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February 11, 2011

Let C be a stable ∞-category equipped with a nondegenerate quadratic functor Q : Cop → Sp. Let B be
the polarization of Q and D the associated duality functor. Our goal in this lecture is to prove the following:

Theorem 1. Let C0 ⊆ C be a stable subcategory which is closed under D. Then the canonical map
Poinc(C, Q)• → Poinc(C /C0, Q

′′)• is a Kan fibration of simplicial spaces (here Q′′ is the quadratic func-
tor on C /C0 defined in the previous lecture).

Before giving the proof, we embark on two digressions.

Notation 2. We let Lagr(C, Q) denote the full subcategory of C[1] spanned by those diagrams

X0 ← X01 → X1

where X1 = 0, and endow Lagr(C, Q) with the quadratic functor QLagr given by the restriction of Q[1].

Lemma 3. We have L0(Lagr(C, Q), QLagr) = 0.

Remark 4. Lemma 3 can be regarded as an algebraic analogue of the following topological fact: for any
topological space X with a base point x ∈ X, the space of paths in X ending in x is contractible.

Proof. Fix a Poincare object (X, q) of Lagr(C, Q), so that X is given by a diagram

X0 ← X01 → 0

Let L ∈ Lagr(C, Q) be the diagram
X01 ← X01 → 0.

There is a canonical map L→ X. Note that QLagr(L) = Q(0)×Q(X01)Q(X01) ' 0, so that the restriction of
q to L is canonically nullhomotopic. A simple calculation shows that L is a Lagrangian in X, so that (X, q)
represents 0 ∈ L0(Lagr(C, Q), QLagr).

We now discuss the classification of quadratic objects of (C, Q) which are not necessarily Poincare. Let us
begin with an example for motivation. Let C = Dperf(Z), let B be the symmetric bilinear functor associated
to the duality functor

P• 7→ Hom(P•,Z[−n])

and let Q(X) = B(X,X)hΣ2 be the associated quadratic functor. Let M be a compact oriented n-manifold
with boundary. Then we have an intersection form

C∗(M,∂M)⊗ C∗(M,∂M)
[M ]→ Z[−n]

which determines a quadratic object (C∗(M,∂M), qM ) of C. If M is a closed manifold, then this object
is Poincare. In general it is not: the point qM determines a map C∗(M,∂M) → DC∗(M,∂M) ' C∗(M),
which can be identified with the standard inclusion of relative cochains into cochains. The cofiber of this map
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is C∗(∂M). Note that this cofiber is itself described as a complex of cochains on a manifold (of dimension
n−1 rather than n), and so determines a Poincare object of (C,ΣQ). We will now show that this is a general
phenomenon.

So far, we have not used the full strength of our assumption that Q is a quadratic functor. The next
result remedies this:

Proposition 5. Suppose we are given a fiber sequence

X ′ → X → X ′′

in C. Then Q(X ′′) is the total homotopy fiber of the diagram

Q(X) //

��

Q(X ′)

��
B(X ′, X) // B(X ′, X ′)

In other words, Q(X ′′) is equivalent to the fiber of the map

Q(X ′)×B(X′,X′) B(X ′, X).

Remark 6. Let us state this result more informally. Think of Q(X) as a spectrum parametrizing “quadratic
forms” on X. The Proposition addresses the following question: given a quadratic form on X, when does it
descend to X ′′ = X/X ′? An obvious necessary condition is that it should vanish on X ′. This implies that
the associated bilinear form vanishes on X ′. But we need a bit more: namely, to know that X ′ lies in the
kernel of the associated bilinear form.

Proof. We wish to show that for every quadratic functor Q on C, the triangle

Q(X ′′)→ Q(X)→ Q(X ′)×B(X′,X′) B(X,X ′)

is a fiber sequence. We have a fiber sequence of functors

Q0(Z)→ Q(Z)→ B(Z,Z)hΣ2 .

It therefore suffices to prove the result after replacing Q by Q0 or B(Z,Z)hΣ2 . In the first case, the polariza-
tion of Q0 vanishes and the desired result follows from the fact that Q0 is exact. Let us therefore assume that
Q(Z) = B(Z,Z)hΣ2 . Since B is exact in each variable, we can identify B(X ′′, X ′′) with the total homotopy
fiber of the diagram

B(X,X) //

��

B(X,X ′)

��
B(X ′, X) // B(X ′, X ′).

In other words, B(X ′′, X ′′) is the fiber of the map

B(X,X)→ B(X,X ′)×B(X′,X′) B(X ′, X) ' (B(X,X ′)×B(X ′, X))×B(X′,X′)×B(X′,X′) B(X ′, X ′).

Taking homotopy fixed points with respect to Σ2, we get a fiber sequence

Q(X ′′)→ Q(X)→ B(X,X ′)×B(X′,X′) Q(X ′).
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Let us rewrite the fiber sequence of Proposition 5 as

Q(X ′)×B(X′,X′) B(X ′, X)→ ΣQ(X ′′)→ ΣQ(X).

Suppose that (Y, q) is a quadratic object of (C, Q). There is a canonical point η ∈ Ω∞B(Y,DY ) (cor-
responding to the identity map from Y to itself). Then q determines a point of Ω∞B(Y, Y ), which is the
image of η under the map B(Y,DY )→ B(Y, Y ) for some essentially unique map u : Y → DY . Form a fiber

sequence Y
u→ D(Y ) → D(Y )/Y . Then the pair (q, η) determines a point of Ω∞(Q(Y ) ×B(Y,Y ) B(Y,DY ).

According to the above analysis, this is the 0th space of the fiber of the map of spectra

ΣQ(D(Y )/Y )→ ΣQ(DY ).

In particular, q determines a quadratic object of (C,ΣQ), which we will denote by (DY/Y, q).
The point q determines a map

v : DY/Y → ΣD(DY/Y ) ' Σ fib(D2(Y )→ DY ) ' Σ fib(u) ' cofib(u) = DY/Y.

Unwinding the definitions, one sees that this is the identity map (up to a sign). Consequently, (D(Y )/Y, q) is
a Poincare object of (C,ΣQ). We have a canonical map w : D(Y )→ D(Y )/Y , and a canonical nullhomotopy
of the image of q in Q(D(Y )). This data determines a map

D(Y )→ (ΣD)(cofib(W )) ' ΣDΣY ' ΣΩD(Y ) ' D(Y ),

which is also the identity map (up to sign). Consequently, we can regard D(Y ) as a Lagrangian in (D(Y )/Y, q).
We can summarize our discussion as follows:

(∗) Given a quadratic object (Y, q) of (C, Q), we can construct a Poincare object (D(Y )/Y, q) of (C,ΣQ)
and a Lagrangian D(Y ) in (D(Y )/Y, q).

Remark 7. The converse to (∗) is true as well: given a Poincare object (Z, q) in (C, Q) and a Lagrangian
f : L→ Z, we can equip the fiber fib(f) with the structure of a quadratic object of (C, Q).

Let us now suppose that C0 ⊆ C is a stable subcategory which is closed under duality. Suppose we are
given a quadratic object (Y, q) of (C, Q) whose image in C /C0 is a Poincare object. Then the canonical map
u : Y → D(Y ) becomes invertible in C /C0, so the cofiber cofib(u) = D(Y )/Y belongs to C0. Consequently,
the above construction produces a Poincare object (D(Y )/Y, q) of (C0,ΣQ

′) (where Q′ = Q|C0). Suppose
that this Poincare object is nullcobordant: that is, we can choose a Lagrangian L→ D(Y )/Y in (C0,ΣQ

′).
Then (D(Y )/Y, q) has two Lagrangians in the∞-category C: L and D(Y ). Each of these provides a cobordism
of (D(Y )/Y, q) with the zero object. We have seen that cobordisms can be composed: if we compose these
cobordisms, we obtain a cobordism L×D(Y )/Y D(Y ) from the zero Poincare object of (C,ΣQ) to itself. Such
a cobordism can be regarded as a Poincare object (Y ′, q′) of (C,ΩΣQ) = (C, Q). Moreover, since L vanishes
in C /C0, we note that (Y ′, q′) and (Y, q) determine the same quadratic object of C /C0.

Remark 8. Let (Y0, q0) be any Poincare object of C /C0. By construction, we can always lift (Y0, q0) to a
quadratic object (Y, q) of C. The above discussion shows that we can adjust (Y, q) to be a Poincare object
of C if and only if a certain obstruction in L0(C0,ΣQ

′) vanishes. One we have proven the theorem, we can
identify this obstruction with the image of (Y0, q0) under the boundary map

π1L(C /C0,ΣQ
′′)→ π0L(C0,ΣQ

′)

determined by the fiber sequence of spaces

L(C0,ΣQ
′)→ L(C,ΣQ)→ L(C /C0,ΣQ

′′).
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We now turn to the proof of Theorem 1. We must show that every point η of

Poinc(C /C0, Q
′′)•(∆

n)×Poinc(C /C0,Q′′)•(Λn
i ) Poinc(C, Q)•(Λ

n
i )

can be lifted (up to homotopy) to a point of Poinc(C, Q)•(∆
n). The point η determines a Poincare object

(X0, q0) of (C /C0)[n]. Here we think of X0 as a contravariant functor from the collection of nonempty subsets
of {0, . . . , n} into C /C0. Let σ = [n] = {0, . . . , n} and let τ = [n] − {i} ⊆ σ. Then η determines objects
X(S) ∈ C lifting X0(S) for S /∈ {σ, τ}, together with a point of

q1 ∈ Ω∞ lim←−
S/∈{σ,τ}

Q(X(S))

which is nondegenerate and compatible with q0. Using the construction of C /C0 and Q′′, we can extend
X to a functor defined on all nonempty subsets of [n] and q1 to a point q ∈ Ω∞Q[n](X) (compatible with
q0). What is not clear is that (X, q) is a Poincare object of (C[n], Q[n]). The point q determines a map
X → D[n](X), which may fail to be invertible when evaluated at σ and τ .

Let D be the full subcategory of C[n] spanned by those functors Z such that Z(S) ' 0 for S /∈ {σ, τ},
and Z(σ), Z(τ) ∈ C0. We can identify objects of D with morphisms Z(σ) → Z(τ) in C0, and so have an
equivalence of ∞-categories D ' Lagr(C0, Q

′). When n = 1, the quadratic functor Q[n]|Dop is precisely the
quadratic functor QLagr appearing in Lemma 3. In the general case, a simple calculation gives Q[n]|Dop '
Ωn−1QLagr.

Let Y denote the cofiber of the map u : X → D[n](X), so that Y has the structure of a Poincare object of
(D, (ΣQ[n])|Dop) = (Lagr(C, Q),Ωn−2QLagr). Invoking Lemma 3, we deduce that every Poincare object of
(D, (ΣQ[n])|D) is nullcobordant. In particular, Y is nullcobordant. Choosing a Lagrangian in Y , we obtain
a procedure for modifying (X, q) to obtain a Poincare object of (C[n], Q[n]), which gives the desired lift of η.
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