Proof of the Kan Property (Lecture 9) ## February 11, 2011 Let \mathcal{C} be a stable ∞ -category equipped with a nondegenerate quadratic functor $Q: \mathcal{C}^{op} \to \operatorname{Sp}$. Let B be the polarization of Q and \mathbb{D} the associated duality functor. Our goal in this lecture is to prove the following: **Theorem 1.** Let $\mathcal{C}_0 \subseteq \mathcal{C}$ be a stable subcategory which is closed under \mathbb{D} . Then the canonical map $\operatorname{Poinc}(\mathcal{C},Q)_{\bullet} \to \operatorname{Poinc}(\mathcal{C}/\mathcal{C}_0,Q'')_{\bullet}$ is a Kan fibration of simplicial spaces (here Q'' is the quadratic functor on $\mathcal{C}/\mathcal{C}_0$ defined in the previous lecture). Before giving the proof, we embark on two digressions. **Notation 2.** We let Lagr (\mathcal{C}, Q) denote the full subcategory of $\mathcal{C}_{[1]}$ spanned by those diagrams $$X_0 \leftarrow X_{01} \rightarrow X_1$$ where $X_1 = 0$, and endow Lagr(\mathcal{C}, Q) with the quadratic functor Q_{Lagr} given by the restriction of $Q_{[1]}$. **Lemma 3.** We have $L_0(\text{Lagr}(\mathcal{C}, Q), Q_{\text{Lagr}}) = 0$. **Remark 4.** Lemma 3 can be regarded as an algebraic analogue of the following topological fact: for any topological space X with a base point $x \in X$, the space of paths in X ending in x is contractible. *Proof.* Fix a Poincare object (X,q) of Lagr (\mathcal{C},Q) , so that X is given by a diagram $$X_0 \leftarrow X_{01} \rightarrow 0$$ Let $L \in \text{Lagr}(\mathcal{C}, Q)$ be the diagram $$X_{01} \leftarrow X_{01} \to 0.$$ There is a canonical map $L \to X$. Note that $Q_{\text{Lagr}}(L) = Q(0) \times_{Q(X_{01})} Q(X_{01}) \simeq 0$, so that the restriction of q to L is canonically nullhomotopic. A simple calculation shows that L is a Lagrangian in X, so that (X, q) represents $0 \in L_0(\text{Lagr}(\mathcal{C}, Q), Q_{\text{Lagr}})$. We now discuss the classification of quadratic objects of (\mathfrak{C}, Q) which are not necessarily Poincare. Let us begin with an example for motivation. Let $\mathfrak{C} = \mathfrak{D}^{\mathrm{perf}}(\mathbf{Z})$, let B be the symmetric bilinear functor associated to the duality functor $$P_{\bullet} \mapsto \operatorname{Hom}(P_{\bullet}, \mathbf{Z}[-n])$$ and let $Q(X) = B(X, X)^{h\Sigma_2}$ be the associated quadratic functor. Let M be a compact oriented n-manifold with boundary. Then we have an intersection form $$C^*(M, \partial M) \otimes C^*(M, \partial M) \stackrel{[M]}{\to} \mathbf{Z}[-n]$$ which determines a quadratic object $(C^*(M, \partial M), q_M)$ of \mathbb{C} . If M is a closed manifold, then this object is Poincare. In general it is not: the point q_M determines a map $C^*(M, \partial M) \to \mathbb{D}C^*(M, \partial M) \simeq C^*(M)$, which can be identified with the standard inclusion of relative cochains into cochains. The cofiber of this map is $C^*(\partial M)$. Note that this cofiber is itself described as a complex of cochains on a manifold (of dimension n-1 rather than n), and so determines a Poincare object of $(\mathcal{C}, \Sigma Q)$. We will now show that this is a general phenomenon. So far, we have not used the full strength of our assumption that Q is a quadratic functor. The next result remedies this: **Proposition 5.** Suppose we are given a fiber sequence $$X' \to X \to X''$$ in \mathbb{C} . Then Q(X'') is the total homotopy fiber of the diagram $$Q(X) \longrightarrow Q(X')$$ $$\downarrow \qquad \qquad \downarrow$$ $$B(X',X) \longrightarrow B(X',X')$$ In other words, Q(X'') is equivalent to the fiber of the map $$Q(X') \times_{B(X',X')} B(X',X).$$ **Remark 6.** Let us state this result more informally. Think of Q(X) as a spectrum parametrizing "quadratic forms" on X. The Proposition addresses the following question: given a quadratic form on X, when does it descend to X'' = X/X'? An obvious necessary condition is that it should vanish on X'. This implies that the associated bilinear form vanishes on X'. But we need a bit more: namely, to know that X' lies in the kernel of the associated bilinear form. *Proof.* We wish to show that for every quadratic functor Q on \mathcal{C} , the triangle $$Q(X'') \rightarrow Q(X) \rightarrow Q(X') \times_{B(X',X')} B(X,X')$$ is a fiber sequence. We have a fiber sequence of functors $$Q_0(Z) \to Q(Z) \to B(Z,Z)^{h\Sigma_2}$$. It therefore suffices to prove the result after replacing Q by Q_0 or $B(Z,Z)^{h\Sigma_2}$. In the first case, the polarization of Q_0 vanishes and the desired result follows from the fact that Q_0 is exact. Let us therefore assume that $Q(Z) = B(Z,Z)^{h\Sigma_2}$. Since B is exact in each variable, we can identify B(X'',X'') with the total homotopy fiber of the diagram $$B(X,X) \longrightarrow B(X,X')$$ $$\downarrow \qquad \qquad \downarrow$$ $$B(X',X) \longrightarrow B(X',X').$$ In other words, B(X'', X'') is the fiber of the map $$B(X,X) \to B(X,X') \times_{B(X',X')} B(X',X) \simeq (B(X,X') \times B(X',X)) \times_{B(X',X') \times B(X',X')} B(X',X').$$ Taking homotopy fixed points with respect to Σ_2 , we get a fiber sequence $$Q(X'') \to Q(X) \to B(X, X') \times_{B(X', X')} Q(X').$$ Let us rewrite the fiber sequence of Proposition 5 as $$Q(X') \times_{B(X',X')} B(X',X) \to \Sigma Q(X'') \to \Sigma Q(X).$$ Suppose that (Y,q) is a quadratic object of (\mathcal{C},Q) . There is a canonical point $\eta \in \Omega^{\infty}B(Y,\mathbb{D}Y)$ (corresponding to the identity map from Y to itself). Then q determines a point of $\Omega^{\infty}B(Y,Y)$, which is the image of η under the map $B(Y,\mathbb{D}Y) \to B(Y,Y)$ for some essentially unique map $u:Y\to \mathbb{D}Y$. Form a fiber sequence $Y \stackrel{u}{\to} \mathbb{D}(Y) \to \mathbb{D}(Y)/Y$. Then the pair (q,η) determines a point of $\Omega^{\infty}(Q(Y) \times_{B(Y,Y)} B(Y,\mathbb{D}Y)$. According to the above analysis, this is the 0th space of the fiber of the map of spectra $$\Sigma Q(\mathbb{D}(Y)/Y) \to \Sigma Q(\mathbb{D}Y).$$ In particular, q determines a quadratic object of $(\mathfrak{C}, \Sigma Q)$, which we will denote by $(\mathbb{D}Y/Y, \overline{q})$. The point \overline{q} determines a map $$v: \mathbb{D}Y/Y \to \Sigma \mathbb{D}(\mathbb{D}Y/Y) \simeq \Sigma \operatorname{fib}(\mathbb{D}^2(Y) \to \mathbb{D}Y) \simeq \Sigma \operatorname{fib}(u) \simeq \operatorname{cofib}(u) = \mathbb{D}Y/Y.$$ Unwinding the definitions, one sees that this is the identity map (up to a sign). Consequently, $(\mathbb{D}(Y)/Y, \overline{q})$ is a Poincare object of $(\mathcal{C}, \Sigma Q)$. We have a canonical map $w : \mathbb{D}(Y) \to \mathbb{D}(Y)/Y$, and a canonical nullhomotopy of the image of \overline{q} in $Q(\mathbb{D}(Y))$. This data determines a map $$\mathbb{D}(Y) \to (\Sigma \mathbb{D})(\mathrm{cofib}(W)) \simeq \Sigma \mathbb{D}\Sigma Y \simeq \Sigma \Omega \mathbb{D}(Y) \simeq \mathbb{D}(Y),$$ which is also the identity map (up to sign). Consequently, we can regard $\mathbb{D}(Y)$ as a Lagrangian in $(\mathbb{D}(Y)/Y, \overline{q})$. We can summarize our discussion as follows: (*) Given a quadratic object (Y,q) of (\mathfrak{C},Q) , we can construct a Poincare object $(\mathbb{D}(Y)/Y,\overline{q})$ of $(\mathfrak{C},\Sigma Q)$ and a Lagrangian $\mathbb{D}(Y)$ in $(\mathbb{D}(Y)/Y,\overline{q})$. **Remark 7.** The converse to (*) is true as well: given a Poincare object (Z, \overline{q}) in (\mathfrak{C}, Q) and a Lagrangian $f: L \to Z$, we can equip the fiber fib(f) with the structure of a quadratic object of (\mathfrak{C}, Q) . Let us now suppose that $\mathcal{C}_0 \subseteq \mathcal{C}$ is a stable subcategory which is closed under duality. Suppose we are given a quadratic object (Y,q) of (\mathcal{C},Q) whose image in $\mathcal{C}/\mathcal{C}_0$ is a Poincare object. Then the canonical map $u:Y\to \mathbb{D}(Y)$ becomes invertible in $\mathcal{C}/\mathcal{C}_0$, so the cofiber $\mathrm{cofib}(u)=\mathbb{D}(Y)/Y$ belongs to \mathcal{C}_0 . Consequently, the above construction produces a Poincare object $(\mathbb{D}(Y)/Y,\overline{q})$ of $(\mathcal{C}_0,\Sigma Q')$ (where $Q'=Q|\mathcal{C}_0$). Suppose that this Poincare object is nullcobordant: that is, we can choose a Lagrangian $L\to \mathbb{D}(Y)/Y$ in $(\mathcal{C}_0,\Sigma Q')$. Then $(\mathbb{D}(Y)/Y,\overline{q})$ has two Lagrangians in the ∞ -category \mathcal{C} : L and $\mathbb{D}(Y)$. Each of these provides a cobordism of $(\mathbb{D}(Y)/Y,\overline{q})$ with the zero object. We have seen that cobordisms can be composed: if we compose these cobordisms, we obtain a cobordism $L\times_{\mathbb{D}(Y)/Y}\mathbb{D}(Y)$ from the zero Poincare object of $(\mathcal{C},\Sigma Q)$ to itself. Such a cobordism can be regarded as a Poincare object (Y',q') of $(\mathcal{C},\Omega\Sigma Q)=(\mathcal{C},Q)$. Moreover, since L vanishes in $\mathcal{C}/\mathcal{C}_0$, we note that (Y',q') and (Y,q) determine the same quadratic object of $\mathcal{C}/\mathcal{C}_0$. **Remark 8.** Let (Y_0, q_0) be any Poincare object of $\mathcal{C}/\mathcal{C}_0$. By construction, we can always lift (Y_0, q_0) to a quadratic object (Y, q) of \mathcal{C} . The above discussion shows that we can adjust (Y, q) to be a Poincare object of \mathcal{C} if and only if a certain obstruction in $L_0(\mathcal{C}_0, \Sigma Q')$ vanishes. One we have proven the theorem, we can identify this obstruction with the image of (Y_0, q_0) under the boundary map $$\pi_1 L(\mathfrak{C} / \mathfrak{C}_0, \Sigma Q'') \to \pi_0 L(\mathfrak{C}_0, \Sigma Q')$$ determined by the fiber sequence of spaces $$L(\mathcal{C}_0, \Sigma Q') \to L(\mathcal{C}, \Sigma Q) \to L(\mathcal{C} / \mathcal{C}_0, \Sigma Q'').$$ We now turn to the proof of Theorem 1. We must show that every point η of $$\operatorname{Poinc}(\mathfrak{C}/\mathfrak{C}_0,Q'')_{\bullet}(\Delta^n) \times_{\operatorname{Poinc}(\mathfrak{C}/\mathfrak{C}_0,Q'')_{\bullet}(\Lambda^n_i)} \operatorname{Poinc}(\mathfrak{C},Q)_{\bullet}(\Lambda^n_i)$$ can be lifted (up to homotopy) to a point of $\operatorname{Poinc}(\mathfrak{C},Q)_{\bullet}(\Delta^n)$. The point η determines a Poincare object (X_0,q_0) of $(\mathfrak{C}/\mathfrak{C}_0)_{[n]}$. Here we think of X_0 as a contravariant functor from the collection of nonempty subsets of $\{0,\ldots,n\}$ into $\mathfrak{C}/\mathfrak{C}_0$. Let $\sigma=[n]=\{0,\ldots,n\}$ and let $\tau=[n]-\{i\}\subseteq\sigma$. Then η determines objects $X(S)\in\mathfrak{C}$ lifting $X_0(S)$ for $S\notin\{\sigma,\tau\}$, together with a point of $$q_1 \in \Omega^{\infty} \varprojlim_{S \notin \{\sigma, \tau\}} Q(X(S))$$ which is nondegenerate and compatible with q_0 . Using the construction of $\mathcal{C}/\mathcal{C}_0$ and Q'', we can extend X to a functor defined on all nonempty subsets of [n] and q_1 to a point $q \in \Omega^{\infty}Q_{[n]}(X)$ (compatible with q_0). What is not clear is that (X,q) is a Poincare object of $(\mathcal{C}_{[n]},Q_{[n]})$. The point q determines a map $X \to \mathbb{D}_{[n]}(X)$, which may fail to be invertible when evaluated at σ and τ . Let \mathcal{D} be the full subcategory of $\mathcal{C}_{[n]}$ spanned by those functors Z such that $Z(S) \simeq 0$ for $S \notin \{\sigma, \tau\}$, and $Z(\sigma), Z(\tau) \in \mathcal{C}_0$. We can identify objects of \mathcal{D} with morphisms $Z(\sigma) \to Z(\tau)$ in \mathcal{C}_0 , and so have an equivalence of ∞ -categories $\mathcal{D} \simeq \operatorname{Lagr}(\mathcal{C}_0, Q')$. When n = 1, the quadratic functor $Q_{[n]} \mid \mathcal{D}^{op}$ is precisely the quadratic functor Q_{Lagr} appearing in Lemma 3. In the general case, a simple calculation gives $Q_{[n]} \mid \mathcal{D}^{op} \simeq \Omega^{n-1}Q_{\operatorname{Lagr}}$. Let Y denote the cofiber of the map $u: X \to \mathbb{D}_{[n]}(X)$, so that Y has the structure of a Poincare object of $(\mathfrak{D}, (\Sigma Q_{[n]})|\mathfrak{D}^{op}) = (\operatorname{Lagr}(\mathfrak{C}, Q), \Omega^{n-2}Q_{\operatorname{Lagr}})$. Invoking Lemma 3, we deduce that every Poincare object of $(\mathfrak{D}, (\Sigma Q_{[n]})|\mathfrak{D})$ is nullcobordant. In particular, Y is nullcobordant. Choosing a Lagrangian in Y, we obtain a procedure for modifying (X, q) to obtain a Poincare object of $(\mathfrak{C}_{[n]}, Q_{[n]})$, which gives the desired lift of η .