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Recall that our goal is to prove the following:

Theorem 1. Let X be a Poincare pair of dimension n > 5, ( a stable PL bundle on X, and f: M — X
a degree one normal map, where M is a PL manifold. Let a;q € Q®LY(X,(x) be the relative signature
of f, and suppose we are given a path p from a;q to the base point of Q*LY(X,(x). (We can identify
such a path with a Lagrangian in the Poincare object representing O’;q, which is well-defined up to bordism).
Then there exists a A'-family of degree one normal maps F : B — X x A', where B is a bordism from
M = F~YX x {0}) to a PL manifold N = F~Y(X x {1}) such that F induces a homotopy equivalence
f'+ N — X. Moreover, we can arrange that F determines a path from qu to O'f, = 0 which is homotopic
to p.

In the last lecture, we introduced the technique of surgery as a method of producing normal bordisms
from M to other PL manifolds (equipped with degree one normal maps to X ). Moreover, we saw how to use
the method of surgery to reduce Theorem 1 to the special case where f : M — X induces an equivalence of
fundamental groupoids. We may further assume without loss of generality that X (and therefore also M )
are connected. Let us fix a base point of X, allowing us to define a fundamental group G = m X. Let X
denote the universal cover of X and let M = M x x X be the corresponding universal cover of M, so that
G acts on X and M by deck transformations.

The spherical fibration (x is classified by a map X — Pic(S), which induces a map

G = 7T1X — T PIC(S) = 7o GLl(S) = GLl(ﬂ'Os) = GLl(Z) = {:l:].},

which we will denote by e. This homomorphism vanishes if and only if (x is orientable with respect to
ordinary homology (that is, if and only if {(x A Z is a constant sheaf). Let Z[m; X]| = Z[G] be the group
algebra of G. Then Z[G] admits an involution, given by g — e(g)g~!. Let Q*, Q1 : (LModg[’G])op — Sp be
the quadratic functors given by

QY(M) = Morzg)-zic)(M AM,Z[G)ps,  Q°(M) = Morgg-zc)(M A M, Z[G))">.

Using the -7 theorem, we can identify QLY (X, (x) with Q*+t"LY(Z[G]) ~ (LModep[G Q"Q9).
Let us attempt to describe the invariant a;q more explicitly in these terms. The visible symmetric
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signatures o%’ and o}j determine Poincare objects of (LMod ,2"Q%). Unwinding the definitions, we see

VAtER
that these objects are given concretely by the duals of the Z[G]-modules s given by C.(X;Z) and C, (M;Z)
(note that each of these is a finitely presented Z[G]-module, since X and M admit cell decompositions Wthh
are invariant under G, whose cells break up into finitely many free G-orbits). Using Poincare duality, we

see that both of these objects are self-dual up to a shift; more precisely, the relevant Poincare objects are
represented by X7"C,(X;Z) and X" "C, (M Z).

Remark 2. Using Poincare duality on the noncompact manifold M , we can identify Z_"C*(M ;Z) with
C*(M;Z), where the subscript indicates that we take compactly supported cochains. This identification



is not quite G-equivariant, since the action of G on M may not preserve orientations (the failure of the
G-action to preserve orientations is codified by the homomorphism ¢ : G — {£1}). Informally speaking, the
symmetric bilinear form on C¥(M;Z) is easy to describe: it carries a pair of compactly supported Z-valued

cochains v and v to the sum
> (wUgv)[M] € Z[G).
geG

Here the condition that v and v both have compact support guarantees that the sum on the left hand side
is indeed finite.

We have seen that the degree one map f : M — X determines a homotopy equivalence
STCL(M;Z) ~ V & X "CL(X; Z)

for some (finitely presented) Z[G]-module spectrum V. Moreover, there is a point ¢ € ¥~ "Q%(V') such that
(V,q) is a Poincare object of LModep[G]7 representing the relative signature a;q.

Now suppose we are given a normal surgery datum in M, giving in particular a codimension zero embed-
ding « : SP x D?t! < M. This determines a normal bordism from M to another PL manifold N equipped
with a degree one normal map f’ : N — X, hence a bordism between the Poincare objects representing
o;? and o/, The latter bordism is given by an algebraic surgery along some map of Z[G]-module spectra

u: X "K — V. Let B(a) denote the trace of the surgery along « and let §E_/a) = B(a) xx X. Then cofib(u)
is the Z[G]-module underlying relative signature associated to B(a) (as a normal bordism); that is, we have

—

S"CL(X; Z) @ cofib(u) ~ £7"Cy(B(a): Z).

It follows that 7K ~ fib(V — cofib(w)) ~ fib(X~"C,(M; Z) — S"C,(B(a); Z). We have a homotopy
pushout diagram of spaces
SP s pprtl

L

M —— B(«a)

which lifts to a homotopy pushout diagram of G-spaces

SP x G —— DPtl x @

L

—

M —— B(a).

It follows that K is equivalent to the homotopy fiber of the map of the map C.(S? xG; Z) — C.(DPT' xG; Z),
which is homotopy equivalent to XPZ[G]. The map u : X~ K — V is classified up to homotopy by an element

of m,_,V, which we can regard as a direct summand of m,C. (M, Z) ~ HP(M; Z). The above calculation

shows that this homology class if the Hurewicz image of the class in m,M determined by a choice of lift of
the map o : SP — M determined by the surgery datum o.

Remark 3. In the above discussion, the module K ~ ¥PZ[G] is determined by the choice of dimension
p, and the map u : ¥7"K — V is determined by the homotopy class of the map ag : SP — M (and a
nullhomotopy h of the composite map SP — M — X). To perform algebraic surgery on the Poincare object
(V,q), we need more: namely, a nullhomotopy of the restriction ¢|X~"K. This choice of nullhomotopy
depends on additional geometric data: the fact that ag is an embedding, and a choice of trivial normal
bundle to oy compatible with h.



The key step in the proof of Theorem 1 is the following, which asserts that there is a sufficient supply of
normal surgery data:

Theorem 4. Let f : M — X be as in Theorem 1. Assume that M and X are connected and that f induces an
isomorphism miM ~ m X ~ G, and let (V,q) be defined as above. Assume that f is p-connected, that we are
given a map u : XP""Z[G] — V a nullhomotopy of q|EP~"Z[G], so that (algebraic) surgery along u determines
a bordism bordism from (V,q) to another Poincare object (V' ,q'). Then this (algebraic) bordism can be
obtained by performing (geometric) surgery with respect to a normal surgery datum o : SP x DIt < M.

Remark 5. In the situation of Theorem 4, the relevant surgery does not change the fundamental group of
M. the relevant p-surgeries do not change the fundamental group of M. Suppose we are given an embedding
a: 8P x DIt < M (where p+ g+ 1 = n). The manifold M° obtained from M by removing the interior
of the image of « is homotopy equivalent to M — SP, which differs from M in codimension ¢ +1 =n — p.
General position arguments show that this procedure does not change the fundamental group of M provided
that n — p > 3. This condition is clearly satisfied when n > 5 and p < §. Surgery along a produces a new
manifold M’, which is obtained as a pushout

M° ]_[ DPtl x §a,
Sr xS

Since ¢ = n —p — 1 > 2, the sphere S? is simply connected. It follows from van Kampen’s theorem
m M° — w M’ is surjective. Since the composite map m M° — m M’ — m X is injective, we deduce that
1 M/ ~ T Me.

Our goal for the remainder of this lecture is to explain how to deduce Theorem 1 from Theorem 4. To
this end, let us suppose that we are given an arbitrary Lagrangian in (V,q), given by a map L — V and a
nullhomotopy of g|L. We would like to show that the Lagrangian L can be obtained by a sequence of normal
surgeries on the PL manifold M. Before we can make this assertion, we may need to modify the choice of
Lagrangian L. Recall that the data of V together with the Lagrangian L can be identified with a quadratic
object (W, q') of (LModep[G], Y "71Q9), where X" ~'D(W) ~ L and ¢ induces amap W — X" 1D(W) ~ L
having cofiber V. Before proving Theorem 1, we are free to replace L by a cobordant Lagrangian by doing
surgery on the quadratic object W. We may therefore assume that W has been simplified by means of
(algebraic) surgery below the middle dimension. Write n = 2k or n = 2k + 1. We may assume that W
(—k — 1)-connective, so that X"L ~ =~'D(W) has projective amplitude < k. Note in particular that LW
is connected, and X"V is connected (since HO(M; Z) ~ Hy(X;Z) ~ Z), so that "L is connected.

We now observe that the following conditions are equivalent for an integer 1 < p < 5:

(a) The map f: M — X is p-connected.
(b) The map f: M — X is p-connected.
(¢) The spectrum X"V is p-connective.
(d) The spectrum X" L is p-connective.

The equivalence of (a) and (b) follows from the fact that f and ]? have the same homotopy fibers. The

equivalence of (b) and (c¢) follows from the homotopy equivalence C*(M :Z) ~ C.(X;Z) ® ="V. To prove
that (¢) = (d), we note that there is a fiber sequence

"L = ¥X"V — DL.

The homotopy groups m;D(L) ~ ;"1 (W) vanish for i < 5, so that m¥" L — m; X"V is bijective for ¢ < 3.
This proves (¢) < (d).

Suppose that there exists an integer p < k£ — 1 such that 7,X"L # 0. Choose p as small as possible,
so that "L is p-connective. Any choice of element in 7,5"L = m,_, L determines a map ¥P~"Z[G] — L.



Composing with the map L — V, we obtain a map v : ¥~ "Z[G] — V and a nullhomotopy of ¢|XP~"Z[G].
According to Theorem 4, we can lift this data to normal surgery datum « : SPx D"~ 9 < M. Let f': M’ — X
be the normal map obtained by surgery along a, and let (V’,¢’) be the corresponding representative for U;?.
Then (V’,¢’) is obtained from (algebraic) surgery on V along u. It follows that L determines a Lagrangian
L’ in V', where L' is the cofiber of the map ¥P~"Z[G] — L. Since L is finitely presented as a Z[G]-module
spectrum, its bottom homotopy group is finitely generated as a discrete Z[G]-module. Consequently, after
finitely many application of this procedure, we can reduce to the case where m,X" L ~ 0: that is, where X" L
is p + 1-connective.

Applying the above argument finitely many times, we may reduce to the case where m,X"L ~ 7,_, L
vanishes for p < k — 1. Consequently, we see that XL is (k — 1)-connective and has projective amplitude
< k. Since L is finitely presented, we can argue as in the proof of the 7w-7m theorem to deduce that there is a
fiber sequence

(SF1zZ[G)™ S BrL - (SRZ[G)™ .

for some integers m and m’. If m > 0, then the restriction of ¢ to a summand of (X¥~1Z[G])™ yields a
map XY "Z[G] — L, where p = k — 1. We therefore obtain a composite map X?""Z[G] - L — V and a
nullhomotopy of ¢|~P~"Z[G]. Invoking Theorem 4, we can lift this to a normal surgery datum. Performing
surgery along this datum (and replacing M by the result), we can reduce to the case where there is a fiber
sequence

(sFlzie)mt & wrL — (sSRZe)™ .

Applying this procedure finitely many times, we reduce to the case m = 0: that is, X" L ~ (EkZ[G])m'.
If m’ > 0, we can restrict the map L — V to a summand of L to obtain a map Y*"Z[G] — V and a
nullhomotopy of ¢|¥*~"Z[G]. Invoking Theorem 4 again, we can perform surgery to reduce to the case
YL~ (SFZ[G])™ 1. Applying this procedure finitely many times, we reduce to the case L ~ 0. The fiber
sequence

L—-V —-X"DL

shows that V' ~ 0, so that the map f R M — X induces an isomorphism on homology. Since M and X
are simply connected, we deduce that f is a homotopy equivalence, so that f: M — X is also a homotopy
equivalence. This completes the proof of Theorem 1 (modulo Theorem 4).



