
LECTURE 5: vn-PERIODIC HOMOTOPY GROUPS

Throughout this lecture, we fix a prime number p, an integer n ≥ 0, and a finite
space A of type (n + 1) which can be written as ΣB, for some other space B.
We let d = cn(A) + 1 denote the smallest integer for which the group Hd(A;Z) is

nonzero. In the previous lecture, we defined the ∞-category Lf
n S
⟨d⟩
∗ whose objects

are pointed spaces X which are PA-local, p-local, and d-connected. This space is
equipped with a functor

Lf
n ∶ S∗ → Lf

n S
⟨d⟩
∗ ,

given by the formula Lf
n(X) = PA(X⟨d⟩(p)). Our first goal in this lecture is to

address the following:

Question 1. What information about a space X is captured by the object

Lf
n(X) ∈ Lf

n S
⟨d⟩
∗ ?

Let us begin by addressing Question 1 when n = 0. In this case, we can identify
Lf
n(X) with the rationalization (X⟨d⟩)Q. We therefore obtain the following:

Proposition 2. Let u ∶ X → Y be a map of pointed spaces. Then Lf
0(u) is a

homotopy equivalence if and only if, for each m > d, the induced map of rational
homotopy groups (πmX)Q → (πmY )Q is an isomorphism.

We will regard Proposition 2 as an answer to Question 1: roughly speaking, it
says that the information captured by Lf

0(X) is exactly the set of rational ho-
motopy groups {(πmX)Q}m>d. (Of course, this paraphrase is slightly misleading,

because the space Lf
0(X) cannot be reconstructed from the rational homotopy

groups of X alone.) We would like to establish a “higher” version of Proposition

2, which articulates what “extra” information is captured by Lf
n(X) for n > 0.

First, we review a construction from Lecture 3. Suppose that V is a finite pointed
space of type m, equipped with a vm-self map v ∶ ΣtV → V . For any pointed space
X, the vm-periodic homotopy groups of X are defined by the formula

v−1πd(X;V ) = lim
Ð→

(πd Map∗(V,X)
v
Ð→ πd+t Map∗(V,X)

v
Ð→ πd+2t Map∗(V,X)

v
Ð→ ⋯).

Note that these groups are well-defined (and abelian) for every integer d. In fact,
they can be regarded as the homotopy groups of a spectrum.

Remark 3 (Periodic Spectra). Fix an integer t > 0. We can identify a spectrum
E with a sequence of spaces {Z(n)}n∈Z, together with homotopy equivalences
Z(n) ≃ ΩtZ(n + 1). Under this identification, we see the following data are
equivalent:
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(a) The datum of a spectrum E together with a homotopy equivalence of
spectra E ≃ ΩtE.

(b) The datum of a pointed space Z together with a homotopy equivalence
Z ≃ ΩtZ.

Example 4. The periodic complex K-theory spectrum can be obtained from
the equivalence Remark 3, noting that Bott periodicity supplies a homotopy
equivalence Z×BU ≃ Ω2(Z×BU).

Construction 5. Let V be a finite pointed space of type m, equipped with a
vm-self map v ∶ ΣtV → V . For any pointed space X, the direct limit

Map∗(V,X) →Map∗(Σ
tV,X) →Map∗(Σ

2tV,X) → ⋯

can be identified with the t-fold loop space of itself. We can therefore regard this
direct limit as the 0th space of a spectrum Φv(X), which is periodic of period t.
Note that the homotopy groups of Φv(X) can be identified with the vm-periodic
homotopy v−1π∗(X;V ).

We now study the dependence of the construction X ↦ Φv(X) on the datum
of the map v ∶ ΣtV → V .

Remark 6. Let V be a finite pointed space equipped with a vm self-map v ∶ ΣtV →
V . Then the suspension ΣV is equipped with the vm-self self-map Σ(v); Σt+1V →
ΣV . It follows easily from the definitions that for any pointed space X, we have
canonical equivalence ΦΣ(v)(X) = ΩΦv(X).

Remark 7. Let V be a finite pointed space equipped with a vm self-map v ∶

ΣtV → V . For any k ≥ 1, we let vk denote the kth iterate

ΣktV
Σ(k−1)t(v)
ÐÐÐÐÐ→ Σ(k−1)tV → ⋯→ ΣtV

v
Ð→ V.

For any space X, we have a canonical homotopy equivalence Φvk(X) ≃ Φv(X).

Remark 8 (Uniqueness). Let V be a finite pointed space of type m. Recall that,
if v ∶ ΣtV → V and v′ ∶ Σt′V → V are vm-self maps, then there exist integers k and
k′ such that vk and v′k

′

are stably homotopic. Using Remarks 6 and 7, we obtain
an equivalence between the functors Φv and Φv′ . In other words, for a pointed
space X, the spectrum Φv(X) depends only on the space V . We will henceforth
emphasize this dependence by denoting it by ΦV (X), rather than Φv(X).

The notation of Remark 8 is a priori dangerous: it is not yet clear to what
extent ΦV (X) depends functorially on V , since its construction involves auxiliary
choices. We will discuss this point in more detail in the next lecture, when we
introduce the Bousfield-Kuhn functor. For the moment, we note the following
weak form of functoriality. Suppose we are given spaces V and V ′ of type m,
equipped with vm-self maps v ∶ ΣtV → V and v′ ∶ Σt′V ′ → V . For any map
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f ∶ V → V ′, we can arrange, after replacing V and V ′ by suitable suspensions and
the maps v and v′ by suitable powers, that t = t′ and the diagram

ΣtV ′

v′

��

Σt(f)
// ΣtV

v
��

V ′ f // V

commutes up to homotopy. In this case, the above diagram (and the homotopy)
induce a vm-self map v′′ ∶ ΣtV ′′ → V ′′, where V ′′ = cofib(f). For any space X,
this supplies a fiber sequence

Φv′′(X) → Φv(X) → Φv′(X).

Warning 9. In the situation above, it is possible that V ′′ has type > m (this
would happen, for example, if V ′ = ΣdV and f ∶ V ′ → V was another vm-self
map). In this case, the spectrum Φv′′(X) is still well-defined, but is automatically
nullhomotopic (since some power of v′′ is stably nullhomotopic). In what follows,
it will be convenient to extend our definition of ΦV (X) to the case where V has
type ≥ m, setting ΦV (X) = 0 when the type of V is strictly larger than m. This
convention is somewhat dangerous (because ΦV (X) might have another meaning,
arising from a vm′-self map of V where m′ is the type of V ), but hopefully will
not result in any confusion.

Remark 10. Let V be a finite pointed space of type m equipped with a vm-self
map v ∶ ΣtV → V . For any finite pointed space W , v induces another vm-self map
(v ∧ idW ) ∶ Σt(V ∧W ) → V ∧W . For any space X, the canonical equivalence
Map∗(V ∧W,X) ≃ Map∗(V,X)W induces an equivalence

ΦV (X)W = Φv(X)W = Φv∧idW
(X) = ΦV ∧W (X),

where the last term is defined using the convention of Warning 9 (that is, it
vanishes if V ∧W has type >m).

Combining the preceding remarks with the thick subcategory theorem, we ob-
tain the following:

Proposition 11. Let g ∶ X → Y be a map of pointed spaces and let m be a
nonnegative integer. The following conditions are equivalent:

(a) There exists a finite pointed space V of type m and a vm-self map v ∶

ΣtV → V such that Φv(g) ∶ Φv(X) → Φv(Y ) is a homotopy equivalence.
(b) For every finite pointed space V of type m and every vm-self map v ∶ ΣtV →

V , the map Φv(g) ∶ Φv(X) → Φv(Y ) is a homotopy equivalence.

Definition 12. We will say that a map of pointed spaces f ∶ X → Y is a vm-
periodic homotopy equivalence if it satisfies the equivalent conditions of Proposi-
tion 11.
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Proposition 13. Let V be a finite pointed space of type m equipped with a vm-self
map v ∶ ΣtV → V . For any pointed space X, the spectrum ΦV (X) is T (m)-local.

Proof. We first show that Φv(X) is Lf
m-local. Let W be a finite space of type

(m+1); we wish to show that the spectrum of maps from W into ΦV (X) vanishes.
This follows from Remark 10.

Now suppose that W is a finite space of type k <m, equipped with a vk-self map
w ∶ ΣsW → W . We wish to show that the spectrum of maps from Σ∞(W )[w−1]

into ΦV (X) vanishes. Unwinding the definitions, we see that this spectrum is
given as the inverse limit of a tower

⋯ → Σ2sΦV (X)W → ΣsΦV (X)W → ΦV (X)W ,

where the transition maps are induced by w. Rewriting this sequence as

⋯ → Σ2sΦV ∧W (X) → ΣsΦV ∧W (X) → ΦV ∧W (X),

we see that the desired result follows from the observation that the map idV ∧w
is stably nilpotent (since it is a vk-self map of a pointed space of type m > k). �

We now study the relationship with the localization Lf
n S
⟨d⟩
∗ . We begin with

the following:

Proposition 14. Let V be a finite pointed space of type m, where 0 < m ≤ n,
which is equipped with a vm-self map v ∶ ΣtV → V . Then, for any pointed space
X, we have a canonical homotopy equivalence ΦV (X) ≃ ΦV (Lf

nX).

Proof. It will suffice to verify the following:

(1) For any pointed space X, the canonical map X⟨d⟩ → X induces a homo-
topy equivalence of spectra ΦV (X⟨d⟩) → ΦV (X). This follows immedi-
ately from the formula

π∗ΦV (X) ≃ lim
Ð→
k

π∗+tk Map∗(V,X) ≃ lim
Ð→
k

π∗ Map∗(V,Ω
tkX)

which shows the vm-periodic homotopy of X is insensitive to passing to
highly connected covers.

(2) For any simply connected pointed space X, the canonical map ΦV (X) →

ΦV (X(p)) is a homotopy equivalence of spectra. To prove this, we note
that there is a homotopy pullback square

X //

��

X(p)

��
X[p−1] // XQ,



LECTURE 5: vn-PERIODIC HOMOTOPY GROUPS 5

hence another homotopy pullback square

Map∗(V,X) //

��

Map∗(V,X(p))

��
Map∗(V,X[p−1]) // Map∗(V,XQ).

The spaces at the bottom of this diagram are contractible (since V has
type m > 0, so that V [p−1] is contractible), so the upper horizontal map
is a homotopy equivalence, which immediately implies that ΦV (X) →

ΦV (X(p)) is also a homotopy equivalence.
(3) For any d-connected space X, the canonical map ΦV (X) → ΦV (PA(X)) is

a homotopy equivalence of spectra. Here, we must work a little bit harder.
Since both sides are periodic with period t, it will suffice to show that the
induced map of 0th spaces is a homotopy equivalence after passing to
d-connected covers. Unwinding the definitions, we can write this map as

ρ ∶ lim
Ð→
k

Map∗(Σ
ktV,X)⟨d⟩ → lim

Ð→
k

Map∗(Σ
ktV,PA(X)))⟨d⟩.

Since A has type > n, the suspension spectrum Σ∞(A) vanishes in the
T (m)-local category of spectra. Proposition 13 shows that ΦV (X) is
T (m)-local, so that Map∗(A,Ω

∞ΦV (X)) is contractible: that is, Ω∞ΦV (X)

is PA-local. It follows that the d-connected cover Ω∞ΦV (X)⟨d⟩ is also PA-
local: that is, the domain of ρ does not change when we apply the functor
PA. Since A is finite, the functor PA commutes with filtered homotopy
colimits. We may therefore rewrite ρ as a map

lim
Ð→
k

PA(Map∗(Σ
ktV,X)⟨d⟩) → lim

Ð→
k

Map∗(Σ
ktV,PA(X)))⟨d⟩.

To prove that this map is a homotopy equivalence, it will suffice to show
that each of the individual maps

ρk ∶ PA(Map∗(Σ
ktV,X)⟨d⟩) →Map∗(Σ

ktV,PA(X)))⟨d⟩

is a homotopy equivalence. This is a special case of the assertion that the

functor PA ∶ S
⟨d⟩
∗ → S

⟨d⟩
∗ commutes with finite homotopy limits, which we

established in the last lecture.

�

Proposition 14 asserts that replacing a space X by Lf
nX does not change its

vm-periodic homotopy groups for m ≤ n. However, it does make the vn-periodic
homotopy groups easier to compute:
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Proposition 15. Let X be a pointed space which is PA-local, and let V be a
finite type n space equipped with a vn-self map v ∶ ΣtV → V . Then the canon-
ical map Map∗(V,X) → Ω∞ΦV (X) induces a homotopy equivalence after pass-
ing to d-connected covers. In other words, the canonical map π∗ Map∗(V,X) →

v−1π∗(X;V ) is an isomorphism for ∗ > d.

Proof. We claim that each of the transition maps

Map∗(V,X) →Map∗(Σ
tV,X) →Map∗(Σ

2tV,X) → ⋯

induces a homotopy equivalence after passing to d-connective covers; the desired
result then follows by passing to the limit. Replacing V by a suitable suspension,
we are reduced to proving that the map Map∗(V,X) → Map∗(Σ

tV,X) induces
an equivalence of d-connected covers. In fact, we claim that the identity com-
ponent of the homotopy fiber Map∗(cofib(v),X) is (d − 1)-truncated. To prove
this, it suffices to show that Ωd−1 Map∗(cofib(v),X) ≃ Map∗(Σ

d−1 cofib(v),X) is
contractible: that is, X is PB-local for B = Σd−1 cofib(v). This follows from Bous-
field’s theorem from the last lecture, since X is assumed to be PA-local and we
have tp(B) ≥ n + 1 = tp(A) and cn(B) ≥ d − 1 = cn(A). �

We are now in a position to answer Question 1.

Proposition 16. Let u ∶ X → Y be a map of pointed spaces. Then Lf
n(u) is a

homotopy equivalence if and only if the following conditions are satisfied:

(a) For 0 <m ≤ n, the map u is a vm-periodic homotopy equivalence.
(b) The induced map of rational homotopy groups (π∗X)Q → (π∗Y )Q is an

isomorphism for ∗ > d.

Proof. The necessity of (b) is obvious, and the necessity of (a) follows from Propo-
sition 14. We will show that (a) and (b) are sufficient. The proof proceeds by
induction on n, where the base case n = 0 was treated at the beginning of this lec-
ture. Let us therefore suppose that u ∶X → Y is a map of pointed spaces satisfying

(a) and (b). Without loss of generality, we may assume that X,Y ∈ Lf
n S
⟨d⟩
∗ : that

is, they are p-local, PA-local, and d-connected. Let F denote the homotopy fiber
of u. It follows from (a) and (b) that F is rationally acyclic and vm-homotopy
equivalent to a point, for 0 <m ≤ n.

Let V be a finite pointed space of type n, equipped with a vn-self map v ∶

ΣtV → V . Proposition 15 supplies a homotopy equivalence Map∗(V,F )⟨d⟩ ≃

Ω∞ΦV (F )⟨d⟩ ≃ ∗: that is, the mapping space Map∗(V,F ) is d-truncated. Set
d′ = cn(V )+1. Replacing V by a suitable suspension if necessary, we may assume
that d′ ≥ d and that Map∗(V,F ) is contractible: that is, F is PV -local. Then

F ⟨d′⟩ is also PV -local and can therefore be regarded as an object of Lf
n−1 S

⟨d′⟩
∗ .

Applying our inductive hypothesis, we deduce that F ⟨d′⟩ is contractible. Since
F ⟨d⟩ is rationally trivial and PA-local, we proved in the last lecture that the
canonical map PAF ⟨d′⟩ → F ⟨d⟩ is an equivalence. That is, F is d-truncated. As



LECTURE 5: vn-PERIODIC HOMOTOPY GROUPS 7

a fiber of a map of d-connected spaces, it must also be (d − 1)-connected: that
is, we have F ≃ K(G,d) for some abelian group G. Our assumption that u is a
rational homotopy equivalence guarantees that G is a torsion group, and since
everything is p-local it is a p-power torsion group. Then K(G,d) is PA-acyclic,
so the map u becomes an equivalence after applying the functor PA. Since X and
Y are both PA-local, we conclude that u is a homotopy equivalence. �

Corollary 17. The functor Lf
n ∶ S∗ → Lf

n S
⟨d⟩
∗ exhibits the ∞-category Lf

n S
⟨d⟩
∗

as the localization of S∗ with respect to the collection of all maps which satisfy
conditions (a) and (b) of Proposition 16. More precisely, for any ∞-category C,

composition with Lf
n induces a fully faithful embedding

φ ∶ Fun(Lf
n S
⟨d⟩
∗ ,C) → Fun(S∗,C),

whose essential image is spanned by those functors F ∶ S∗ → C having the property
that, for each morphism of pointed spaces u ∶ X → Y satisfying (a) and (b), the
image F (u) is an equivalence in C.

Proof. Let E ⊆ Fun(S∗,C) be the full subcategory spanned by those functors F ∶

S∗ → C having the property that, for each morphism of pointed spaces u ∶X → Y
satisfying (a) and (b), the image F (u) is an equivalence in C. It follows from

Proposition 16 that we can regard φ as a functor from Fun(Lf
n S
⟨d⟩
∗ ,C) to E . We

also have a functor
ψ ∶ E → Fun(Lf

n S
⟨d⟩
∗ ,C),

which carries a functor F ∶ S∗ → C to the restriction F ∣
Lf
n S

⟨d⟩
∗

. It follows immedi-

ately from the definitions that ψ is a left homotopy inverse to φ, and Proposition
14 guarantees that it is also a right homotopy inverse to φ. �

It follows from Corollary 17 that we can regard the ∞-category Lf
n S
⟨d⟩
∗ as

containing information about vm-periodic homotopy theory for 0 < m ≤ n, as
well as rational homotopy theory. We now define a variant which captures only
vn-periodic information. First, we need a variant of Proposition 15.

Proposition 18. Let V be a finite pointed space of type m > n, equipped with a
vm-self map v ∶ ΣtV → V . If X is a PA-local space, then ΦV (X) is contractible.

Proof. Replacing V by a suspension, we may suppose that V is a suspension and
that the connectivity of V is at least as large as the connectivity of A. It follows
from Bousfield’s theorem from the last lecture that every PA-local space is also
PV -local. In particular, X is PV -local: that is, the mapping space Map∗(V,X)

is contractible. It then follows immediately from the construction that ΦV (X) is
contractible. �

Let us assume now that we have two finite spaces A and B, having types (n+1)
and n, of the same connectivity d = cn(A) + 1 = cn(B) + 1 (this can always be
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achieved by taking d sufficiently large). In this case, Bousfield’s theorem from
the previous lecture implies that every B-local space is also A-local, so that the

functor PB carries Lf
n S
⟨d⟩
∗ to the subcategory Lf

n−1 S
⟨d⟩
∗ .

Definition 19. We let Svn∗ denote the full subcategory of Lf
n S
⟨d⟩
∗ spanned by

those objects X satisfying PB(X) = ∗. In other words, Svn∗ is the ∞-category of
spaces which are d-connected, p-local, PA-local, and PB-acyclic.

Note that the functor X ↦ PBX does not change the vm-periodic homotopy
groups for 0 < m < n (Proposition 14). Consequently, if a pointed space X is
PB-acyclic, then X is rationally acyclic and the vm-periodic homotopy groups of
X vanish for 0 < m < n. Combining this observation with Proposition 16, we
obtain the following:

Proposition 20. Let f ∶ X → Y be a morphism in Svn∗ . Then f is a homotopy
equivalence if and only if it is a vn-periodic homotopy equivalence.

Note that for any space X ∈ Lf
n S
⟨d⟩
∗ , the canonical map u ∶ X → PBX has

fiber which is PA-local (since the source and target are PA-local), (p)-local, and
PB-acyclic. In the last lecture, we showed that this implies that the d-connected
cover fib(u)⟨d⟩ is again PB-acyclic (and even PΣB-acyclic), and therefore belongs
to Svn∗ . More generally, the construction X ↦ fib(PA(X⟨d⟩(p)) → PB(X⟨d⟩(p)))⟨d⟩
determines a functor

M f
n ∶ S∗ → S

vn
∗ .

This functor satisfies the following analogue of Proposition 14:

Proposition 21. Let V be a finite space of type n equipped with a vn-self map
v ∶ ΣtV → V . Then there is a canonical equivalence of functors ΦV ≃ ΦV ≃ M f

n .
In other words, the functor X ↦ M f

n does not change the vn-periodic homotopy
of X.

Proof. We saw in the proof of Proposition 21 that the functors X ↦ PAX, X ↦
X(p), and X ↦ X⟨d⟩ do not change the vn-periodic homotopy of X. It therefore
suffices to show that when X is PA-local, the construction X ↦ fib(X → PB(X))

does not change the vn-periodic homotopy of X. This is clear, since the vn-
periodic homotopy of PB(X) vanishes (Proposition 18). �

Corollary 22. The functor M f
n ∶ S∗ → S

vn
∗ exhibits the ∞-category Svn∗ as the

localization of S∗ with respect to the collection of all vn-periodic homotopy equiv-
alences. More precisely, for any ∞-category C, composition with M f

n induces a
fully faithful embedding

φ ∶ Fun(Svn∗ ,C) → Fun(S∗,C),

whose essential image is spanned by those functors F ∶ S∗ → C which carry vn-
periodic homotopy equivalences to equivalences in C.
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Proof. Let E ′ ⊆ Fun(S∗,C) be the full subcategory spanned by those functors
F ∶ S∗ → C which carry vn-periodic homotopy equivalences to equivalences in C.
It follows from Proposition 20 that we can regard φ as a functor from Fun(Svn∗ ,C)
to E . We also have a functor

ψ ∶ E → Fun(Svn∗ ,C),

which carries a functor F ∶ S∗ → C to the restriction F ∣Svn
∗

. It follows immediately
from the definitions that ψ is a left homotopy inverse to φ, and Proposition 21
guarantees that it is also a right homotopy inverse to φ. �

Warning 23. It follows from Corollary 22 that the abstract ∞-category Svn∗ de-
pends only n, and not on the integer d≫ 0. Beware, however, that the realization
of Svn∗ as a full subcategory of S∗ does depend on d (by definition, every object
of Svn∗ is d-connected when regarded as a pointed space).


