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In this lecture, we will continue our efforts to prove the product structure theorem. As in the last lecture,
we will be content to treat the special case where the set K is empty, and the product is with R rather than
with [0, 1]. In the last lecture, we reduced this to proving the following assertion:

Proposition 1. Let M be a PL manifold, and suppose we are given a compatible smooth structure on
X = M × R. Let π : X → R denote the projection onto the second factor (so that π is a PD map). Then,
after altering the smooth structure on X by a PD isotopy, we can arrange that the map π is regular.

To prove this, it is useful to have a criterion for testing whether or not a map is regular. Fix a smooth
triangulation of X for which π is PL (and therefore smooth) on each simplex. Let x ∈ X, and let σ denote
the simplex containing x in its interior. The tangent space TX,x to X at x contains the tangent space Tσ,x
as a linear subspace. Let v ∈ Tσ,x. Note that every simplex τ containing x contains σ, so the derivatives
Dv(π|τ) all agree with Dv(π|σ). It follows that Dv(π) = Dv(π|σ). It follows that π is regular at x unless
the derivative of π|σ is identically zero. We have proven:

Lemma 2. If x ∈ X is a point where π is not regular and σ is as above, then σ lies in a fiber of π.

Corollary 3. Fix a triangulation of the polyhedron X ' M × R, and suppose that the restriction of π to
the set of vertices of this triangulation is injective. Then π is regular away from the set of vertices of the
triangulation. In particular, π is regular away from an isolated set of points.

We can always arrange to be in the situation of Corollary 3. To see this, choose any triangulation of
M × R which is sufficiently fine that the star of each vertex has a neighborhood with a PL product chart
Rm×R. For each vertex v, let L(v) denote the link of v and St(v) its star. We define a PL isotopy ht of
M × R, supported in the star St(v), which we view as a closed subset of Rm×R ' Rm+1. Fix v′ ∈ Rm+1.
For each t ∈ [0, 1], there is a unique map ht : St(v)→ Rm×R ⊆M ×R which is linear on each simplex, the
identity on L(v), and carries v to (1− t)v + tv′. If v′ is chosen sufficiently close to v, then this defines a PL
isotopy of M , where h1 moves v to v′. We can assume that π(v′) is distinct from π(w), for any other vertex
w of the triangulation. Applying this construction repeatedly and concatenating the resulting isotopies
(note that only finitely many isotopies have support near any fixed point of M ×R, so the concatenation is
well-defined), we can arrange that π is injective when restricted to vertices, as desired.

We may now assume that π is regular away from the set of vertices with respect to some smooth
triangulation of X. We would like to adjust the smooth structure on X by a PD isotopy to arrange that π
is everywhere regular. Since the set of vertices of X is isolated, it will suffice to construct these isotopies one
vertex at a time. More precisely, we will prove the following:

Proposition 4. Let v be a vertex with respect to some smooth triangulation of X, and let K denote the star
of v. Assume that π is injective on vertices of X, so that π is regular on the interior of K except perhaps at
v. Then it is possible to alter the smooth structure on X by means of a PD isotopy supported on the interior
of K, so that π is regular on the whole interior of K.

Applying this proposition repeatedly and concatenating the resulting isotopies, we will obtain a proof of
Proposition 1. We are therefore reduced to proving Proposition 4. Moreover, we may assume without loss
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of generality that our triangulation of X is sufficiently fine that the star of each vertex is contained in a PL
product chart Rm×R and also a smooth chart. We will identify K with its image in Rm+1. Without loss
of generality, we may assume that v 7→ 0, so that K can be identified with the cone on the link L(v) = ∂ K,
which is an m-sphere equipped with a PL embedding into Rm+1−{0}. The map π|K : K → R is given
by projection onto the (m + 1)st coordinate. As above, we may assume that π is injective on vertices. In
particular, π(w) 6= 0 whenever w is a vertex of L(v).

The smooth structure on X is given by a PD embedding f : K → Rm+1. We wish to modify f by a PD
isotopy which is the identity near ∂ K, so that the map π ◦ f−1 : f(K)→ R is regular on the interior of K.

We can therefore rephrase our problem as follows:

Problem 5. Let K ⊆ Rm+1 be a polyhedron which is the cone (with cone point 0) on its boundary ∂ K,
let π : K → R be projection onto the last factor, and assume that π is injective on the vertices of K. Let
f : K → Rm+1 be a PD embedding, and assume f(0) = 0. Then, after adjusting f by a PD isotopy which is
fixed near ∂ K, we can arrange that π ◦ f−1 is regular on the interior of f(K).

Remark 6. In the course of solving Problem 5, we are free to replace K by its image rK for r ∈ (0, 1): any
PD isotopy of f |rK can then be extended to a PD isotopy of f by declaring it to be the identity on K− rK.

Our first step is to “linearize” the map f . Since f is differentiable on each simplex of K, we can define
a map f ′ : K → Rm+1 which is linear on each simplex by taking the derivatives of f at the origin. There is
a PD homotopy from f ′ to f , given by the formula

ft(x) =

{
t−1f(tx) ift 6= 0
f ′(x) if t = 0.

This homotopy is generally not trivial on the boundary ∂ K. To fix this, choose a smooth map χ : K → [0, 1]
which is supported in a small neighborhood U of the origin, such that χ is identically equal to 1 in an open
set V ⊆ U containing 1, and define

gt(x) = χ(
x

N
)ft(x) + (1− χ(

x

N
))f(x).

By choosing N sufficiently large, we can arrange that each gt is arbitrarily close to f in the C1-sense, and
therefore a PD embedding. Then gt is a PD isotopy from f to a map g1, where g1|V is linear on each simplex.
Using Remark 6, we obtain the following:

Claim 7. It suffices to solve Problem 5 in the special case where f is linear on each simplex.

For x ∈ K. Choose a function χ : K → R>0 which is smooth on each simplex, nondecreasing on each
ray from the origin, and satisfies the following conditions:

(1) The map χ is constant in a neighborhood of 0.

(2) The map χ is equal to 1 near ∂ K.

(3) The map χ is given by χ(x) = sε
|f(x)| for x ∈ s ∂ K if s ∈ [ 14 ,

1
2 ], for some ε > 0.

We define a PD isotopy ft by the formula

ft(x) = (1− t)f(x) + tχ(x)f(x).

Then f1 carries s ∂ K to the sphere of radius sε for s ∈ [ 14 ,
1
2 ]. Replacing f by f1, applying an appropriate

dilation to the target space Rm+1, and invoking Remark 6, we are reduced to the following situation:

Claim 8. It suffices to solve Problem 5 in the special case where f(K) is the unit ball B(1), and f(tx) = tf(x)
for t ∈ [ 12 , 1], x ∈ ∂ K.

The advantage of our present situation is that the image of ∂ K now inherits a smooth structure from
the map f . We will exploit this in the next lecture.
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