Surgery (Lecture 32)

April 14, 2011

Our goal today is to begin the proof of the following:
Theorem 1. Let X be a Poincare pair of dimension $n \geq 5$, ζ a stable $P L$ bundle on X, and $f: M \rightarrow X$ a degree one normal map, where M is a PL manifold. Let $\sigma_{f}^{v q} \in \Omega^{\infty} \mathbb{L}^{v q}\left(X, \zeta_{X}\right)$ be the relative signature of f, and suppose we are given a path p from $\sigma_{f}^{v q}$ to the base point of $\Omega^{\infty} \mathbb{L}^{v q}\left(X, \zeta_{X}\right)$. (We can identify such a path with a Lagrangian in the Poincare object representing $\sigma_{f}^{v q}$, which is well-defined up to bordism). Then there exists a Δ^{1}-family of degree one normal maps $F: B \rightarrow X \times \Delta^{1}$, where B is a bordism from $M=F^{-1}(X \times\{0\})$ to a $P L$ manifold $N=F^{-1}(X \times\{1\})$ such that F induces a homotopy equivalence $f^{\prime}: N \rightarrow X$. Moreover, we can arrange that F determines a path from $\sigma_{f}^{v q}$ to $\sigma_{f^{\prime}}^{v q}=0$ which is homotopic to p.
Remark 2. In the last lecture, we sketched the formulation of a more general version of Theorem 1, where we replace X by a Poincare pair $(X, \partial X)$ where ∂X is already a PL manifold. To simplify the discussion, we will restrict our attention to the case where $\partial X=\emptyset$, but the ideas introduced in this lecture generalize to the relative case.

To prove Theorem 1, we need a method for producing bordisms between PL manifolds. For this, we will use the method of surgery. Fix a PL manifold M of dimension n. Write $n=p+q+1$. Let D^{p+1} and D^{q+1} denote PL disks of dimension $p+1$ and $q+1$, respectively. Let S^{p} and S^{q} denote their boundaries (spheres of dimension p and q, respectively.
Definition 3. A p-surgery datum on M is a PL embedding $\alpha: S^{p} \times D^{q+1} \rightarrow M$.
To a first approximation, a p-surgery datum α on M is given by an embedding of $P L$ manifolds α_{0} : $S^{p} \hookrightarrow M$ (given by restricting α to the product of S^{p} with the center of D^{q+1}). To obtain a surgery datum from α_{0}, we must additionally specify that α_{0} extends to a PL homeomorphism between $S^{p} \times D^{q+1}$ and a neighborhood of the image of α_{0}. Such a homeomorphism determines a smooth structure on M along the image of α_{0}, with respect to which α_{0} is a smooth embedding with trivialized normal bundle. Conversely, suppose we are given an embedding $\alpha_{0}: S^{p} \rightarrow M$ and a smoothing of M along the image of α_{0}, such that α_{0} is a smooth map. Then α_{0} has a normal bundle $N_{\alpha_{0}}$, and there is a neighborhood of $\alpha_{0}\left(S^{p}\right)$ in M which is diffeomorphic to the unit sphere bundle of $N_{\alpha_{0}}$. In particular, if $N_{\alpha_{0}}$ is trivial, we obtain a diffeomorphism (and therefore a PL homeomorphism) of a neighborhood of $\alpha_{0}\left(S^{p}\right)$ with $S^{p} \times D^{q+1}$. This argument shows that we can identify a p-surgery datum on M with three pieces of data:
(i) A PL embedding $\alpha_{0}: S^{p} \rightarrow M$.
(ii) A smoothing of M along the image of α_{0} (with respect to which α_{0} is a smooth map).
(iii) A trivialization of the normal bundle to α_{0} (as a vector bundle).

Construction 4. Let M be a PL manifold of dimension $n=p+q+1$ and let $\alpha: S^{p} \times D^{q+1} \hookrightarrow M$ be a p-surgery datum. We let $B(\alpha)$ denote the polyhedron given by

$$
(M \times[0,1]) \coprod_{\{1\} \times S^{p} \times D^{q+1}}\left(D^{p+1} \times D^{q+1}\right)
$$

Then $B(\alpha)$ is a PL manifold with boundary, given by the disjoint union of $M \times\{0\}$ and

$$
N=M-\left(S^{p} \times\left(D^{q+1}\right)^{o}\right) \coprod_{S^{p} \times S^{q}}\left(D^{p+1} \times S^{q}\right) .
$$

We refer to N as the PL manifold obtained from M via surgery along α, and to $B(\alpha)$ as the trace of the surgery.

More informally: N is the manifold obtained from M by removing the interior of $S^{p} \times D^{q+1}$ (thereby creating a manifold with boundary $S^{p} \times S^{q}$) and gluing on a copy of $D^{p+1} \times S^{q}$.
Remark 5. Let N be a PL manifold obtained from surgery on a PL manifold M along a map $\alpha: S^{p} \times D^{q+1} \hookrightarrow$ M. Then there is an evident embedding $\beta: D^{p+1} \times S^{q} \rightarrow N$, which is a q-surgery datum in N. Performing surgery on N along β recovers the manifold M.

We will be interested in using surgery to construct normal bordisms between normal maps to a Poincare complex. For this, we need a slight variation on Definition 3. Let M be a PL manifold, so that the stable normal bundle of M is classifies by a map $\chi: M \rightarrow \mathbf{Z} \times$ BPL. If we are given a p-surgery datum $\alpha: S^{p} \times D^{q+1} \rightarrow M$, then $\chi \circ \alpha$ extends canonically to a map $\gamma: D^{p+1} \times D^{q+1} \rightarrow \mathbf{Z} \times$ BPL.

Suppose now that X is a space equipped with a stable PL bundle ζ, and that we are given a normal map $f: M \rightarrow X$. Then ζ is classified by a map $\chi_{X}: X \rightarrow \mathbf{Z} \times$ BPL, and the normal structure on f gives a homotopy $h_{0}: \chi \simeq \chi x \circ f$.
Definition 6. In the situation above, a normal p-surgery datum on M consists of the following data:
(i) A p-surgery datum $\alpha: S^{p} \times D^{q+1} \rightarrow M$.
(ii) A map $\beta: D^{p+1} \times D^{q+1} \rightarrow X$ extending $f \circ \alpha$.
(iii) A homotopy h from $\chi_{X} \circ \beta$ to γ, extending the homotopy determined by h.

Given a normal p-surgery datum, we can use α to construct a bordism $B(\alpha)$ from M to a PL manifold N, β to construct a map $F: B(\alpha) \rightarrow X$ extending $f: M \rightarrow X$, and h to endow F with the structure of a Δ^{1}-family of normal maps.
Remark 7. Let us think of a p-surgery datum on a PL manifold M as an embedding $\alpha_{0}: S^{p} \rightarrow M$, together with a choice of trivial normal bundle to α_{0}. If $f: M \rightarrow X$ is a degree one normal map, then to obtain a normal p-surgery datum we need to choose a nullhomotopy of the composite map $\left(f \circ \alpha_{0}\right): S^{p} \rightarrow X$, which is compatible with the nullhomotopy of the map

$$
S^{p} \xrightarrow{\alpha_{\rho}} M \xrightarrow{f} X \rightarrow \mathbf{Z} \times \mathrm{BPL}
$$

determined by the choice of trivial normal bundle.
Let us now see what surgery can do for us in low degrees. Assume that X is a Poincare space of dimension $n \geq 5, \zeta$ a stable PL bundle on X, and $f: M \rightarrow X$ is a degree one normal map.

Let us begin by doing surgery in the case $p=-1$. In this case, S^{p} is empty and therefore a surgery datum $\alpha: S^{p} \times D^{q+1} \rightarrow M$ is unique. To promote α to a normal surgery datum, we need to choose a map $\beta: D^{n+1} \rightarrow X$ (up to homotopy, this a point $x \in X$), together with a trivialization of $\beta^{*} \zeta$. Unwinding the definitions, we see that $B(\alpha)$ is the disjoint union $(M \times[0,1]) \amalg D^{n+1}$, regarded as a bordism from M to $M \amalg S^{n}$. If we have chosen β and the trivialization of $\beta^{*} \zeta$, then we can regard this as a normal bordism from f to a map $M \amalg S^{n} \rightarrow X$, whose restriction to S^{n} is determined by β. By performing surgeries of this type, we can always arrange that the map $M \rightarrow X$ is surjective on connected components.

Now suppose that $f: M \rightarrow X$ fails to be injective on connected components. Then we can choose two points $x, y \in M$ belonging to different components of M and a path joining $f(x)$ to $f(y)$. Choosing small
disks around the points x and y, we obtain a 0 -surgery datum $\alpha: S^{0} \times D^{n} \hookrightarrow M$. A choice of path p from $f(x)$ to $f(y)$ determines the datum (ii) required by Definition 6. We cannot always extend α to a normal surgery datum: our choice of disks determines trivializations of the fibers $\zeta_{f(x)}$ and $\zeta_{f(y)}$, which may or may not extend to a trivalization of ζ over the path p. However, the obstruction is slight by virtue of the following (non-obvious!) fact:

Claim 8. The fundamental group $\pi_{1}(\mathbf{Z} \times$ BPL $)$ is isomorphic to $\mathbf{Z} / 2 \mathbf{Z}$. In other words, every orientationpreserving PL automorphism of \mathbb{R}^{n} is isotopic to the identity, for $n \gg 0$.

In fact, more is true: the map $\pi_{i}(\mathbf{Z} \times \mathrm{BO}) \rightarrow \pi_{i}(\mathbf{Z} \times \mathrm{BPL})$ induces an isomorphism for $i \leq 6$ and a surjection when $i=7$ (using smoothing theory, this is equivalent to the assertion that there are no exotic smooth structures on piecewise linear spheres of dimensions ≤ 6). In this lecture, we will need something much weaker: namely, that the above map is bijective for $i \leq 1$ and surjective for $i \leq 2$. Using smoothing theory, this is equivalent to the (reasonably obvious) claim that there are no exotic smooth structures on spheres of dimension ≤ 1.

In our situation, we cannot necessarily extend an arbitrary $\alpha: S^{0} \times D^{n} \hookrightarrow M$ to a normal surgery datum. However, we always do so after modifying α by applying an orientation-reversing automorphism to one of the disks D^{n}. After making this modification, we obtain a normal bordism from M to a PL manifold with fewer connected components. Applying this procedure finitely many tiimes, we may replace $f: M \rightarrow X$ by a degree one normal map which induces an isomorphism $\pi_{0} M \rightarrow \pi_{0} X$.

Let us now assume that X and M are connected, and choose a base point $x \in M$. Suppose that the map $\pi_{1} M \rightarrow \pi_{1} X$ is not surjective. Choose another point y in M and a path q from y to x. Choose any class γ in $\pi_{1} X$, and a path p from $f(x)$ to $f(y)$ such that the loop composing p with $f(q)$ represents γ. Choosing small disks around x and y, we obtain a surgery datum $\alpha: S^{0} \times D^{n} \hookrightarrow M$ as before. The path p supplies the datum (ii) required by Definition 6, and we can argue as before (modifying α if necessary) to obtain the datum (iii). Let N be obtained from M by normal surgery along α. Since $n \geq 3$, deleting small disks around x and y does not change the fundamental group of M. Using van Kampen's theorem, we compute that $\pi_{1} N$ is obtained from $\pi_{1} M$ by freely adjoining an additional generator, and the map $\pi_{1} N \rightarrow \pi_{1} X$ carries this generator to γ (here we are being sloppy about base points here). Since X is a finite complex, its fundamental group is finitely generated. We may therefore perform this procedure finitely many times to reduce to the situation where the degree one normal map $f: M \rightarrow X$ induces a surjection $\pi_{1} M \rightarrow \pi_{1} X$.

Now suppose that $\pi_{1} M \rightarrow \pi_{1} X$ fails to be injective. Choose an element of $\pi_{1} M$ whose image in $\pi_{1} X$ is trivial. We can represent this element by a map $\alpha_{0}: S^{1} \rightarrow M$. Since the dimension of M is ≥ 3, a general position argument allows us to assume that α_{0} is an embedding. The composite map $S^{1} \rightarrow M \rightarrow X$ is nullhomotopic, so that the stable normal bundle of M is trivial in a neighborhood of α_{0} and we may therefore assume that M is smooth in a neighborhood of α_{0}. The normal bundle to α_{0} is stable trivial, hence orientable and therefore trivial. We may therefore extend α_{0} to an embedding $\alpha: S^{1} \times D^{n-1} \hookrightarrow M$. Choose a nullhomotopy of $f \circ \alpha$. As before, it is not clear that we can choose datum (iii) required by Definition 6: we encounter an obstruction in $\pi_{2}(\mathbf{Z} \times \mathrm{BPL})$. However, since the map $\pi_{2}(\mathbf{Z} \times \mathrm{BO}) \rightarrow \pi_{2}(\mathbf{Z} \times \mathrm{BPL})$ is surjective, we can adjust our original embedding α (choosing a different trivialization of the normal bundle to α_{0}) to make this obstruction vanish. This allows us to perform a normal surgery on the manifold M, thereby obtaining a cobordant degree one normal map $f^{\prime}: N \rightarrow X$. Since the dimension of M is ≥ 4, removing a neighborhood of $\alpha_{0}\left(S^{1}\right)$ does not change the fundamental group of M. Consequently, we can use van Kampen's theorem to compute the fundamental group of N : it is obtained from the fundamental group of M by killing the normal subgroup generated by γ.

Since X is a finite complex, the fundamental group $\pi_{1} X$ is finitely presented. Since $\pi_{1} M$ is finitely generated, the surjective map $\pi_{1} M \rightarrow \pi_{1} X$ exhibits $\pi_{1} X$ as the quotient of $\pi_{1} M$ by the normal subgroup generated by finitely many elements of $\pi_{1} M$. It follows that, after a finite number of applications of the above procedure, we may replace $f: M \rightarrow X$ by a degree one normal map which induces an isomorphism of fundamental groups.

