
Stable ∞-Categories (Lecture 3)

February 2, 2011

In the last lecture, we introduced the definition of an∞-category as a generalization of the usual notion of
category. This definition is one way of formalizing the notion of a higher category in which all k-morphisms
are invertible for k > 1. Many other approaches are possible. The following is probably more intuitive:

Definition 1. A topological category is a category C together with a topology on the set HomC(X,Y ) for
every pair of objects X and Y , such that the composition maps HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z)
are continuous. (In other words, a category which is enriched over the category of topological spaces.) If C
is a topological category containing a pair of objects X and Y , we will denote HomC(X,Y ) by MapC(X,Y )
when we wish to emphasize that we are thinking of it as a topological space.

Remark 2. To accommodate certain examples, it is convenient to modify Definition 1 by working with com-
pactly generated topological spaces rather than topological spaces. That is, we require that each MapC(X,Y )
be compactly generated, and require that composition is given by continuous maps

MapC(X,Y )×MapC(Y, Z)→ MapC(X,Z)

where the product is taken in the category of compactly generated topological spaces. This is a technical
point which may be safely ignored.

The theory of ∞-categories is closely related to the theory of topological categories.

Construction 3 (Sketch). Let C be a topological category. We define a simplicial set Nt(C), the homotopy
coherent nerve of C, as follows:

• The 0-simplices of Nt(C) are the objects of C.

• The 1-simplices of Nt(C) are morphisms f : X → Y in C.

• The 2-simplices of Nt(C) are given by (noncommuting) diagrams

Y
g

��
X

f
>>

h // Z

in C, together with a choice of path from h to g ◦ f in MapC(X,Z).

• · · ·

Example 4. Let C be an ordinary category. We can regard C as a topological category by endowing each
mapping set HomC(X,Y ) with the discrete topology.
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It turns out that for any topological category C, the homotopy coherent nerve Nt(C) is an ∞-category.
Moreover, there is a sort of converse: every∞-category is equivalent to Nt(C) for some topological category C,
and the topological category C is essentially unique (up to a suitable notion of weak homotopy equivalence).
In other words, the construction C 7→ Nt(C) determines an equivalence between the theory of topological
categories and the theory of ∞-categories. From this point forward, we will work at an informal level and
freely mix these two notions. For example, if S is an ∞-category containing a pair of 0-simplices x and y,
we will use MapS(x, y) to denote a mapping space between x and y, when viewed as objects of a topological
category whose homotopy coherent nerve is equivalent to S.

Remark 5. To any topological category C (and therefore to any ∞-category) we can associate an ordi-
nary category hC, called the homotopy category of C. It has the same objects, with morphisms given by
HomhC(X,Y ) = π0 MapC(X,Y ).

Example 6. The collection of finite CW complexes forms a topological category: for any pair of finite CW
complexes X and Y , we can endow the set of continuous maps Hom(X,Y ) with the compact-open topology.
If we use the convention of Remark 2, then this generalizes to arbitrary CW complexes. We will denote
the homotopy coherent nerve of this (larger) topological category by S, and refer to it as the ∞-category of
spaces.

Here is an example of greater interest to us:

Example 7 (Sketch). Let A be an associative ring. There is an∞-category Dperf(A) which may be described
as follows:

• The 0-simplices of Dperf(A) are given by bounded chain complexes of finitely generated projective left
A-modules

· · · → P2 → P1 → P0 → P−1 → · · ·

• A 1-simplex of Dperf(A) consists of a pair of chain complexes P• and Q•, together with a map of chain
complexes f : P• → Q•.

• A 2-simplex of Dperf(A) consists of a (not necessarily commutative) diagram of chain complexes

Q•
g

!!
P•

f
>>

h // R•,

together with a chain homotopy from h to g ◦ f .

• Higher dimensional simplices are defined using higher-order chain homotopies.

The homotopy category of Dperf(A) is equivalent to the category hPerf of the previous lecture.

Our next goal is to axiomatize some of the special features enjoyed by∞-categories of the form Dperf(A).
First, we need to introduce a bit of terminology. Let C be an ∞-category and I an ordinary category. It
makes sense to speak of functors from I to C: these are given by maps of simplicial sets N(I)→ C. We can
use this notion to make sense of commutative diagrams in C. For example, a square diagram

X //

��

Y

��
X ′ // Y ′

in C is just a map of simplicial sets ∆1 ×∆1 → C.

2



Definition 8. Let C be an ∞-category. We will say that an object 0 ∈ C is a zero object if, for every object
X ∈ C, the mapping spaces

MapC(0, X) MapC(X, 0)

are contractible. We will say that C is pointed if it admits a zero object.

If C is a pointed ∞-category, then for any pair of objects X and Y there is a zero map from X to Y ,
given by the composition

X → 0→ Y

where 0 is a zero object of C. This map is well-defined up to a contractible space of choices.

Definition 9. Let C be a pointed ∞-category. A triangle in C consists of a diagram

X
f→ Y

g→ Z

in C, together with a path from g ◦ f to the zero map in MapC(X,Z) (in other words, a nullhomotopy of
g ◦ f). More formally: a triangle in C is a square diagram

X
f //

��

Y

g

��
0 // Z

where 0 is a zero object of C.

Suppose we are given a triangle

X
f→ Y

g→ Z

in a pointed ∞-category C. We will say that this triangle is a fiber sequence if, for every object C ∈ C, the
associated sequence of topological spaces

MapC(C,X)→ MapC(C, Y )→ MapC(C,Z)

is a homotopy fiber sequence. In this case, X is determined (up to equivalence) by g. We will say that X is
the fiber of g and write X = fib(g).

Dually, we say that

X
f→ Y

g→ Z

is a cofiber sequence if, for every object C ∈ C, the associated sequence of topological spaces

MapC(Z,C)→ MapC(Y,C)→ MapC(X,C)

is a homotopy fiber sequence. In this case, Z is determined (up to equivalence) by f . We will say that Z is
the cofiber of g and write Z = cofib(g).

Definition 10. Let C be an ∞-category. We say that C is stable if the following conditions are satisfied:

(1) C is pointed: that is, there is a zero object of C.

(2) Every morphism f : X → Y in C has a fiber and a cofiber.

(3) A triangle X
f→ Y

g→ Z in C is a fiber sequence if and only if it is a cofiber sequence.

Example 11. There is a stable ∞-category Sp whose objects are spectra. The homotopy category hSp is
the classical stable homotopy category.
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Example 12. The ∞-category Dperf(A) considered above is stable.

Let C be a stable ∞-category. We define an abelian group K0(C) as follows: K0(C) is obtained from the
free abelian group generated by symbols [X], where X is an object of C, subject to the following relation: if
there is a fiber sequence

X → Y → Z,

then [Y ] = [X] + [Z].

Remark 13. Let C be a stable ∞-category. One can show that the homotopy category of C is triangulated.
Moreover, theK-groupK0(C) depends only on the homotopy category of C, viewed as a triangulated category.
However, when discussing more sophisticated invariants of C (like higher K-groups or L-groups) it is better
not to pass to the homotopy category.

Example 14. If A is a ring, then the K-group K0(Dperf(A)) is canonically isomorphic to the group K0(A)
defined in the last lecture. In particular, if A is a field, then there is a canonical isomorphism K0(Dperf(A)) '
Z. If P• is an object of Dperf(A), then [P•] ∈ K0(Dperf(A)) ' Z can be identified with the Euler characteristic∑

i

(−1)i dimA Hi(P•)

of the chain complex P•.

In general, if we are given an object X of a stable ∞-category C, then we can view the class [X] ∈ K0(C)
as a kind of “generalized Euler characteristic” of X. It is in general not an integer, but an element of
the abelian group K0(C) which depends on C. We can think of the construction C 7→ K0(C) as a kind of
categorificatied Euler characteristic:

Input Invariant

vector space V dimension dim(V ) ∈ Z

complex of vector spaces Euler characteristic χ ∈ Z

stable ∞-category C abelian group K0(C)

object of a stable ∞-category C K-theory class [X] ∈ K0(C)

However, these are not the invariants we really want to study in this class. Recall that if V is a finite
dimensional vector space over R with a nondegenerate quadratic form q, then V is determined (up to
isometry) by two invariants: the dimension of V and the signature of V . It is the latter that we would really
like to generalize. Let us briefly indicate the form that this generalization will take:

Input Invariant

nondegenerate quadratic space (V, q) over R signature σ(V, q) ∈ Z

Poincare chain complex (V∗, q) over R signature σ of middle homology

stable ∞-category C with quadratic functor Q L-group L0(C, Q)

Object X ∈ C satisfying Poincare duality [X] ∈ L0(C, Q)

We will start making sense of some of these words in the next lecture.
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