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Recall that our goal is to prove the following:

Theorem 1. Let X be a Poincare pair of dimension n ≥ 5, ζ a stable PL bundle on X, and f : M → X
a degree one normal map, where M is a PL manifold. Let σvqf ∈ Ω∞Lvq(X, ζX) be the relative signature

of f , and suppose we are given a path p from σvqf to the base point of Ω∞Lvq(X, ζX). (We can identify

such a path with a Lagrangian in the Poincare object representing σvqf , which is well-defined up to bordism).

Then there exists a ∆1-family of degree one normal maps F : B → X × ∆1, where B is a bordism from
M = F−1(X × {0}) to a PL manifold N = F−1(X × {1}) such that F induces a homotopy equivalence
f ′ : N → X. Moreover, we can arrange that F determines a path from σvqf to σvqf ′ = 0 which is homotopic
to p.

In the last lecture, we introduced the technique of surgery as a method of producing normal bordisms
from M to other PL manifolds (equipped with degree one normal maps to X). Moreover, we saw how to use
the method of surgery to reduce Theorem 1 to the special case where f : M → X induces an equivalence of
fundamental groupoids. We may further assume without loss of generality that X (and therefore also M)

are connected. Let us fix a base point of X, allowing us to define a fundamental group G = π1X. Let X̃
denote the universal cover of X and let M̃ = M ×X X̃ be the corresponding universal cover of M , so that
G acts on X̃ and M̃ by deck transformations.

The spherical fibration ζX is classified by a map X → Pic(S), which induces a map

G = π1X → π1 Pic(S) = π0 GL1(S) = GL1(π0S) = GL1(Z) = {±1},

which we will denote by ε. This homomorphism vanishes if and only if ζX is orientable with respect to
ordinary homology (that is, if and only if ζX ∧ Z is a constant sheaf). Let Z[π1X] = Z[G] be the group

algebra of G. Then Z[G] admits an involution, given by g 7→ ε(g)g−1. Let Qs, Qq : (LModfpZ[G])
op → Sp be

the quadratic functors given by

Qq(M) = MorZ[G]−Z[G](M ∧M,Z[G])hΣ2
Qs(M) = MorZ[G]−Z[G](M ∧M,Z[G])hΣ2 .

Using the π-π theorem, we can identify Ω∞Lvq(X, ζX) with Ω∞+nLq(Z[G]) ' L(LModfp
Z[G],Ω

nQq).

Let us attempt to describe the invariant σvqf more explicitly in these terms. The visible symmetric

signatures σvsX and σvsM determine Poincare objects of (LModfp
Z[G],Ω

nQs). Unwinding the definitions, we see

that these objects are given concretely by the duals of the Z[G]-modules given by C∗(X̃;Z) and C∗(M̃ ;Z)

(note that each of these is a finitely presented Z[G]-module, since X̃ and M̃ admit cell decompositions which
are invariant under G, whose cells break up into finitely many free G-orbits). Using Poincare duality, we
see that both of these objects are self-dual up to a shift; more precisely, the relevant Poincare objects are
represented by Σ−nC∗(X̃;Z) and Σ−nC∗(M̃ ;Z).

Remark 2. Using Poincare duality on the noncompact manifold M̃ , we can identify Σ−nC∗(M̃ ;Z) with

C∗c (M̃ ;Z), where the subscript indicates that we take compactly supported cochains. This identification
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is not quite G-equivariant, since the action of G on M̃ may not preserve orientations (the failure of the
G-action to preserve orientations is codified by the homomorphism ε : G→ {±1}). Informally speaking, the

symmetric bilinear form on C∗c (M̃ ;Z) is easy to describe: it carries a pair of compactly supported Z-valued
cochains u and v to the sum ∑

g∈G
(u ∪ g(v))[M ] ∈ Z[G].

Here the condition that u and v both have compact support guarantees that the sum on the left hand side
is indeed finite.

We have seen that the degree one map f : M → X determines a homotopy equivalence

Σ−nC∗(M̃ ;Z) ' V ⊕ Σ−nC∗(X̃;Z)

for some (finitely presented) Z[G]-module spectrum V . Moreover, there is a point q ∈ Σ−nQq(V ) such that

(V, q) is a Poincare object of LModfp
Z[G], representing the relative signature σvqf .

Now suppose we are given a normal surgery datum in M , giving in particular a codimension zero embed-
ding α : Sp ×Dq+1 ↪→M . This determines a normal bordism from M to another PL manifold N equipped
with a degree one normal map f ′ : N → X, hence a bordism between the Poincare objects representing
σvqf and σvqf ′ . The latter bordism is given by an algebraic surgery along some map of Z[G]-module spectra

u : Σ−nK → V . Let B(α) denote the trace of the surgery along α and let B̃(α) = B(α)×X X̃. Then cofib(u)
is the Z[G]-module underlying relative signature associated to B(α) (as a normal bordism); that is, we have

Σ−nC∗(X̃;Z)⊕ cofib(u) ' Σ−nC∗(B̃(α);Z).

It follows that Σ−nK ' fib(V → cofib(u)) ' fib(Σ−nC∗(M̃ ;Z) → Σ−nC∗(B̃(α);Z). We have a homotopy
pushout diagram of spaces

Sp

��

// Dp+1

��
M // B(α)

which lifts to a homotopy pushout diagram of G-spaces

Sp ×G

��

// Dp+1 ×G

��

M̃ // B̃(α).

It follows that K is equivalent to the homotopy fiber of the map of the map C∗(S
p×G;Z)→ C∗(D

p+1×G;Z),
which is homotopy equivalent to ΣpZ[G]. The map u : Σ−nK → V is classified up to homotopy by an element

of πp−nV , which we can regard as a direct summand of πpC∗(M̃ ;Z) ' Hp(M̃ ;Z). The above calculation

shows that this homology class if the Hurewicz image of the class in πpM̃ determined by a choice of lift of
the map α0 : Sp →M determined by the surgery datum α.

Remark 3. In the above discussion, the module K ' ΣpZ[G] is determined by the choice of dimension
p, and the map u : Σ−nK → V is determined by the homotopy class of the map α0 : Sp → M (and a
nullhomotopy h of the composite map Sp →M → X). To perform algebraic surgery on the Poincare object
(V, q), we need more: namely, a nullhomotopy of the restriction q|Σ−nK. This choice of nullhomotopy
depends on additional geometric data: the fact that α0 is an embedding, and a choice of trivial normal
bundle to α0 compatible with h.
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The key step in the proof of Theorem 1 is the following, which asserts that there is a sufficient supply of
normal surgery data:

Theorem 4. Let f : M → X be as in Theorem 1. Assume that M and X are connected and that f induces an
isomorphism π1M ' π1X ' G, and let (V, q) be defined as above. Assume that f is p-connected, that we are
given a map u : Σp−nZ[G]→ V a nullhomotopy of q|Σp−nZ[G], so that (algebraic) surgery along u determines
a bordism bordism from (V, q) to another Poincare object (V ′, q′). Then this (algebraic) bordism can be
obtained by performing (geometric) surgery with respect to a normal surgery datum α : Sp ×Dq+1 ↪→M .

Remark 5. In the situation of Theorem 4, the relevant surgery does not change the fundamental group of
M . the relevant p-surgeries do not change the fundamental group of M . Suppose we are given an embedding
α : Sp ×Dq+1 ↪→ M (where p + q + 1 = n). The manifold Mo obtained from M by removing the interior
of the image of α is homotopy equivalent to M − Sp, which differs from M in codimension q + 1 = n − p.
General position arguments show that this procedure does not change the fundamental group of M provided
that n− p ≥ 3. This condition is clearly satisfied when n ≥ 5 and p ≤ n

2 . Surgery along α produces a new
manifold M ′, which is obtained as a pushout

Mo
∐

Sp×Sq

Dp+1 × Sq.

Since q = n − p − 1 ≥ 2, the sphere Sq is simply connected. It follows from van Kampen’s theorem
π1M

o → π1M
′ is surjective. Since the composite map π1M

o → π1M
′ → π1X is injective, we deduce that

π1M
′ ' π1M

o.

Our goal for the remainder of this lecture is to explain how to deduce Theorem 1 from Theorem 4. To
this end, let us suppose that we are given an arbitrary Lagrangian in (V, q), given by a map L → V and a
nullhomotopy of q|L. We would like to show that the Lagrangian L can be obtained by a sequence of normal
surgeries on the PL manifold M . Before we can make this assertion, we may need to modify the choice of
Lagrangian L. Recall that the data of V together with the Lagrangian L can be identified with a quadratic
object (W, q′) of (LModfp

Z[G],Σ
−n−1Qq), where Σ−n−1D(W ) ' L and q induces a map W → Σ−n−1D(W ) ' L

having cofiber V . Before proving Theorem 1, we are free to replace L by a cobordant Lagrangian by doing
surgery on the quadratic object W . We may therefore assume that W has been simplified by means of
(algebraic) surgery below the middle dimension. Write n = 2k or n = 2k + 1. We may assume that W
(−k − 1)-connective, so that ΣnL ' Σ−1D(W ) has projective amplitude ≤ k. Note in particular that ΣnW

is connected, and ΣnV is connected (since H0(M̃ ;Z) ' H0(X̃;Z) ' Z), so that ΣnL is connected.
We now observe that the following conditions are equivalent for an integer 1 ≤ p ≤ n

2 :

(a) The map f : M → X is p-connected.

(b) The map f̃ : M̃ → X̃ is p-connected.

(c) The spectrum ΣnV is p-connective.

(d) The spectrum ΣnL is p-connective.

The equivalence of (a) and (b) follows from the fact that f and f̃ have the same homotopy fibers. The

equivalence of (b) and (c) follows from the homotopy equivalence C∗(M̃ ;Z) ' C∗(X̃;Z) ⊕ ΣnV . To prove
that (c)⇒ (d), we note that there is a fiber sequence

ΣnL→ ΣnV → DL.

The homotopy groups πiD(L) ' πiΣn+1(W ) vanish for i < n
2 , so that πiΣ

nL→ πiΣ
nV is bijective for i < n

2 .
This proves (c)⇔ (d).

Suppose that there exists an integer p < k − 1 such that πpΣ
nL 6= 0. Choose p as small as possible,

so that ΣnL is p-connective. Any choice of element in πpΣ
nL = πp−nL determines a map Σp−nZ[G] → L.
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Composing with the map L→ V , we obtain a map u : Σp−nZ[G]→ V and a nullhomotopy of q|Σp−nZ[G].
According to Theorem 4, we can lift this data to normal surgery datum α : Sp×Dn−q ↪→M . Let f ′ : M ′ → X
be the normal map obtained by surgery along α, and let (V ′, q′) be the corresponding representative for σvqf ′ .
Then (V ′, q′) is obtained from (algebraic) surgery on V along u. It follows that L determines a Lagrangian
L′ in V ′, where L′ is the cofiber of the map Σp−nZ[G]→ L. Since L is finitely presented as a Z[G]-module
spectrum, its bottom homotopy group is finitely generated as a discrete Z[G]-module. Consequently, after
finitely many application of this procedure, we can reduce to the case where πpΣ

nL ' 0: that is, where ΣnL
is p+ 1-connective.

Applying the above argument finitely many times, we may reduce to the case where πpΣ
nL ' πp−nL

vanishes for p < k − 1. Consequently, we see that ΣnL is (k − 1)-connective and has projective amplitude
≤ k. Since L is finitely presented, we can argue as in the proof of the π-π theorem to deduce that there is a
fiber sequence

(Σk−1Z[G])m
φ→ ΣnL→ (ΣkZ[G])m

′
.

for some integers m and m′. If m > 0, then the restriction of φ to a summand of (Σk−1Z[G])m yields a
map Σp−nZ[G] → L, where p = k − 1. We therefore obtain a composite map Σp−nZ[G] → L → V and a
nullhomotopy of q|Σp−nZ[G]. Invoking Theorem 4, we can lift this to a normal surgery datum. Performing
surgery along this datum (and replacing M by the result), we can reduce to the case where there is a fiber
sequence

(Σk−1Z[G])m−1 φ→ ΣnL→ (ΣkZ[G])m
′
.

Applying this procedure finitely many times, we reduce to the case m = 0: that is, ΣnL ' (ΣkZ[G])m
′
.

If m′ > 0, we can restrict the map L → V to a summand of L to obtain a map Σk−nZ[G] → V and a
nullhomotopy of q|Σk−nZ[G]. Invoking Theorem 4 again, we can perform surgery to reduce to the case
ΣnL ' (ΣkZ[G])m

′−1. Applying this procedure finitely many times, we reduce to the case L ' 0. The fiber
sequence

L→ V → Σ−nDL

shows that V ' 0, so that the map f̃ : M̃ → X̃ induces an isomorphism on homology. Since M̃ and X̃
are simply connected, we deduce that f̃ is a homotopy equivalence, so that f : M → X is also a homotopy
equivalence. This completes the proof of Theorem 1 (modulo Theorem 4).
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