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Let C be a stable∞-category equipped with a nondegenerate quadratic functor Q : Cop → Sp. In the last
lecture, we defined an L-theory space L(C, Q), whose path components comprise the abelian group L0(C, Q)
of Lecture 5. We would like to understand the homotopy type L(C, Q) better. For example, we might ask
for an interpretation of the higher homotopy groups Ln(C, Q) = πnL(C, Q).

By definition, L(C, Q) is given to us as the geometric realization of a simplicial space Poinc(C, Q)•. In
general, it is not easy to describe the homotopy groups of a geometric realization even if the homotopy
groups of the indiviual terms are well-understood (for example, it is hard to describe the homotopy groups
of the geometric realization of the simplicial set ∂∆3).

For a general simplicial space X•, there are two face maps d0, d1 : X1 → X0 which induce a map
π0(X1) → π0X0 × π0X0. The image of this map is a relation R on π0X0, and the quotient of π0X0 by the
equivalence relation generated by R can be identified with π0|X•|. However, in our case R is the relation
of cobordism of Poincare objects, which is already an equivalence relation. This is a special feature of
Poinc(C, Q)• which makes the homotopy group π0L(C, Q) easier to compute. We would like to generalize
this observation.

We begin by introducing some notation.

Definition 1. Let ∆ denote the category of combinatorial simplices: that is, nonempty finite linearly
ordered sets of the form {0, . . . , n}. In this lecture, we will identify the objects of ∆ with the corresponding
simplicial sets ∆0,∆1, · · · . A simplicial space is a functor from ∆op to the ∞-category of spaces. If X is a
simplicial space, we will denote the individual spaces of X by X(∆0), X(∆1), and so forth.

If X is a simplicial space, then X determines a functor from the ordinary category of simplicial sets into
the ∞-category of spaces, given by

K 7→ lim←−
σ:∆n→K

X(∆n).

We will denote this functor by K 7→ X(K). (More abstractly: we regard X as a functor defined on all
simplicial sets, rather than just standard simplices, by taking a right Kan extension.)

Remark 2. We can identify X(K) with the space of maps from K to X in the ∞-category of simplicial
spaces (where we regard K as a simplicial space by endowing it with the discrete topology in each degree).

Definition 3. Let f : X → Y be a map of simplicial spaces. We will say that f is a Kan fibration if the
following condition is satisfied: for 0 ≤ i ≤ n, the map

X(∆n)→ X(Λni )×Y (Λn
i ) Y (∆n)

is surjective on connected components (here the fiber product denotes a homotopy fiber product). We will
say that f is a trivial Kan fibration if, for each n ≥ 0, the map

X(∆n)→ X(∂∆n)×Y (∂∆n) Y (∆n).

We will say that a simplicial space X satisfies the Kan condition if the map X → ∗ is a Kan fibration, where
∗ denotes the constant simplicial space with value equal to a single point.
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Remark 4. When we restrict our attention to simplicial sets (which we regard as a special case of simplicial
spaces), Definition 3 recovers the usual notion of Kan fibration, trivial Kan fibration, and Kan complex.

If X is a simplicial space satisfying the Kan condition, then the surjectivity of the map π0X(∆2) →
π0X(Λ2

1) guarantees that the image of π0X(∆1) is an equivalence relation on π0X(∆0). Since we know that
the latter condition holds for Poinc(C, Q)•, we are naturally led to conjecture the following:

Theorem 5. The simplicial space Poinc(C, Q)• satisfies the Kan condition.

We will prove Theorem 5 later this week. The remainder of this lecture is devoted to exploring some
consequences of Theorem 5.

Recall that if f : X → Y is a trivial Kan fibration of simplicial sets, then f induces a homotopy equivalence
of geometric realizations |X| → |Y |. This generalizes to simplicial spaces:

Proposition 6. Let f : X → Y be a trivial Kan fibration of simplicial spaces. Then the induced map
|X| → |Y | is a homotopy equivalence.

Proof. The category Set∆ of simplicial sets is a model for the ∞-category of spaces. We may therefore
choose a simplicial object X of the category of simplicial sets representing X, and a simplicial object Y
of the category of simplicial sets representing Y , such that f is modelled by a map of bisimplicial sets
f : X → Y . Without loss of generality, we may assume that X and Y are Reedy fibrant and that f is a
Reedy fibration. Then each of the maps

X(∆n)→ X(∂∆n)×Y (∂∆n) Y (∆n)

is modelled by a Kan fibration of simplicial sets

X(∆n)→ X(∂∆n)×Y (∂∆n) Y (∆n)

Our assumption on f guarantees that this map is surjective on connected components. Since it is a Kan
fibration, it is surjective on simplices of every dimension. In other words, we deduce that for each m ≥ 0,
the map of simplicial sets

Xm → Y m

is a trivial Kan fibration. In particular, the map of bisimplicial sets f : X → Y is a levelwise homotopy
equivalence in the “horizontal” direction, and so induces a homotopy equivalence after geometric realization.

Proposition 7. Let Y be a simplicial space. Then there exists a simplicial set X and a trivial Kan fibration
f : X → Y .

Proof. We successively build n-skeletal simplicial sets sknX and maps sknX → Y such that the maps

sknX(∆m)→ (sknX)(∂∆m)×Y (∂∆m) Y (∆m)

are surjective on connective components for m ≤ n. Assume that skn−1X has already been constructed.
Let S be the set of connected components of the fiber product

(skn−1X)(∂∆n)×Y (∂∆n) Y (∆n).

and let sknX be the simplicial set obtained from skn−1X by adjoining one nondegenerate n-simplex for every
element of S (with the obvious attaching maps). There is an evident map of simplicial spaces sknX → Y
having the desired properties.
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Let Y be a simplicial space satisfying the Kan condition, and suppose that we wish to describe the
homotopy groups of the geometric realization |Y |. Choose a trivial Kan fibration X → Y , where X is a
simplicial set. Then the map |X| → |Y | is a homotopy equivalence, so the homotopy groups of |Y | are the
same as the homotopy groups of |X|. Moreover, since X → Y is a Kan fibration, the simplicial set X also
satisfies the Kan condition: that is, it is a Kan complex in the usual sense. Let us fix a base point x of
X(∆0) (which determines a base point in Y (∆0)) and compute all homotopy groups with respect to that
base point. If K is a simplicial set with a simplicial subset K0, let Y (K,K0) denote the homotopy fiber of
the map Y (K)→ Y (K0) (over the point determined by the base point), and define X(K,K0) similarly.

Because X is a Kan complex, there is a simple combinatorial recipe for extracting the homotopy groups
πn|X|. Let us recall how this goes. Every class in πn|X| is represented by a point η ∈ X(∆n, ∂∆n). Let
K ⊆ ∂∆n+1 be the subset obtained by removing the interiors of two faces, so that we have a canonical
bijection

X(∂∆n+1,K)→ X(∆n, ∂∆n)×X(∆n, ∂∆n).

A pair of elements η, η′ ∈ X(∆n, ∂∆n) determine the same element in πn|X| if and only if the corresponding
element of X(∂∆n+1,K) can be lifted to X(∆n+1,K).

Since X → Y is a trivial Kan fibration, the map

φ : X(∆n, ∂∆n)→ Y (∆n, ∂∆n).

is surjective on connected components: that is, every element of π0Y (∆n, ∂∆n) comes from a point η ∈
X(∆n, ∂∆n). Suppose we are given a pair of points of Y (∆n, ∂∆n), given by the images of elements η, η′ ∈
X(∆n, ∂∆n). This pair of points determines a point ζ ∈ X(∂∆n+1,K) having image ζ0 ∈ Y (∂∆n+1,K).
Since the map

X(∆n+1)→ X(∂∆n+1)×Y (∂∆n+1) Y (∆n+1)

is surjective on connected components, we deduce that ζ0 lifts to a point of Y (∆n+1) if and only if ζ lifts to
a point of X(∆n+1). We have proven the following:

Proposition 8. Let Y be a simplicial space satisfying the Kan condition, and choose a base point y ∈ Y (∆0)
(so that we can regard Y as a simplicial pointed space). Then πn|Y | can be identified with the quotient of
the set π0Y (∆n, ∂∆n) by the following equivalence relation: two homotopy classes [η], [η′] ∈ π0Y (∆n, ∂∆n)
represent the same class in πn|Y | if and only if the corresponding point of Y (∂∆n+1,K) lifts to a point of
Y (∆n+1).

Let us now apply this analysis to the case of interest, where Y is the simplicial space Poinc(C, Q)•.
Unwinding the definitions, we see that Y (∆n, ∂∆n) is a classifying space for Poincare objects (X, q) of C[n]

(using the notation of the previous lecture) such that X(S) ' 0 for all proper subsets S ⊆ [n]. In this case,
X is determined by a single object C = X([n]) ∈ C. Moreover, we have

Q[n](X) = lim←−
S

Q(X(S)) = lim←−
S

{
Q(C) if S = [n]

0 otherwise.

The relevant diagram is parametrizes by partially ordered set of faces of an n-simplex, taking the value 0 on
every proper face. Consequently, the limit in question is given by ΩnQ(C). We can summarize our analysis
as follows:

(∗) Let Y = Poinc(C, Q)•. Then Y (∆n, ∂∆n) is a classifying space for Poincare objects of (C,ΩnQ).

Now suppose we are given two Poincare objects for (C,ΩnQ). They determine a point of Y (∂∆n+1):
that is, a functor from the partially ordered set of all nonempty proper subsets of [n+ 1] into C. Moreover,
this functor vanishes identically except on two subsets of [n+ 1] of cardinality n. Unwinding the definitions,
we see that lifting this data to a Poincare object of C[n+1] is equivalent to specifying a cobordism betwee the
corresponding Poincare object of (C,ΩnQ). We have proven the following:
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Theorem 9. The abelian group Ln(C, Q) = πnL(C, Q) is canonically isomorphic to L0(C,ΩnQ).

We close with a result that will be needed in the next lecture:

Proposition 10. Let X → Y
u→ Z be a fiber sequence of simplicial spaces. Suppose that u is a Kan fibration.

Then
|X| → |Y | → |Z|

is a fiber sequence of spaces.

Proof. Choose a trivial Kan fibration f : Z ′ → Z, where Z ′ is a simplicial set (and choose a base point of Z ′

lying over the chosen base point of Z). Now choose a trivial Kan fibration g : Y ′ → Y ×Z Z ′, where Y ′ is a
simplicial set. The canonical map Y ′ → Y is a composition of g with a pullback of f , and therefore a trivial
Kan fibration. Let X ′ be the fiber of the map of simplicial sets Y ′ → Z ′. The canonical map X ′ → X is a
pullback of g and therefore a trivial Kan fibration. We have a commutative diagram of fiber sequences

X ′ //

��

Y ′ //

��

Z ′

��
X // Y // Z

where the vertical maps are trivial Kan fibrations, and therefore induce homotopy equivalences after geo-
metric realization. It will therefore suffice to prove that the sequence of spaces

|X ′| → |Y ′| → |Z ′|

is a fiber sequence. Since these are simplicial sets, it suffices to prove that the map Y ′ → Z ′ is a Kan
fibration. This map is given by the composition of g (a trivial Kan fibraation) with the projection map
u′ : Y ×Z Z ′ → Z ′. It will therefore suffice to show that u′ is a Kan fibration (of simplicial spaces). This is
clear, since u′ is a pullback of the Kan fibration u.
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