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Let X be a Poincare space of dimension n. Recall that the normal structure space S"(X) is homotopy
equivalent to S'(X), which is given by the homotopy fiber of the map BPLY — Pic(S)¥ (which classifies
stable PL reductions of the Spivak normal bundle of X). The map BPL — Pic(S) is a map of infinite loop
spaces, whose fiber we denote by G/PL (here one should think of G = GL1(5) as the automorphism group of
the sphere spectrum). Consequently, if nonempty, the normal structure space S (X) is homotopy equivalent
to a torsor for the infinite loop space (G/PL)X. Our goal in this lecture is to describe the homotopy type
of G/PL.

More generally, if (X,0 X) is a Poincare pair such that 9 X is a compact PL manifold, we can describe
S (X) as the homotopy fiber of the canonical map

BPLY — Pic(S)* xpje(s)ox BPL?X

(over the point classifying the Spivak bundle of X together with its PL reduction on 9 X). Assume that the
PL tangent bundle to 0 X is stably trivial, and that this trivialization extends to a trivialization of the Spivak
bundle of X. Then S™(X) can be identified with the space of maps of pairs from (X,9X) to (G/PL,x).
Taking X = D™ and 9 X = S"~! we obtain a canonical homotopy equivalence S'"(X) = Q"G/PL.

Recall that in the above situation, we have a homotopy commutative diagram

S(X) ——= S"(X)

.

§ = FLU(X, ().

In the special case (X,9 X) = (D", S"~1), the Spivak bundle (x is the constant sheaf with value X="S. Since
X is simply connected, it follows that LY4(X, (x) is given by X""IL%(Z). We therefore have Q®°L"4(X, (x) =
Q"LY(Z), where L(Z) denotes the zeroth space of the spectrum LI(Z).

Taking n = 0, we obtain a map 0 : G/PL — L%(Z). With a little bit of effort, one can show that all
of the maps 6,, appearing above are induced by 6 by passing to n-fold loop spaces. We would like to use
the map 6 to obtain information about the homotopy type of G/PL. We will obtain this information by
combining two facts:

(a) If n > 5, then we have a homotopy pullback diagram

S(D") — Q"(G/PL)

-

x —— Q"LY(Z).
This is a special case of our main theorem.

(b) If n > 5, the structure space S(D™) is contractible.



Let us provide an argument for (b). Recall that the structure space S(D™) is given as the geometric
realization of a simplicial space S(D™),. Let Y, be the constant simplicial space which consists of a single
point in each degree. We claim that the map S(D™)s — Y, is a trivial Kan fibration. In other words, we
claim that for every integer k, the map S(D"); — S(D™)e(0 AF) is surjective on connected components.

When k = 0, this says that S(D™) is nonempty: this is obvious, since D™ is already a PL manifold. We
now give the proof when k& = 1; the proof of the general case is the same. Suppose we are given an element
of S(D™)e(0 Al), consisting of two contractible PL manifolds M and M’ having boundary S™~!. To lift
to a point of S(D™); we must write an h-cobordism from M to M’, trivial along S™~!. This is equivalent
showing that the manifold M []g.—» M’ bounds a contractible PL manifold of dimension n + 1. Since M
and M’ are contractible, M [[g.—: M’ is homotopy equivalent to a sphere S™. Since n > 5, the generalized
Poincare conjecture implies that M [[g.-1 M’ is PL homeomorphic to S™, which bounds the disk D™*!.

Remark 1. In fact, something much stronger is true: each of the spaces S(D™), is contractible. One can
prove this by combining the generalized Poincare conjecture with the Alexander trick.

Warning 2. In proving (b), it is important that we work in the PL category rather than the smooth category.
The smooth structure space of D™ is generally not contractible because of the existence of exotic spheres. We
can appreciate the importance of the PL condition by examining Smale’s proof of the generalized Poincare
conjecture. Let M be a manifold of dimension n which is homotopy equivalent to a sphere, and assume
that n > 6 (the case n = 5 requires additional effort). Choose two distinct points z,2’ € M, and let D
and D’ be disjoint small disks around x and 2/, respectively. Let M° be the manifold obtained by removing
the interiors of D and D’. The condition that M is homotopy equivalent to S™ guarantees that M° is an
h-cobordism from & D to & D'. The h-cobordism theorem then gives M° ~ S"~1 x [0,1]. If we work in
the PL category, we can recover M from M® by “collapsing” the two ends, thereby obtaining M ~ S™. In
the smooth category, this argument does not apply: given a manifold with a boundary sphere, there is no
canonical way to assign a smooth structure to the manifold obtained by the collapsing the sphere.

Combining observations (a) and (b), we conclude the following:

(¢) If n > 5, the homotopy fiber of the map Q"(0) : Q"G/PL — Q"L(Z) is contractible. In other words,
the map
WZG/PL — Wqu(Z)

is injective when i = 5, and bijective for i > 5.

In fact, we can do a little bit better. Since m5L7(Z) is trivial, the fact that 75sG/PL — wsL%(Z) is
injective implies that 75G/PL is trivial. It follows that °(6) is a homotopy equivalence.
Combining (c¢) with our calculation of the homotopy groups L4(Z), we obtain the following:

Corollary 3. Let n > 5. Then we have a canonical isomorphism

8Z if n = 4k

if n=4k+1

G/ PL ~ an +
Z/27Z ifn=4k+2
0 ifn = 4k + 3.

Let us now turn our attention to calculating the homotopy groups of G/PL in low degrees. We have
maps
Z x BO — Z x BPL — Pic(9),

giving rise to a fiber sequence of spaces

PL/O - G/O — G/PL.



Smoothing theory gives an identification of m, PL/O with the collection of smooth structures on S™ (com-
patible with the standard PL structure on S™. It follows that the map

7,G/O — 7, G/PL

is bijective provided that the PL spheres S™ and S”~! admit unique smoothings. This is true for n < 6.
We can use this observation to compute 7,,G/PL for small values of n, since the homotopy groups of
Pic(S) and Z x BO are known. Let us summarize them in the following table:

Z x BO Pic(S)
5 0 0
T4 Z 7./247
s 0 Z/2Z
T 7/27Z Z/27
m 7/27Z Z/27
) Z Z.

The map from the groups on the left to the groups on the right is given by the J-homomorphism. This map
is an isomorphism on 7 and me and a surjection on 74. We therefore obtain

247 ifn=4

0 ifn=3
™ G/PL=<Z/2Z ifn=2
0 ifn=1
0 if n =0.

The map 7, (G/PL) — m,L9(Z) is obviously an isomorphism if n = 1 or n = 3, since both sides vanish.
Let us show that it is an isomorphism when n = 2. Let M be an oriented surface equipped with a spin
structure (or “theta characteristic”). Using the spin structure, we can trivialize the tangent bundle of M
outside of a small disk D C M, thereby obtaining a degree one normal map f : M — D/dD ~ S?
which in turn represents an element in woS™(5?) ~ 7r0(G/PL)S2 ~ 75(G/PL). The choice of spin structure
determines a quadratic refinement g of the intersection form on H*(M;Z/2Z), making H'(M; Z/2Z) into a
nondegenerate quadratic space over the finite field Fy = Z/2Z. To prove that the map

Z/2Z ~ 15(G/PL) — 1 L9(Z) ~ myLU(Fy) ~ W (F,) ~ Z/2Z

is nontrivial, it suffices to show that we can choose M (and its spin structure) so that the quadratic space
(H'(M;F3),q) has Arf invariant 1. This is always possible. The collection of spin structures on M is a



torsor for H'(M;F5). If ¢ has Arf invariant 0, then we can modify its Arf invariant by modifying the spin
structure by an element v € H'(M; Fy) satisfying ¢(v) = 1 (which always exists provided that the genus of
M is positive).
Let us now compute the map
m4G/PL — 7, LY(Z) = 8Z

determined by 6. Choose a map u : S* — G/O, representing a generator of [u] € 74G/O ~ 74G/PL. Then
u determines a point of the structure space S"(S*), corresponding to a PL (in fact smooth) 4-manifold M
equipped with a degree one normal map f : M — S*. By construction, the image of [u] in LI(Z) ~ 8Z is
the difference of signatures oj; — og4. Since the signature of S* vanishes, this is just the signature of M.
The Hirzebruch signature formula shows that this is given by M(?)M[M ].

Let v : S* — BO represent a generator [v] € 74 BO ~ Z. Then the composite map S* % G/O — BO
represents 24[v]. Let us regard p; as an element in the integral cohomology ring H4(BO; Z). Since f has
degree 1, we can identify WM] with —24v*(p1) € H*(S% Z) ~ Z (the sign comes from our convention
that the map w classifies the normal bundle, rather than the tangent bundle). It follows that the image of
[u] is given by —8v*(p1) € 8Z.

To compute v*(p;), let us identify S* with the quaternionic projective space HP', Then we can take
v: HP! — BO to classify the real vector bundle & underlying quaternionic line bundle O(1). In particular,
€ admits the structure of a complex vector bundle , so that

P1(€) = —2(ERC) = —c2(EDE) = —c2(€) — c1(E)e1(E) — 2(E) = —2¢2(E) = —2¢(€),

where e denotes the Euler class of €. Since £ admits a section having exactly one simple zero, we obtain
v*(p1) = —2.

Corollary 4. The map 0 : (G/PL) — L%(Z) induces an isomorphism m,(G/PL) — 7, LY(Z) for alln # 0,4.
The map 74(G/PL) — m4L(Z) s injective, and its image is the subgroup 16Z C 8Z ~ w4 L9(Z).

Remark 5. The failure of the map m4(G/PL) — m4L9(Z) to be surjective is a consequence of Rohlin’s
theorem: a smooth, compact, spin 4-manifold M has signature divisible by 16.

We can regard Corollary ??7 as a calculation of the homotopy groups of the homotopy fiber of the map
. Since these homotopy groups are concentrated in a single degree, the structure of the homotopy fiber can
be explicitly determined:

Corollary 6. We have a homotopy fiber sequence K(Z/2Z,3) — G/PL — L4(Z)

It is possibly to carry out many of the constructions of this course in the setting of topological manifolds
(rather than PL manifolds). Stable topological bundles are classified by a space Z x BTOP fitting into a
diagram

Z x BPL — Z x BTOP — Pic(S).

There is an associated fiber sequence Top /PL — G/PL — G/Top. The map G/PL — L9(Z) factors
through G/ Top, and G/ Top is homotopy equivalent to the identity component of L?(Z). Assuming this,
Corollary 6 gives a homotopy equivalence Top /PL ~ K(Z/2Z,3). We therefore have a fiber sequence of
infinite loop spaces

Z x BPL — Z x BTOP % K(Z/2Z,4).

The map ¢ classifies the Kirby-Siebenmann obstruction. If M is a topological manifold, its stable (topological)
tangent bundle is classified by a map M — Z x BTOP. Composing this map with ¢, we get a map
M — K(Z/2Z,4), classified by a cohomology class v € H*(M;Z/2Z). This class vanishes if and only if
the stable tangent bundle of M admits a PL reduction. In particular, v vanishes whenever M admits a PL
structure. One can show that the converse holds if the dimension of M is different from 4.



