-
topy equivalence of spectra ®y (X (d)) - ®y(X). This follows immedi-
ately from the formula

T Dy (X) = lim 7, Map, (V, X) = lim 7, Map, (V, Q" X)
k k

which shows the v,,-periodic homotopy of X is insensitive to passing to
highly connected covers.

(2) For any simply connected pointed space X, the canonical map &y (X) —
Py (X(p)) is a homotopy equivalence of spectra. To prove this, we note
that there is a homotopy pullback square

X —— X

|

X[p'] — Xaq,
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hence another homotopy pullback square

Map*(‘/?X) Ma’px—(‘/?X(p))

| |

Map*(v7 X[p_l]) - Map*(v7 XQ)

The spaces at the bottom of this diagram are contractible (since V' has
type m > 0, so that V[p~'] is contractible), so the upper horizontal map
is a homotopy equivalence, which immediately implies that &y (X) —
v (X(p)) is also a homotopy equivalence.

(3) For any d-connected space X, the canonical map &y (X) — &y (Pa(X)) is
a homotopy equivalence of spectra. Here, we must work a little bit harder.
Since both sides are periodic with period ¢, it will suffice to show that the
induced map of Oth spaces is a homotopy equivalence after passing to
d-connected covers. Unwinding the definitions, we can write this map as

p: hTH;Map*(E’“V, X)(d) - h_IZ)HMap*(E’”V, Pa(X))){d).

Since A has type > n, the suspension spectrum %> (A) vanishes in the

T'(m)-local category of spectra. Proposition shows that &y (X) is

T'(m)-local, so that Map, (A, Q>°®y, (X)) is contractible: that is, Q< ®y (X)
is Pa-local. It follows that the d-connected cover Q% ®y (X)(d) is also Py4-

local: that is, the domain of p does not change when we apply the functor

P,. Since A is finite, the functor P, commutes with filtered homotopy

colimits. We may therefore rewrite p as a map

lim P (Map, (S5V, X)(d)) - lim Map, (SV, P4(X))){d).
k k

To prove that this map is a homotopy equivalence, it will suffice to show
that each of the individual maps

pi+ Pa(Map, (35V, X)(d)) - Map, (Z"V, Pa(X)))(d)

is a homotopy equivalence. This is a special case of the assertion that the
functor Py : S id) - S commutes with finite homotopy limits, which we
established in the last lecture.

O

Proposition asserts that replacing a space X by L X does not change its
vp-periodic homotopy groups for m < n. However, it does make the v,-periodic
homotopy groups easier to compute:
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Proposition 15. Let X be a pointed space which is Py-local, and let V be a
finite type n space equipped with a v,-self map v : XV — V. Then the canon-
ical map Map,(V,X) — Q> (X) induces a homotopy equivalence after pass-
ing to d-connected covers. In other words, the canonical map . Map,(V, X) —
vim (X5 V) is an isomorphism for * > d.

Proof. We claim that each of the transition maps
Map, (V, X) - Map, (X*V, X) - Map, (Z*V, X) > -

induces a homotopy equivalence after passing to d-connective covers; the desired
result then follows by passing to the limit. Replacing V' by a suitable suspension,
we are reduced to proving that the map Map,(V, X) — Map,(2V, X) induces
an equivalence of d-connected covers. In fact, we claim that the identity com-
ponent of the homotopy fiber Map, (cofib(v), X) is (d — 1)-truncated. To prove
this, it suffices to show that Q41 Map, (cofib(v), X) ~ Map, (247! cofib(v), X) is
contractible: that is, X is Pg-local for B = X4 ! cofib(v). This follows from Bous-
field’s theorem from the last lecture, since X is assumed to be P4-local and we
have tp(B) >n+1=tp(A) and cn(B) >d-1=cn(A). O

We are now in a position to answer Question

Proposition 16. Let u: X —= Y be a map of pointed spaces. Then Lfl(u) s a
homotopy equivalence if and only if the following conditions are satisfied:

(a) For 0 <m<n, the map u is a v,,-periodic homotopy equivalence.
e induced map of rational homoto roups (. - (m, s an
(b) The induced map of rational homotopy groups (7.X)q — (m.Y)q i
1somorphism for * > d.

Proof. The necessity of (b) is obvious, and the necessity of (a) follows from Propo-
sition [14] We will show that (a) and (b) are sufficient. The proof proceeds by
induction on n, where the base case n = 0 was treated at the beginning of this lec-
ture. Let us therefore suppose that u : X — Y is a map of pointed spaces satisfying
(a) and (b). Without loss of generality, we may assume that X,Y € L} S . that
is, they are p-local, P4-local, and d-connected. Let F' denote the homotopy fiber
of u. Tt follows from (a) and (b) that F is rationally acyclic and v,,-homotopy
equivalent to a point, for 0 < m < n.

Let V be a finite pointed space of type n, equipped with a v,-self map v :
YtV - V. Proposition supplies a homotopy equivalence Map, (V, F)(d) =~
Q=®y (F)(d) ~ *: that is, the mapping space Map, (V, F') is d-truncated. Set
d'=cn(V)+1. Replacing V' by a suitable suspension if necessary, we may assume
that d’ > d and that Map, (V. F') is contractible: that is, F' is Py-local. Then
F(d') is also Py-local and can therefore be regarded as an object of LY | S @,
Applying our inductive hypothesis, we deduce that F(d') is contractible. Since
F(d) is rationally trivial and Pa-local, we proved in the last lecture that the
canonical map P,F(d') - F(d) is an equivalence. That is, F is d-truncated. As
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a fiber of a map of d-connected spaces, it must also be (d — 1)-connected: that
is, we have F' ~ K(G,d) for some abelian group GG. Our assumption that u is a
rational homotopy equivalence guarantees that G is a torsion group, and since
everything is p-local it is a p-power torsion group. Then K(G,d) is Pa-acyclic,
so the map u becomes an equivalence after applying the functor P4. Since X and
Y are both Pa-local, we conclude that u is a homotopy equivalence. O

Corollary 17. The functor LS, - L SSf” exhibits the oo-category Ll St
as the localization of S, with respect to the collection of all maps which satisfy
conditions (a) and (b) of Proposition[16. More precisely, for any oo-category C,
composition with LY induces a fully faithful embedding

¢:Fun(L! 8% ¢) - Fun(S,,C),

whose essential image is spanned by those functors F': S, — C having the property
that, for each morphism of pointed spaces u: X —'Y satisfying (a) and (b), the
image F'(u) is an equivalence in C.

Proof. Let € € Fun(S.,C) be the full subcategory spanned by those functors F' :
S, = C having the property that, for each morphism of pointed spaces u: X - Y
satisfying (@) and (b), the image F'(u) is an equivalence in C. It follows from
Proposition |16 that we can regard ¢ as a functor from Fun(L£ Sgd),C ) to £. We
also have a functor

¥: € - Fun(L! 8, 0),
which carries a functor F': S, — C to the restriction F| L st It follows immedi-

ately from the definitions that v is a left homotopy inverse to ¢, and Proposition
guarantees that it is also a right homotopy inverse to ¢. 0

It follows from Corollary that we can regard the oo-category Ll Sid) as
containing information about v,,-periodic homotopy theory for 0 < m < n, as
well as rational homotopy theory. We now define a variant which captures only
vp-periodic information. First, we need a variant of Proposition [15]

Proposition 18. Let V' be a finite pointed space of type m > n, equipped with a
U -self map v : 3V - V. If X is a Py-local space, then @y (X) is contractible.

Proof. Replacing V' by a suspension, we may suppose that V' is a suspension and
that the connectivity of V' is at least as large as the connectivity of A. It follows
from Bousfield’s theorem from the last lecture that every P4-local space is also
Py-local. In particular, X is Py-local: that is, the mapping space Map, (V, X)
is contractible. It then follows immediately from the construction that @y (X) is
contractible. O

Let us assume now that we have two finite spaces A and B, having types (n+1)
and n, of the same connectivity d = ecn(A) + 1 = en(B) + 1 (this can always be
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achieved by taking d sufficiently large). In this case, Bousfield’s theorem from
the previous lecture implies that every B-local space is also A-local, so that the
functor Py carries Lfl S id) to the subcategory L£_1 S id).

Definition 19. We let S)" denote the full subcategory of LY S spanned by
those objects X satisfying Pg(X) = *. In other words, S{" is the oo-category of
spaces which are d-connected, p-local, Ps-local, and Pg-acyclic.

Note that the functor X — PgX does not change the v,,-periodic homotopy
groups for 0 < m < n (Proposition . Consequently, if a pointed space X is
Pg-acyclic, then X is rationally acyclic and the v,,-periodic homotopy groups of
X wvanish for 0 < m < n. Combining this observation with Proposition [16] we
obtain the following:

Proposition 20. Let f: X =Y be a morphism in S'™. Then f is a homotopy
equivalence if and only if it is a v,-periodic homotopy equivalence.

Note that for any space X ¢ LY Sffn, the canonical map v : X - PgX has
fiber which is Py-local (since the source and target are Ps-local), (p)-local, and
Pg-acyclic. In the last lecture, we showed that this implies that the d-connected
cover fib(u)(d) is again Pg-acyclic (and even Pgpg-acyclic), and therefore belongs
to Sy". More generally, the construction X ~ fib(Pa(X(d)(,)) = Pe(X(d)))){d)
determines a functor

M!:S, -8,
This functor satisfies the following analogue of Proposition |14}

Proposition 21. Let V' be a finite space of type n equipped with a v,-self map
v: XtV - V. Then there is a canonical equivalence of functors ®y ~ &y ~ M.

In other words, the functor X — M does not change the v,-periodic homotopy
of X.

Proof. We saw in the proof of Proposition [21] that the functors X — P, X, X —
X, and X — X(d) do not change the v,-periodic homotopy of X. It therefore
suffices to show that when X is P4-local, the construction X +~ fib(X — Pg(X))
does not change the v,-periodic homotopy of X. This is clear, since the v,-
periodic homotopy of Pg(X') vanishes (Proposition . O

Corollary 22. The functor My : S, — S ezhibits the oo-category S as the
localization of S, with respect to the collection of all v, -periodic homotopy equiv-
alences. More precisely, for any oo-category C, composition with M induces a

fully faithful embedding
¢ : Fun(S",C) - Fun(S,,C),

whose essential image is spanned by those functors F : S, — C which carry v,-
periodic homotopy equivalences to equivalences in C.
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Proof. Let & ¢ Fun(S,,C) be the full subcategory spanned by those functors
F:S8, - C which carry v,-periodic homotopy equivalences to equivalences in C.
It follows from Proposition 20| that we can regard ¢ as a functor from Fun(S",C)
to £. We also have a functor

Y : € - Fun(Sy",C),
which carries a functor F': S, — C to the restriction F|gw. It follows immediately

from the definitions that 1 is a left homotopy inverse to ¢, and Proposition
guarantees that it is also a right homotopy inverse to ¢. 0

Warning 23. It follows from Corollary [22| that the abstract co-category Sy de-
pends only n, and not on the integer d > 0. Beware, however, that the realization
of S as a full subcategory of S, does depend on d (by definition, every object
of 8§ is d-connected when regarded as a pointed space).



