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Let X be a Poincare space. Our goal is to understand the homotopy type of the piecewise linear
structure space S(X). In the last lecture, we introduced the structure space Sn(X) of normal maps to X.
Roughly speaking, the points of S(X) are compact PL manifolds M equipped with a homotopy equivalence
f : M → X, while the points of Sn(X) are degree one normal maps f : M → X. Every homotopy equivalence
M → X can be viewed as a degree one normal map (for an essentially unique PL reduction of the Spivak
bundle of X), and this observation underlies a map of structure spaces

θ : S(X)→ Sn(X).

Since the homotopy type of Sn(X) can be understood by means of obstruction theory, we are reduced to
studying the map θ and its homotopy fibers.

We therefore ask the following question: given a PL bundle ζ on X and a normal map f : M → X, how
far is f from a homotopy equivalence? We would like to give an answer in terms of the formalism of L-theory.
Fix an A∞-ring R with involution, and let ζ0 denote the underlying spherical fibration of ζ (which can be
identified with the Spivak fibration of X), so that X has a visible symmetric signature σvsX ∈ Ω∞Lvs(X, ζ0, R).
Similarly, M has a visible symmetric signature σvsM ∈ Ω∞Lvs(M,f∗ζ0, R). Since M is a PL manifold, this
lifts canonically to a point σsM ∈ Ω∞Ls(M,f∗ζ0, R). The map f induces pushforward maps in L-theory,
which we will denote by f!. If f is a homotopy equivalence, then f!(σ

vs
M ) ' σvsX so that f!(σ

s
M ) is a preimage

of σvsX under the assembly map. In general, this need not be the case: a degree one normal map f : M → X
generally does not carry the visible symmetric signature of M to the visible symmetric signature of X.

Example 1. Suppose that we are given a degree one normal map f : M → S4k. The signature of M need
not be zero (despite the fact that the signature of S4k is zero). However, the signature of M is constrained.
Since the stable normal bundle of S4k is trivial, we conclude that the stable normal bundle to M is trivial.
In particular, all Stiefel-Whitney classes of M are trivial, so that the Wu class of M vanishes. It follows that
the intersection form on the middle dimensional homology of M is even: that is, it refines to a quadratic
form, so that the signature of M must be divisible by 8.

Our goal in this lecture is to demonstrate that the phenomenon of Example 1 is quite general: if f :
M → X is a degree one normal map, then the difference f!(σ

vs
M )−σvsX can be canonically lifted to the visible

quadratic L-theory space Ω∞Lvq(X, ζ0, R).
The assertion above has nothing to do with the fact that M is actually a manifold. Let us therefore work

a little bit more generally.

Definition 2. Let f : Y → X be a map of spaces, both of which have the homotopy type of a finite complex.
A degree one structure on f consists of the following data:

(1) A spherical fibration ζX on X.

(2) A map of spectra [Y ] : S → C∗(Y ; f∗ζX) satisfying the following conditions:

(a) For every local system of spectra F on Y , cap product with [Y ] induces a homotopy equivalence
C∗(Y ;F)→ C∗(Y ;F∧f∗ζX).
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(b) Let [X] denote the composite map S
[Y ]→ C∗(Y ; f∗ζX) → C∗(X; ζX). For every local system of

spectra F on X, cap product with [X] induces a homotopy equivalence C∗(X;F)→ C∗(X;F∧ζX).

Remark 3. Condition (a) of Definition 2 guarantees that Y is a Poincare space with Spivak bundle f∗ζX ,
and condition (b) guarantees that X is a Poincare space with Spivak bundle X.

A degree one structure on f can be regarded as a compatibility between the Poincare duality isomorphisms
of X and Y . It can be thought of as consisting of two pieces of data:

(i) An identification of the Spivak bundle of Y with the pullback of the Spivak bundle of X.

(ii) An identification of the fundamental class of X with the pushforward of the fundamental class of Y
(which makes sense by virtue of the datum (i)).

Remark 4. Let f : Y → X be a homotopy equivalence of Poincare spaces. Then f admits an essentially
unique degree one structure. In other words, if X is a Poincare space, then the data of the pair (ζX , [X] :
S → C∗(X; ζX)) is determined uniquely up to a contractible space of choices.

Let f : Y → X be a map with a degree one structure (ζX , [Y ]). Then X and Y have visible symmetric
signatures σvsX ∈ Ω∞Lvs(X, ζX , R) and σvsY ∈ Ω∞Lvs(Y, f∗ζX , R). Our goal in this lecture is to prove the
following result:

Theorem 5. In the above situation, we can canonically construct a point σvqf ∈ Ω∞Lvq(X, ζX , R) and a

path from σvsX +U(σvqf ) to f!σ
vs
Y in the space Ω∞Lvs(X, ζX , R). Here U denotes the canonical map of spectra

Lvq(X, ζX , R)→ Lvs(X, ζX , R).

In fact, we can be even more precise. The visible symmetric signatures σvsX and σvsY have canonical repre-
sentatives (R, qX) and (R, qY ) by quadratic objects of Shvlc(X; RModR) and Shvlc(Y ; RModR), respectively.
We will construct a canonical representative of σvqf , so that the identity

σvsX + U(σvqf ) ' f!σ
vs
Y

is visible at the level of Poincare objects (that is, it comes from an equivalence of Poincare objects, rather
than a bordism of Poincare objects).

In what follows, there is no loss of generality in treating the universal case where R is the sphere
spectrum (equipped with the trivial involution). We will henceforth assume that we are in this case, and we
will therefore omit mention of R in our notation.

Recall that Lvs(X, ζX) can be identified with the L-theory of the finitely presented part of the∞-category
Shvlc(X; Sp), equipped with the quadratic functor QsζX given by the formula

QsζX (F) = C∗(X; ζX ∧ (F∧F)hΣ2).

Similarly, Lvq(X, ζX) is given by the L-theory of the same ∞-category, equipped with the quadratic functor

QqζX (F) = C∗(X; ζX ∧ (F∧F)hΣ2).

Using our assumption that X is a Poincare space with Spivak bundle ζX , we can rewrite

QsζX (F) = C∗(X; (F∧F)hΣ2) QqζX (F) = C∗(X; (F∧F)hΣ2
).

In these terms, the visible symmetric signature σvsX is easy to describe: it is represented by the Poincare
object (S, qX) where qX classifies the evident global section of (S ∧ S)hΣ2 .

Let us now describe the pushforward of the visible symmetric signature of Y under the map f . This is
given by a nondegenerate symmetric form q′ on the local system f!S on X. Let us describe this form more
explicitly. We may assume without loss of generality that f is a fibration. For each point x ∈ X, we let Yx
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denote the fiber f−1{x}. Unwinding the definitions, we see that the local system f!S is given by the formula
x 7→ Σ∞+ Yx.

Let us now invoke our assumption that f is a degree one map. The fundamental class of [Y ] gives a map
of spectra

S → C∗(Y ; f∗ζX) ' C∗(X; f!f
∗ζX) ' C∗(X; ζX ∧ f!S) ' C∗(X; f!S).

We may view this as a map of local systems u : S → f!S. That is, for every point x ∈ X, we have a canonical
map of spectra ux : S → Σ∞+ Yx. The condition that f be of degree one guarantees that the composite map

S → f!S → S

is homotopic to the identity. That is, each ux can be regarded as a section of the canonical map Σ∞+ Yx →
Σ∞+ {x} ' S.

Unwinding the definitions, we see that q′ ∈ Ω∞QsζX (f!S) can be identified with the global section of

(f!S ∧ f!S)hΣ2 given by the composition

S
u→ f!S

δ→ (f!S ∧ f!S)hΣ2 ,

where δ is induced by the diagonal map Y → Y ×X Y . Fiberwise, this is given by the map of spectra

S
ux→ Σ∞+ Yx → (Σ∞+ Yx ∧ Σ∞+ Yx)hΣ2 ,

where the second map is induced by the diagonal Yx → Yx × Yx.
Theorem 5 can be obtained by fiberwise application of the following claim:

Proposition 6. Let Z be a space (in our case of interest, the homotopy fiber of a map of Poincare spaces
f : X → Y ), and suppose we are given a map of spectra e : S → Σ∞+ Z which splits the canonical map
Σ∞+ Z → Σ∞+ {∗} ' S. Let q denote the composition

S → Σ∞+ Z → (Σ∞+ Z ∧ Σ∞+ Z)hΣ2

where the second map is induced by the diagonal embedding Z → Z×Z. Then the quadratic object (Σ∞+ Z, q)
splits (canonically!) as a direct sum (S, q+) ⊕ (E, q−), where q+ : S → (S ∧ S)hΣ2 is the evident map and
q− : S → (E ∧ E)hΣ2 factors (canonically!) through the transfer map (E ∧ E)hΣ2

→ (E ∧ E)hΣ2

The splitting Σ∞+ Z ' S ⊕ E at the level of spectra is easy: it is determined by our choice of e. We
therefore have an identification

(Σ∞+ Z ∧ Σ∞+ Z)hΣ2 ' (S ∧ S)hΣ2 ⊕ (E ∧ S ⊕ S ∧ E)hΣ2 ⊕ (E ∧ E)hΣ2 .

We may therefore identify q with a trio of maps

q+ : S → (S ∧ S)hΣ2

q0 : S → (E ∧ S ⊕ S ∧ E)hΣ2 ' E

q− : S → (E ∧ E)hΣ2 .

Unwinding the definitions, we see that q0 is given by the composition

S
e→ Σ∞+ Z → E,

where the second map is projection onto the summand E. It follows that q0 is canonically nullhomotopic, so
that we obtain a direct sum decomposition of (Σ∞+ Z, q) as a quadratic object. Moreover, it is obvious that
q+ : S → (S ∧S)hΣ2 is as described. The only nontrivial point is to show that q− : S → (E ∧E)hΣ2 admits a
quadratic refinement (that is, it factors through the transfer map). We will take this up in the next lecture.

3


