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Let X be a Poincare space. Our goal is to understand the homotopy type of the piecewise linear
structure space S(X). In the last lecture, we introduced the structure space S™(X) of normal maps to X.
Roughly speaking, the points of S(X) are compact PL manifolds M equipped with a homotopy equivalence
f: M — X, while the points of S”(X) are degree one normal maps f : M — X. Every homotopy equivalence
M — X can be viewed as a degree one normal map (for an essentially unique PL reduction of the Spivak
bundle of X), and this observation underlies a map of structure spaces

0 :S(X) — S"(X).

Since the homotopy type of S"(X) can be understood by means of obstruction theory, we are reduced to
studying the map 6 and its homotopy fibers.

We therefore ask the following question: given a PL bundle ¢ on X and a normal map f: M — X, how
far is f from a homotopy equivalence? We would like to give an answer in terms of the formalism of L-theory.
Fix an Ao-ring R with involution, and let {y denote the underlying spherical fibration of ¢ (which can be
identified with the Spivak fibration of X), so that X has a visible symmetric signature o%’ € Q®L"*(X, (o, R).
Similarly, M has a visible symmetric signature o} € Q>*L"*(M, f*(o, R). Since M is a PL manifold, this
lifts canonically to a point 0%, € Q>®L*(M, f*(o, R). The map f induces pushforward maps in L-theory,
which we will denote by fi. If f is a homotopy equivalence, then fi(a%7) ~ 0% so that fi(c3,) is a preimage
of 0%’ under the assembly map. In general, this need not be the case: a degree one normal map f: M — X
generally does not carry the visible symmetric signature of M to the visible symmetric signature of X.

Example 1. Suppose that we are given a degree one normal map f : M — S**. The signature of M need
not be zero (despite the fact that the signature of S** is zero). However, the signature of M is constrained.
Since the stable normal bundle of S** is trivial, we conclude that the stable normal bundle to M is trivial.
In particular, all Stiefel-Whitney classes of M are trivial, so that the Wu class of M vanishes. It follows that
the intersection form on the middle dimensional homology of M is even: that is, it refines to a quadratic
form, so that the signature of M must be divisible by 8.

Our goal in this lecture is to demonstrate that the phenomenon of Example 1 is quite general: if f :
M — X is a degree one normal map, then the difference fi(o%j) — 0% can be canonically lifted to the visible
quadratic L-theory space QLY (X, (o, R).

The assertion above has nothing to do with the fact that M is actually a manifold. Let us therefore work
a little bit more generally.

Definition 2. Let f : Y — X be a map of spaces, both of which have the homotopy type of a finite complex.
A degree one structure on f consists of the following data:

(1) A spherical fibration (x on X.
(2) A map of spectra [Y]: S — C.(Y; f*(x) satisfying the following conditions:

(a) For every local system of spectra F on Y, cap product with [Y] induces a homotopy equivalence
C*(Y;F) = C(Y; FAf*Cx)-



(b) Let [X] denote the composite map S b C.(Y; f*(x) = Cu(X;Cx). For every local system of
spectra F on X, cap product with [X] induces a homotopy equivalence C*(X; F) — C.(X;F ACx).

Remark 3. Condition (a) of Definition 2 guarantees that Y is a Poincare space with Spivak bundle f*(x,
and condition (b) guarantees that X is a Poincare space with Spivak bundle X.

A degree one structure on f can be regarded as a compatibility between the Poincare duality isomorphisms
of X and Y. It can be thought of as consisting of two pieces of data:

() An identification of the Spivak bundle of Y with the pullback of the Spivak bundle of X.

(#) An identification of the fundamental class of X with the pushforward of the fundamental class of YV
(which makes sense by virtue of the datum (4)).

Remark 4. Let f : Y — X be a homotopy equivalence of Poincare spaces. Then f admits an essentially
unique degree one structure. In other words, if X is a Poincare space, then the data of the pair (Cx, [X] :
S — Cu(X;(x)) is determined uniquely up to a contractible space of choices.

Let f: Y — X be a map with a degree one structure ({x,[Y]). Then X and Y have visible symmetric
signatures 0% € QL (X, (x, R) and o}® € Q®L"(Y, f*(x,R). Our goal in this lecture is to prove the
following result:

Theorem 5. In the above situation, we can canonically construct a point a;ﬁq € Q*LY(X,(x,R) and a
path from o%? + U(O’;q) to fio}? in the space Q®°LV(X,(x,R). Here U denotes the canonical map of spectra
]qu(X7CX7R) — ]Lvs(Xa CX,R)

In fact, we can be even more precise. The visible symmetric signatures o%’ and oy® have canonical repre-
sentatives (R, gx) and (R, gy) by quadratic objects of Shv.(X; RModg) and Shv.(Y; RModg), respectively.
We will construct a canonical representative of U;Q, so that the identity

0¥ +U(oy") = fioy’

is visible at the level of Poincare objects (that is, it comes from an equivalence of Poincare objects, rather
than a bordism of Poincare objects).

In what follows, there is no loss of generality in treating the universal case where R is the sphere
spectrum (equipped with the trivial involution). We will henceforth assume that we are in this case, and we
will therefore omit mention of R in our notation.

Recall that LV*(X, (x) can be identified with the L-theory of the finitely presented part of the co-category
Shv.(X; Sp), equipped with the quadratic functor sz given by the formula

QL () = Cu(X3Cx A (FAF)).
Similarly, LY9(X, (x) is given by the L-theory of the same oco-category, equipped with the quadratic functor
QL (F) = Cu(X5¢x A (FAT s, )
Using our assumption that X is a Poincare space with Spivak bundle (x, we can rewrite
Qe (9) = CH (X5 (TAT)2) QY (F) = C*(X; (TAT)ax,).

In these terms, the visible symmetric signature 0%’ is easy to describe: it is represented by the Poincare
object (S, qx) where gx classifies the evident global section of (S A S)"*2.

Let us now describe the pushforward of the visible symmetric signature of Y under the map f. This is
given by a nondegenerate symmetric form ¢’ on the local system fi,S on X. Let us describe this form more
explicitly. We may assume without loss of generality that f is a fibration. For each point x € X, we let Y,



denote the fiber f~'{z}. Unwinding the definitions, we see that the local system fiS is given by the formula
T = XY,

Let us now invoke our assumption that f is a degree one map. The fundamental class of [Y] gives a map
of spectra

S = Cu(Y; f7Cx) ~ Cu( X5 if"Cx) = Cu(X;5(x A fiS) ~ C*(X; fi5).

We may view this as a map of local systems u : S — fi,S. That is, for every point x € X, we have a canonical
map of spectra ug : S — XY,. The condition that f be of degree one guarantees that the composite map

5= fS—S8

is homotopic to the identity. That is, each u, can be regarded as a section of the canonical map XY, —
L{z} ~ 8.

Unwinding the definitions, we see that ¢’ € Q“Qéx( f1S) can be identified with the global section of
(AiS A £1S)"*2 given by the composition

S A8 5 (RS A fS)M2,
where ¢ is induced by the diagonal map Y — Y x x Y. Fiberwise, this is given by the map of spectra
S5 BTV, = (BY, A STY,) 2,

where the second map is induced by the diagonal Y, — Y, x Y.
Theorem 5 can be obtained by fiberwise application of the following claim:

Proposition 6. Let Z be a space (in our case of interest, the homotopy fiber of a map of Poincare spaces
[+ X —=Y), and suppose we are given a map of spectra e : S — X Z which splits the canonical map
Y¥Z — X{*} ~ S. Let q denote the composition

S = XXZ = (X ZANETZ)M2

where the second map is induced by the diagonal embedding Z — Z x Z. Then the quadratic object (X°Z, q)
splits (canonically!) as a direct sum (S,qy) ® (E,q_), where ¢, : S — (S A S)'*2 is the evident map and
q_ : S — (E AN E)"2 factors (canonically!) through the transfer map (E A E)ps, — (E A E)"2

The splitting ¥°Z ~ S @ E at the level of spectra is easy: it is determined by our choice of e. We
therefore have an identification

(BCZASTZ)P2 = (SAS)2 @ (EAS®SAE)™ @ (EAE)"2
We may therefore identify ¢ with a trio of maps
gy S — (SAS)*2
q@0:S— (EAS®SAE)* ~F
q_:S — (EANE)"™2,
Unwinding the definitions, we see that g is given by the composition
S5 Y7 - F,

where the second map is projection onto the summand E. It follows that g is canonically nullhomotopic, so
that we obtain a direct sum decomposition of (X5°Z,q) as a quadratic object. Moreover, it is obvious that
g+ : S — (SAS)"*2 is as described. The only nontrivial point is to show that ¢_ : S — (E A E)"*2 admits a
quadratic refinement (that is, it factors through the transfer map). We will take this up in the next lecture.



