
L-theory Spaces (Lecture 6)

February 3, 2011

Let C be a stable ∞-category equipped with a nondegenerate quadratic functor Q : Cop → Sp, which
we regard as fixed throughout this lecture. We let B : Cop×Cop → Sp denote the polarization of Q, and
D : Cop → C the corresponding duality functor. In the last lecture, we introduce the notion of a cobordism
between two Poincare objects (X, q) and (X ′, q′) of C. We saw that cobordism is an equivalence relation and
defined L0(C, Q) to be the set of equivalence classes.

In this lecture, we would like to refine the invariant L0(C, Q). We will accomplish this by defining an
L-theory space L(C, Q), with π0L(C, Q) = L0(C, Q).

We first describe an approximation to this L-theory space. We let Poinc(C, Q) denote a classifying space
for Poincare objects of C. That is, Poinc(C, Q) is an ∞-category whose objects are Poincare objects (X, q)
of C, where a morphism from (X, q) to (X ′, q′) is an isomorphism α : X → X ′ together with a path joining
q to the image of q′ in the space Ω∞Q(X). Poinc(C, Q) is an ∞-category in which every morphism is
invertible and therefore a Kan complex. We will simply refer to Poinc(C, Q) as a space. It is not the space
we are looking for, because cobordant Poincare objects need not lie in the same connected component of
Poinc(C, Q).

Notation 1. Fix an integer n ≥ 0. We let Fn denote the collection of nonempty subsets of the set
{0, 1, . . . , n}. We regard Fn as a partially ordered set with respect to inclusions. (It may be helpful to think
of Fn as the partially ordered set of faces of the standard n-simplex ∆n.) Note that Fn has a largest element,
given by the set [n] = {0, . . . , n}.

Let C[n] denote the ∞-category of functors Fun(Fopn ,C) from Fopn into C. We define a functor

Q[n] : Cop[n] → Sp

by the formula Q[n](X) = lim←−S∈Fn
Q(X(S)).

Using the fact thatQ is quadratic, it follows immediately thatQ[n] is a quadratic functor. The polarization
of Q[n] is the functor B[n] given by

B[n](X,X
′) = lim←−

S∈Fn

B(X(S), X ′(S)).

Proposition 2. The bilinear functor B[n] is representable. Its associated duality functor D[n] is described
by the formula

(D[n]X)(S) = lim←−
T⊆S

D(X(T )).

Proof. For simplicity let us assume the existence of D[n] and show that it is characterized by the above
formula (the existence is proven in essentially the same way). We will show that for each object C ∈ C, there
is a canonical homotopy equivalence of spectra

MorC(C, (D[n]X)(S)) ' lim←−
T⊆S

MorC(C,D(X(T ))).
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Let Y : Fopn → C be given by the formula

Y (T ) =

{
C if T ⊆ S
0 otherwise.

Then

MorC(C, (D[n]X)(S)) ' MorC[n]
(Y,D[n]X)

' B[n](Y,X)

' lim←−
T

B(Y (T ), X(T ))

' lim←−
T⊆S

B(C,X(T ))

' lim←−
T⊆S

MorC(C,DX(T ))

' MorC(C, lim←−
T⊆S

X(T )).

Proposition 3. The bilinear functor B[n] is nondegenerate.

Proof. We must show that the canonical map id → D2
n is an equivalence from C[n] to itself. Fix an object

X ∈ C[n]. We compute

(D2
[n]X)(S) ' lim←−

T⊆S
D((D[n]X)(T ))

' D lim−→
T⊆S

(D[n]X)(T )

' D lim−→
T⊆S

lim←−
U⊆T

DX(U)

' D2 lim←−
T⊆S

lim−→
U⊆T

X(U)

' lim←−
T⊆S

lim−→
U⊆T

X(U).

We wish to show that the canonical map

X(S)→ lim←−
T⊆S

lim−→
U⊆T

X(U)

is an equivalence. Let P be the collection of all subsets of S. We define a cubical diagram Y : P→ C by the
formula

Y (T ) =

{
X(S) if T = ∅
lim−→∅6=U⊆T X(U) otherwise.

We wish to show that Y is a homotopy limit cube in C. Because C is stable, this is equivalent to the condition
that Y is a homotopy colimit cube, which follows from unwinding the definitions. For example, when S has
two elements {s} and {t}, then Y is the diagram

X(S) //

��

X({s})

��
X({t}) // X({s})

∐
X(S)X({t}).
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Example 4. Let n = 1. Then an object X of C[1] consists of a diagram

X({0})← X([1])→ X({1})

in C. The spectrum Q[2](X) is given by the homotopy fiber product

Q(X({0}))×Q(X([1])) Q(X({1})).

In particular, we can identify a point of Ω∞Q[2](X) with a point q0 ∈ Ω∞Q(X({0})), a point q1 ∈
Ω∞Q(X({1})), and a path joining their images in Ω∞Q(X([1])). Such a point determines an equivalence
X → D2X if and only if the following three conditions are satisfied:

• q0 induces an equivalence v0 : X({0})→ DX({0})

• q1 induces an equivalence X({1})→ DX({1})

• The induced map v : X([1])→ DX({0})×DX([1]) DX({1}) is an equivalence.

Note that v fits into a commutative diagram of fiber sequences

fib(X([1])→ X({0})) //

u

��

X([1])

v

��

// X({0})

v0

��
fib(DX({1})→ DX([1])) // DX({0})×DX([1]) DX({1}) // DX({0})

where u is the map appearing in the previous lecture. If v0 is an isomorphism, then v is an isomorphism if
and only if u is an isomorphism.

We can summarize the situation as follows: giving a Poincare object of C[1] is equivalent to giving a pair
of Poincare objects of C = C[0], together with a cobordism between them.

The construction [n] 7→ C[n] is contravariantly functorial in the finite set [n] = {0, . . . , n}. Given a map
of finite sets f : [m]→ [n], there is an induced functor f∗ : C[n] → C[m], given by (f∗X)(S) = X(f(S)). Note
that there is a canonical map

Q[n](X) = lim←−
S⊆[n]

Q(X(S))→ lim←−
T⊆[m]

Q(X(f(T ))) ' Q[m](f
∗X).

In particular, every quadratic object (X, q) of C[n] determines a quadratic object (f∗X, f∗q) of C[m].

Proposition 5. In the situation above, if (X, q) is a Poincare object of C[n], then (f∗X, f∗q) is a Poincare
object of C[m].

Proof. Fix a nonempty set S ⊆ [m]; we wish to show that q induces an isomorphism

(f∗X)(S)→ lim←−
T⊆S

D(f∗X)(T ).

We can rewrite this map as a composition

X(f(S))
φ→ lim←−
U⊆f(S)

DX(U)
ψ→ lim←−
T⊆S

DX(f(T )).

Here the map φ is an isomorphism if q is nondegenerate, and ψ is an isomorphism by a cofinality argument.
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For each n ≥ 0, let Poinc(C, Q)n denote a classifying space for Poincare objects of (C[n], Q[n]). It
follows from the preceding result that a map of finite sets f : [m] → [n] induces a map of classifying
spaces Poinc(C, Q)n → Poinc(C, Q)m. Restricting our attention to order-preserving maps f , we see that
Poinc(C, Q)• has the structure of a simplicial space.

Definition 6. We define L(C, Q) to be classifying space of the simplicial space Poinc(C, Q)•. We will refer
to L(C, Q) as the L-theory space of (C, Q).

Remark 7. The set π0L(C, Q) can be identified with the quotient of π0 Poinc(C, Q) by the equivalence
relation generated by the image of π0 Poinc(C, Q)1 in π0 Poinc(C, Q)× π0 Poinc(C, Q). Using Example 4, we
see that this is exactly the relation of cobordism defined in the previous lecture. It follows that we have a
canonical isomorphism

π0L(C, Q) ' L0(C, Q).

All of the constructions of this lecture are compatible with the formation of direct sums of Poincare
objects. It follows that the L-theory space L(C, Q) inherits a monoid structure, which is commutative and
associative up to coherent homotopy: that is, L(C, Q) is an E∞-space. Moreover, we saw in the last lecture
that the induced monoid structure on π0L(C, Q) ' L0(C, Q) is actually an abelian group structure. In other
words, L(C, Q) is a grouplike E∞-space, and therefore an infinite loop space.

Remark 8. We will later construct a nonconnective delooping of L(C, Q).

Definition 9. For n ≥ 0, we let Ln(C, Q) denote the homotopy group πnL(C, Q). We will refer to Ln(C, Q)
as the nth L-group of (C, Q).

We will return to the study of these higher L-groups in the next lecture.
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