(Geometric) Surgery Below the Middle Dimension (Lecture 34)

April 20, 2011

In the last lecture, we reduced the main theorem of this course to the following assertion:

Theorem 1. Let X be a Poincare space of dimension $n \geq 5$, let ζ be a stable PL bundle on X, and let $f: M \to X$ be a degree one normal map, where M is a compact PL manifold. Assume that M and X are connected and that f induces an isomorphism $\pi_1 M \simeq \pi_1 X \simeq G$, so that σ_f^{vq} can be represented by a Poincare object (V,q), where $V \in \mathrm{LMod}_{\mathbf{Z}[G]}$ satisfies $C_*(\widetilde{M};\mathbf{Z}) \simeq C_*(\widetilde{X};\mathbf{Z}) \oplus \Sigma^n V$ (here \widetilde{M} and \widetilde{X} denote universal covers of M and X, respectively).

Assume that f is p-connected, that we are given a map $u : \Sigma^{p-n}\mathbf{Z}[G] \to V$ a nullhomotopy of $q|\Sigma^{p-n}\mathbf{Z}[G]$, so that (algebraic) surgery along u determines a bordism bordism from (V,q) to another Poincare object (V',q'). Then this (algebraic) bordism can be obtained by performing (geometric) surgery with respect to a normal surgery datum $\alpha : S^p \times D^{q+1} \hookrightarrow M$.

In this lecture, we will treat the "easy" case of Theorem 1, where p is strictly smaller than $\frac{n}{2}$. Let $f: M \to X$ be as in Theorem 1. Assume that f is p-connected, and choose any map $e: \Sigma^p \mathbf{Z}[G] \to \Sigma^n V$, classified by an element of $\pi_{p-n}V \simeq \ker(\mathrm{H}_p(\widetilde{M};\mathbf{Z}) \to \mathrm{H}_p(\widetilde{X};\mathbf{Z})) = \mathrm{H}_{p+1}(\widetilde{X},\widetilde{M};\mathbf{Z})$. Since f is p-connected, the Hurewicz theorem allows us to identify this group with the relative homotopy group $\pi_{p+1}(\widetilde{X},\widetilde{M})$: that is, with $\pi_p F$, where F denotes the homotopy fiber of the map $f: \widetilde{M} \to \widetilde{X}$ (note that F can also be identified with the homotopy fiber of the map $f: M \to X$. Consequently, e determines a map $\alpha_0: S^p \to M$, together with a nullhomotopy of the composite map $S^p \to M \to X$.

Since $p < \frac{n}{2}$, we can assume (modifying the map \overline{e} by a homotopy if necessary) that α_0 is an embedding. Note that we have an equivalence of stable PL bundles

$$\alpha_0^*(-T_M) \simeq \overline{e}^* f^* \zeta.$$

Since the composition $f \circ \alpha_0$ is nullhomotopic, we can trivialize the (stable) tangent bundle of M in a neighborhood of the image of α_0 . It follows from smoothing theory that M admits a smooth structure in a neighborhood U of $\alpha_0(S^p)$, and this smooth structure admits a framing. Modifying α_0 by a homotopy if necessary, we may assume that it is a smooth embedding from S^p into U. This embedding has a normal bundle, which we will denote by \mathcal{E} . Since U and S^p are framed, the bundle \mathcal{E} is framed: that is, it is stably trivial. In order to extend α_0 to a normal surgery datum $\alpha: S^p \times D^{n-p} \hookrightarrow M$, we need to promote this stable trivialization of \mathcal{E} to an actual trivialization of \mathcal{E} .

The bundle \mathcal{E} is classified by a map $\chi: S^p \to \mathrm{BO}(n-p)$. Our stable framing gives a nullhomotopy of the composite map $S^p \overset{\chi}{\to} \mathrm{BO}(n-p) \to \mathrm{BO}(N)$ for N large. We wish to lift this to a nullhomotopy of the map χ itself. We can carry out this lifting in stages. Suppose that we have a map $\psi: S^p \to \mathrm{BO}(k)$ and a trivialization of the composite map $S^p \to \mathrm{BO}(k) \to \mathrm{BO}(k+1)$. This nullhomotopy determines a factorization of ψ through the homotopy fiber of the map $\mathrm{BO}(k) \to \mathrm{BO}(k+1)$, which is homotopy equivalent to the quotient $O(k+1)/O(k) \simeq S^k$. If p < k, such a map is automatically nullhomotopic, and therefore the lifting is possible. This analysis applies in our case of interest: for any $k \ge n-p$, we have $p \le k$, since we have assumed that 2p < n.

The above argument shows that every map $e: \Sigma^p \mathbf{Z}[G] \to \Sigma^n V$ can be lifted to a map $\alpha_0: S^p \to M$ which extends to a normal surgery datum $\alpha: S^p \times D^{n-p} \hookrightarrow M$. However, this is not quite sufficient to

prove Theorem 1. A normal surgery datum determines both a map $e: \Sigma^p \mathbf{Z}[G] \to \Sigma^n V$ and a nullhomotopy of $q|\Sigma^{p-n}\mathbf{Z}[G]$. In the situation of Theorem 1, there is generally no guarantee that this coincides with the nullhomotopy we are interested in.

Note that $q|\Sigma^{p-n}\mathbf{Z}[G]$ can be identified with a point in the 0th space of the spectrum

$$\Sigma^{-n}Q^{q}(\Sigma^{p-n}\mathbf{Z}[G]) = \Sigma^{-n}(\Sigma^{2n-2p}\mathbf{Z}[G])_{h\Sigma_{2}} = \Sigma^{n-2p}(\mathbf{Z}[G])_{h\Sigma_{2}},$$

where on the right hand side the permutation group acts on $\mathbf{Z}[G]$ by means of the involution of the previous lecture together with the sign $(-1)^{n-p}$. Since n > 2p, this spectrum is always connected. If n > 2p + 1, this spectrum is simply connected: it follows that a nullhomotopy of $q|\Sigma^{p-n}\mathbf{Z}[G]$ is uniquely determined, up to homotopy. This completes the proof of Theorem 1 in this case.

If n=2p+1, we need to work a little bit harder. Let T be the set of homotopy classes of trivializations of $q|\Sigma^{p-n}\mathbf{Z}[G]$. Then T is a torsor for the group $\pi_1\Sigma^{-n}Q^q(\Sigma^{p-n}\mathbf{Z}[G])\simeq \mathbf{Z}[G]_{\Sigma_2}$, where Σ_2 acts on the group $\mathbf{Z}[G]$ as indicated above. In particular, there is a transitive action of the group ring $\mathbf{Z}[G]$ (regarded as an abelian group under addition) on the set T. If $\alpha:S^p\times D^{n-p}\hookrightarrow M$ is a normal surgery datum whose restriction α_0 to $S^p\times\{0\}$ represents the homology class $e\in\pi_{p-n}V$, then α determines a nullhomotopy of $q|\Sigma^{p-n}\mathbf{Z}[G]$. Let us denote the corresponding element of T by $t(\alpha)$. To prove Theorem 1, it will suffice to show that for any element $x\in\mathbf{Z}[G]$, we can find another normal surgery datum α' (still representing the homology class e) such that $t(\alpha')=x+t(\alpha)$. Since $\mathbf{Z}[G]$ is generated as abelian group by the elements of G, we may assume that $x=\pm g$, for some element $g\in G$. In this case, we assert without proof that there is a specific geometric construction for obtaining the surgery datum α' (it is determined by writing an isotopy through immersions from α_0 to another embedding α'_0). (Some pictures are provided in class; we will not reproduce them here.)