
THE DERIVATIVES OF THE IDENTITY FUNCTOR

BEN KNUDSEN

The goal of these notes is to give an outline of Johnson’s calculation of the Goodwillie deriva-
tives of the identity functor on pointed spaces [Joh95]. Recall that the theory of Goodwillie
calculus associates to a reduced homotopy functor F : Top∗ → Top∗ a tower of functors
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Pn(F )

��

...

��

P1(F )

��

F

55

AA

// P0(F ),

where Pn(F ) is the universal n-excisive or n-polynomial approximation to F [Goo03]. Setting
F = id, a theorem of Goodwillie asserts that the natural map

X → holimPn(id)(X)

is a weak equivalence for X simply connected. Thus, it is of interest to understand the layers

Dn(F ) := fib (Pn(F )→ Pn−1(F )) .

This functor is an n-homogeneous functor, and these are completely classified.

Theorem 1 (Goodwillie). The assignment E 7→ Ω∞ (E ∧Σn (−)∧n) extends to an equivalence
of ∞-categories between Σn-spectra and degree n homogeneous functors.

This theorem motivates the following definition.

Definition 2. The nth derivative of F is the Σn-spectrum ∂n(F ) such that

Dn(F ) ' Ω∞ (∂n(F ) ∧Σn (−)∧n) .

Our goal is to understand the symmetric sequence {∂n(id)}n≥0. In order to do so, we require
an algorithm for computing ∂n(F ) in terms of F .

Definition 3. Let I be a finite set, and write P (I) = {0, 1}I for the set of subsets of I, partially
ordered by inclusion.

(1) A (pointed) I-cube is a functor X : P (I)→ Top∗.
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(2) The total fiber of the I-cube X is

tfib(X) := fib

(
X(∅)→ lim

∅ 6=S∈P (I)
X(S)

)
.

We write [n] = {1, . . . , n}.

Example 4. A [0]-cube is a space, and the total fiber is the same space.

Example 5. A [1]-cube is a morphism, and the total fiber is its fiber.

Example 6. A [2]-cube is a commuting square, and the total fiber is the iterated fiber.

Definition 7. The nth cross effect of the functor F : Top∗ → Top∗ is the functor crn : Topn∗ →
Top∗ defined by the formula

crn(F )(X1, . . . , Xn) = tfib

S 7→ F

 ∨
i/∈S⊆[n]

Xi

 .

With this definition in hand, we can state the following useful recipe.

Proposition 8. Let F : Top∗ → Top∗ be a reduced homotopy functor. There are natural Σn-
equivariant equivalences

Ω∞∂n(F ) ' colim
k1,...,kn

Ωk1+···+kncrn(F )(Sk1 , . . . , Skn).

This formula should be compared to the usual formula for the linearizatio Ω∞GΣ∞ of a functor
G. Because of this parallel, we may at times refer to this construction as multilinearization.

Thus, our goal is to understand the multilinearization of the functor

crn(id)(X1, . . . , Xn) = tfib

S 7→ ∨
i/∈S⊆[n]

Xi

 .

In order to do so, it will be helpful to have a model for the total fiber.

Notation 9. Let I be a finite set. For S ⊆ I, we write

[0, 1]S :=
{
t ∈ [0, 1]I : ti = 0 if i /∈ S

}
.

We further write
∂1[0, 1]S :=

{
(t ∈ [0, 1]S : ti = 1 for some i ∈ S

}
.

Evidently, there is an inclusion S ⊆ T of subsets of I if and only if there is an inclusion
[0, 1]S ⊆ [0, 1]T of subspaces of [0, 1]I ; thus, we obtain a functor [0, 1]• : P (I) → Top. The
same remarks apply to the subspaces ∂1[0, 1]S , and we have the following generalization of the
standard formula for the homotopy fiber of a map.

Lemma 10. Let X be an I-cube. There is a pullback diagram

tfib(X) //

��

Nat ([0, 1]•,X)

��

pt // Nat (∂1[0, 1]•,X) ,

where the bottom map is induced by the inclusion of the basepoint.

In other words, a point in the total fiber of X is a collection of maps {fS : [0, 1]S → X(S)}S⊆I
such that
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(1) for each S ⊆ T ⊆ I, the diagram

[0, 1]S

��

fS // X(S)

��

[0, 1]T
fT // X(T )

commutes, and
(2) fS (t) is the basepoint in X(S) whenever some ti = 1.

Definition 11. For a nonempty finite set I and an element i ∈ I and an I-cube X, the comparison
map for X is the map

tfib(X)→ Map∗

(
[0, 1]|I|(|I|−1),

∧
i∈I

X(Ii)

)

defined by evaluation at I \ {i} for i ∈ I (note that [0, 1]I\{i} is an (|I| − 1)-dimensional cube.

Applying this construction to the n-cube of Definition 7, we obtain the clockwise composite
in the commuting diagram

crn(id)(X1, . . . , Xn)

ϕ

��

// Map∗

(
[0, 1]n(n−1),

n∏
i=1

Xi

)

��

Map∗

(
∆n,

n∧
i=1

Xi

)
// Map∗

(
[0, 1]n(n−1),

n∧
i=1

Xi

)
,

where ∆n is defined as a quotient of the form

∆n := [0, 1]n(n−1)

�
Z ∪

⋃
1≤i<j≤n

Wij
.

In order to describe the subspaces in question, it will be covenient to think of [0, 1]n(n−1) as
the space of matrices t = (tij)1≤i,j≤n with tij ∈ [0, 1] and tii = 0; here, the ith row (tij)1≤j≤n

contains the coordinates of the ith (n− 1)-dimensional cube [0, 1]{1,...,̂i,...,n}. With this notation
in mind, we define

Z =
{
t ∈ [0, 1]n(n−1) : tij = 1 for some 1 ≤ i, j ≤ n

}
Wij =

{
t ∈ [0, 1]n(n−1) : tik = tjk for all 1 ≤ k ≤ n

}
.

Since it is immediate from Lemma 10 that any f : [0, 1]n(n−1) →
∧n
i=1Xi in the image of the

comparison map sends Z to the basepoint, all that remains in constructing the map ϕ is to check
the following.

Lemma 12. If f : [0, 1]n(n−1) →
∧n
i=1Xi lies in the image of the comparison map, then f sends

Wij to the basepoint for any 1 ≤ i < j ≤ k.
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Proof. In the solid diagram

[0, 1]n(n−1)

�� ��

Wij

��

OO

[0, 1]n−1

fi

��

[0, 1]n−2

fij

��

//oo [0, 1]n−1

fj

��

Xi Xi ∨Xj
//oo Xj

the squares commute by the assumption that f lies in the image of the comparison map. The
dashed filler exists by the definition of Wij , and it follows that, for t ∈Wij , the points fi(t) ∈ Xi

and fj(t) ∈ Xj are retracts of the same point in Xi∨Xj , so each is the respective basepoint. �

Thus, the map ϕ : crn(id)(X1, . . . , Xn) → Map∗ (∆n,
∧n
i=1Xi) is defined. Note, moreover,

that ∆n is closed in [0, 1]n(n−1) under the action of Σn on the rows, and the map ϕ is Σn-
equivariant.

On the face of it, this map would seem to discard a great deal of information about the
cross effect, but it turns out that only the “first order” information it captures can influence the
respective multilinearizations.

Theorem 13 (Johnson). The map ϕ induces an equivalence after multilinearization.

Corollary 14. There is an equivalence of Σn-spectra

∂n(id) ' D (Σ∞∆n) ,

where D = Sp(−,S) denotes the Spanier-Whitehead dual.

Proof. Since ϕ is Σn-equivariant, Theorem 13 and Proposition 8 supply the equivariant equiva-
lence of infinite loop spaces

Ω∞∂n(id) ' colim
k1,...,kn

Ωk1+···+knMap∗
(
∆n, S

k1+···+kn
)

' colim
k

Map∗
(
Σk∆n,Σ

kS0
)

' Ω∞Sp(Σ∞∆n,S).

�

In order to prove this theorem, we require a criterion for recognizing such maps.

Lemma 15. Let ψ : F → G be a natural transformation between functors of n variables. If
ψ(X1,...,Xn) is ((n+ 1)k − c)-connected whenever each Xi is k-connected, then ψ induces a weak
equivalence after multilinarization.

Proof. The hypothesis on the Xi implies that each Σ`Xi is (k + `)-connected, which implies,
using the hypothesis on ψ, that Ωn`ψ(Σ`X1,...,Σ`Xn) is ((n+ 1)(k + `)− c− n`)-connected. Since
this number tends to infinity with n, and since spheres are compact, it follows that the induced
map on colimits is an equivalence. �

Corollary 16. If Ωψ(ΣX1,...,ΣXn) is ((n+ 1)k − c)-connected whenever each Xi is k-connected,
then ψ induces a weak equivalence after multilinarization.
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Proof. The hypothesis implies that Ωnϕ(ΣX1,...,ΣXn) is ((n+ 1)k − (n− 1 + c))-connected. View-
ing this map as a natural transformation

ψ : ΩnF (Σ(−), . . . ,Σ(−))→ ΩnG (Σ(−), . . . ,Σ(−)) ,

Lemma 15 implies that ψ induces a weak equivalence on multilinearizations. Since the multi-
linearizations of these functors coincide with the respective multilinearizations of F and G, the
claim follows. �

Now, we have the equivalences

Ω crn(id)(ΣX1, . . . ,ΣXn) ' Ω tfib

S 7→ ∨
i/∈S⊆[n−1]

ΣXi


' Ω tfib

S 7→ Σ

 ∨
i/∈S⊆[n−1]

Xi


' tfib

S 7→ ΩΣ

 ∨
i/∈S⊆[n−1]

Xi


' crn(ΩΣ)(X1, . . . , Xn).

Thus, in order to obtain the kind of connectivity estimate required by Corollary 16, we may
instead study the cross effects of the functor ΩΣ. We will be aided in this task by the following
classical result.

Theorem 17 (Hilton-Milnor). Let {Xi}ni=1 be pointed, connected spaces. There is a canonical
natural weak equivalence

′∏
w∈Ln

ΩΣ(w(X1, . . . , Xn))
∼−→ ΩΣ(X1 ∨ · · · ∨Xn).

We pause to explain some of the terms of this theorem.

(1) The symbol
∏′

denotes the weak infinite product, which is defined as the colimit of
products over all finite subsets of the indexing set.

(2) The set Ln is an additive basis for the free Lie algebra on generators {x1, . . . , xn}. These
basis elements are often called basic products.

(3) The space w(X1, . . . , Xn) is obtained by substituting Xi for xi and ∧ for [−,−] in the
expression for a basic product. For example, [x1, [x2, x3]] = X1 ∧X2 ∧X3.

(4) The map is given by taking products of nested Samelson brackets patterned after the
basic products w.

See [Whi78] for a proof of this theorem. It should be emphasized that the Hilton-Milnor map
is not Σn-equivariant, since the set of basic products is not closed under the action of Σn.

Corollary 18. If Xi is k-connected for every 1 ≤ i ≤ n, then

πm(crn(ΩΣ)(X1, . . . , Xn)) ∼= πm

(
n∧
i=1

Xi

)(n−1)!

for 0 ≤ m ≤ (n+ 1)(k + 1)− 1.
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Proof. We calculate that

crn(ΩΣ)(X1, . . . , Xn) = tfib

S 7→ ΩΣ

 ∨
i/∈S⊆[n]

Xi


' tfib

S 7→ ′∏
Ln−|S|

ΩΣ(w(X1, . . . , Xn))


'
∏
L◦n

ΩΣ(w(X1, . . . , Xn)),

where L◦n is the set of basic products involving each xi at least once. The claim now follows from
the fact that there are (n− 1)! basic products involving each xi exactly once, together with the
fact that the factor pertaining to any longer basic product is ((n+ 1)(k+ 1)− 1)-connected. �

On the other hand, by the Freudenthal suspension theorem, we compute that, in the range of
interest,

πm

(
n∧
i=1

Xi

)(n−1)!

∼= πm+n

(
n∧
i=1

ΣXi

)(n−1)!

∼= πm

Ω Map∗

 ∨
(n−1)!

Sn−1,

n∧
i=1

ΣXi

 .

This calculation, together with the criterion of Corollary 16, leads us to hope for the following
result.

Proposition 19. There is a canonical weak equivalence∨
(n−1)!

Sn−1 ∼−→ ∆n

The proof proceeds through the intermediary complex ∆̃n := {t ∈ ∆n : tij = 0 for j > 1} .
Concerning this space, we have the following.

Lemma 20. There is a canonical homeomorphism

∆̃n
∼=

∨
(n−1)!

Sn−1

Proof. The space in question is obtained as a quotient of an (n−1)-dimensional cube by the “fat
diagonal,” which is the subspace where any two coordinates agree, together with the subspace
where any coordinate is either 0 or 1. Thus,

∆̃n
∼= Confn−1((0, 1))+

∼=

 ∐
σ∈Σn−1

{
(s1, . . . , sn−1) : 0 < sσ(1) < · · · < sσ(n−1) < 1

}+

∼=
∨

(n−1)!

(∆̊n−1)+.

Using the standard identification Sn−1 ∼= ∆n−1/∂∆n−1, the proof is complete. �
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Thus, in order to prove Proposition 19, it suffices to check that the inclusion ∆̃n → ∆n is a
weak equivalence. Setting W =

⋃
1≤i<j≤nWij , the (homotopy) pushout squares

Z̃ ∪ W̃ //

��

In−1

��

Z ∪W //

��

In(n−1)

��

pt // ∆̃n pt // ∆n

show that it suffices to check that the inclusion Z̃ ∪ W̃ → Z ∪W is a weak equivalence, and the
(homotopy) pushout squares

Z̃ ∩ W̃ //

��

Z̃

��

Z ∩W //

��

Z

��

W̃ // Z̃ ∪ W̃ W // Z ∪W

show that it suffices to check that the inclusion Z̃ ∩ W̃ → Z ∩W is a weak equivalence, since W
and Z are contractible. In order to verify this equivalence, we make use of the following result,
which is called the “Nerve Theorem.”

Theorem 21 (Borsuk). If X is covered by subcomplexes Ki such that every nonempty finite
intersection Ki1 ∩ · · · ∩ Kir is contractible, then X is weakly equivalent to the nerve of the
partially ordered set of finite intersections of elements of {Ki}.

Proof of Proposition 19. We will show that both Z̃∩W̃ and Z∩W admit a cover by subcomplexes
whose associated poset is isomorphic to the poset of nontrivial partitions λ of the set {1, . . . , n}
(recall that a partition is simply an equivalence relation, and a partition is trivial if either i ∼λ j
for all i and j or i 6∼λ j unless i = j).

The cover is by the subcomplexes {Z ∩ Wij}1≤i<j≤n (resp. W̃ij). The finite intersections
corresponding to λ is the subspace of matrices with the following properties:

(1) all diagonal entries vanish;
(2) some entry is 1; and
(3) the ith row and the jth row coincide if i ∼λ j.

(in the “tilde” case, there is the further condition that all columns but the first vanish). Each
of these is contractible by a coordinatewise straight line homotopy sending tij to 0 if i ∼λ j
and sending tij to 1 otherwise (in the “tilde” case we perform the homotopy only on the first
column). �

Remark 22. From this calculation and Theorem 13, it follows that ∂n(id) = D(Σ∞+2N(Pn)),
where Pn is the category of nontrivial partitions of {1, . . . , n} under refinement. This refor-
mulation due to Arone-Mahowald [AM99] has borne much subsequent fruit—see [Chi05], for
example.

To summarize the results of our investigation so far, the domain and codomain of the map

ϕ : crn(id)(X1, . . . , Xn)→ Map∗

(
∆n,

n∧
i=1

Xi

)
constructed above have homotopy groups that are abstractly isomorphic in the desired range.
Thus, all that remains is to verify that ϕ induces this isomorphism. The key fact in this verifi-
cation is the construction of a family of maps with the following properties.
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Proposition 23. For each σ ∈ Σn−1 there is a map Cσ fitting into a commuting diagram

n∏
i=1

Xi

q

��

Cσ // Ω crn(id)(ΣX1, . . . ,ΣXn)
Ωϕ
// Ω Map∗

(
∆n,

n∧
i=1

ΣXi

)
λ∗τ
��

Ω Map∗

(
Sn−1,

n∧
i=1

ΣXi

)
o

n∧
i=1

Xi

Γστ∧(−)
// ΩnΣn

(
n∧
i=1

Xi

)
for each τ ∈ Σn−1, where λτ : Sn−1 →

∨
Σn−1

Sn−1 → ∆n is the inclusion of the τ factor.

Moreover, deg(Γστ ) = δστ .

Given these maps, a diagram chase in reduced homology implies that Ωϕ induces the desired
isomorphism. The maps Cσ are constructed by modifying the iterated commutators appearing
in the Hilton-Milnor map with explicit homotopies in order to map into the total fiber.
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