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Let X be a topological space and C an ∞-category. We let Shvlc(X;C) denote the ∞-category of maps
from the Kan complex Sing•(X) into C. We will refer to Shvlc(X;C) as the ∞-category of locally constant
C-valued sheaves on X, or sometimes as the ∞-category of local systems of C-valued sheaves on X. If X is a
polyhedron with triangulation T , then we can identify Shvlc(X;C) with the full subcategory of ShvT (X;C)
spanned by those functors which carry each inclusion τ ⊆ τ ′ of simplices to an invertible morphism of C.

Let f : X → Y be a map of topological spaces. Then f induces a pullback functor f∗ : Shvlc(Y ;C) →
Shvlc(X;C). Suppose that C is the ∞-category of spectra. Then f∗ preserves all limits and colimits, and
therefore admits both a left adjoint f! and a right adjoint f∗.

In the special case where Y is a point, we will denote the functors f! and f∗ by C∗(X; •) and C∗(X; •),
respectively. If X si a polyhedron with triangulation T , these are described by the formulas

C∗(X;F) = lim−→
τ

F(τ) C∗(X;F) = lim←−
τ

F(τ).

If X is a finite polyhedron, we conclude that the construction C∗ : Shvlc(X; Sp) → Sp commutes with
homotopy colimits.

Suppose now that X is connected with base point x. Then Shvlc(X; Sp) can be identified with the
∞-category of modules over the A∞-ring R = Σ∞+ Ω(X). Any functor F : LModR → Sp is determined by
its value F (R) ∈ Sp, together with its right R-module structure. Indeed, the fact that F commutes with
homotopy colimits implies that F is given by F (M) ' F (R)∧RM . We can identify F (R) with a local system
ζ on X, so that F is given by the formula F (M) = C∗(X;M ∧ ζ). This description generalizes immediately
to the case where X is not assumed to be connected:

Proposition 1. Let F : Shvlc(X; Sp)→ Sp be a functor which commutes with homotopy colimits. Then F
is given by F (F) = C∗(F∧ζ), where ζ is a local system of spectra on X. Moreover, the local system ζ is
determined uniquely up to equivalence.

In particular, if X is a finite polyhedron (or any space equivalent to a finite polyhedron) and f : X → ∗
denotes the projection map, we have an equivalence of functors

f∗(•) ' C∗(• ∧ ζX)

for some local system ζX on X.

Definition 2. We say that a finite polyhedron X is a Poincare space if ζX is a spherical fibration (that
is, if each of the fibers ζX(x) is an invertible spectrum). In this case, we say that ζX is the Spivak normal
fibration of X.

Remark 3. Let X be a finite polyhedron containing a point x. Let i : {x} → X denote the inclusion and
p : X → ∗ the projection map, so that p ◦ i is a homeomorphism. Then we have a homotopy equivalence of
spectra

i∗ζX ' (p ◦ i)!i
∗ζX ' p!(i!i

∗ζX) ' p!((i!S) ∧ ζX) ' C∗(X; i!S).
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In other words, the stalk ζX(x) is given by taking global sections of the local system of spectra on X that
assigns to each point y ∈ X the suspension spectra Σ∞+ Px,y, where Px,y denotes the path space {p : [0, 1]→
X : p(0) = x, p(1) = y}.

Remark 4. Let S denote the constant local system on X with value the sphere spectrum, so we have a
canonical map S → C∗(X;S) ' C∗(X;S ∧ ζX) ' C∗(X; ζX). We can identify this map with a point of
Ω∞C∗(X; ζX), which we will refer to as the fundamental class of X and denote by [X].

The fundamental class determines the equivalence of functors C∗(X; •) ' C∗(X; • ∧ ζX): it is given by

C∗(X;F) ' Mor(S,F)→ Mor(ζX ,F∧ζX)→ Mor(C∗(X; ζX), C∗(X;F∧ζX))
[X]→ C∗(X;F∧ζX).

Example 5. Let X be a simply connected finite polyhedron. Then X is a Poincare space if and only if
there exists a fundamental class ηX ∈ Hn(X; Z) which induces cap product isomorphisms φi : Hi(X; Z) →
Hn−i(X; Z). The “only if” direction is obvious: if X is a Poincare space, then ζX∧Z is necessarily equivalent
to Σ−nZ (orientability is obvious, since X is simply connected) so we can take ηX to be the image of the
fundamental class [X]; the desired result then follows from the equivalence

C∗(X; Z) ' C∗(X; Z ∧ ζX) ' C∗(X; Σ−nZ).

The converse requires the simple connectivity of X. Note that ηX induces a map of spectra C∗(X; Z) →
Σ−nZ, hence a map C∗(X;Z ∧ ζX)→ Σ−nZ which is adjoint to a map θ : Z ∧ ζX → Σ−nZ. We claim that θ
is invertible (from which it will follow that each fiber of ζX is equivalent to the invertible spectrum Σ−nS).
Since X is simply connected (and the fibers of ζX are k-connective for k � 0), it will suffice to show that θ
induces an equivalence after applying the functor C∗. That is, we must show that the canonical map

C∗(X; Z) ' C∗(X;Z ∧ ζX)→ Σ−nC∗(Z)

is a homotopy equivalence. On the level of homotopy groups, this is precisely the condition that the maps
φi are isomorphisms.

Let us now depart from our previous convention and regard quadratic functors as covariant functors
from a stable ∞-category C to spectra. If R is an A∞-ring with involution, we have a quadratic functor
Qs : RModR → Sp given by

Qs(M) = (M ∧RM)hΣ2 ,

which restricts to a nondegenerate quadratic functor on RModfp
R . If X is a space equipped with a spher-

ical fibration ζ and f : X → ∗ denotes the projection map, then we obtain a quadratic functor Qζ :
Shvlc(X; RModR) → Sp given by the formula Qζ(F) = C∗(X; ζ ∧ Qs(F)), which is nondegenerate when
restricted to the ∞-category of compact objects of Shvlc(X; RModR).

Let R denote the constant sheaf on X having the value R. Given a map of spectra η : S → C∗(X; ζ), we
obtain a map S → C∗(X; ζ ∧RhΣ2) ' Qζ(R), which we will denote by q. Then the pair (R, q) is a quadratic
object of Shvlc(X; RModR). Let Bζ denote the polarization of Qζ , given by the formula

Bζ(F,F
′) = C∗(X;F∧R F′ ∧ζ).

If X is a Poincare space and ζ = ζX is its Spivak normal fibration, then we have a homotopy equivalence

Bζ(R,F) = C∗(X;R ∧R F∧ζ) ' C∗(X;F∧ζ) ' C∗(X;F) ' Mor(R,F).

This tells us that R is self-dual: that is, (R, q) is a Poincare object of Shvlc(X; RModR). We therefore obtain
an element σvsX ∈ Ω∞Lvs(X, ζX , R), called the visible symmetric signature of the Poincare complex X.

For later use, we will need a slight generalization of the notion of a Poincare complex. Suppose we are
given a map of finite spaces ∂ X → X (which, up to homotopy equivalence, we may as well suppose is given
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by an inclusion between finite polyhedra). Given a local system of spectra F on X, we let F | ∂ X denote the
pullback of F to ∂ X, and form fiber sequences

C∗(∂ X;F | ∂ X)→ C∗(X;F)→ C∗(X, ∂ X;F)

C∗(X, ∂ X;F)→ C∗(X;F)→ C∗(∂ X;F | ∂ X).

Arguing as above, we see that C∗(X, ∂ X; •) commutes with homotopy colimits and is therefore given by
F 7→ C∗(X; ζ(X,∂ X)∧F) for some local system ζ(X,∂ X). The equivalence between C∗(X, ∂ X; •) is determined
by a fundamental class [X] : S → C∗(X, ∂ X; ζ(X,∂ X)). Note that [X] determines a composite map

[∂ X] : S
[X]→ C∗(X, ∂ X; ζ(X,∂ X))→ ΣC∗(∂ X; ζ(X,∂ X)| ∂ X) ' C∗(∂ X; Σζ(X,∂ X)| ∂ X).

Definition 6. A pair of finite spaces (X, ∂ X) is a Poincare pair if the following conditions are satisfied:

(1) The local system ζ(X,∂ X) defined above is a spherical fibration.

(2) The map [∂ X] is a fundamental class for ∂ X: that is, it induces a homotopy equivalence

C∗(∂ X;F)→ C∗(∂ X; (ΣζX,∂ X | ∂ X) ∧ F)

for every local system F on ∂ X. (So that the Spivak normal fibration of ∂ X is given by Σ(ζX,∂ X | ∂ X).)

Remark 7. Let (X, ∂ X) be a pair of finite spaces F be a local system of spectra on X. We have a
commutative diagram of fiber sequences

C∗(X, ∂ X;F)

��

// C∗(X;F)

��

// C∗(∂ X;F | ∂ X)

��
C∗(X; ζ(X,∂ X) ∧ F) // C∗(X, ∂ X; ζ(X,∂ X) ∧ F) // C∗(∂ X; (Σζ(X,∂ X) ∧ F)| ∂ X)

where the vertical maps are given by cap product with [X] and [∂ X]. The left vertical map is a homotopy
equivalence by construction, and the right vertical map is a homotopy equivalence when (X, ∂ X) is a Poincare
pair. It follows that if (X, ∂ X) is a Poincare pair, then the middle map is also a homotopy equivalence: that
is, the cap product map

C∗(X;F)→ C∗(X, ∂ X; ζ(X,∂ X) ∧ F)

is a homotopy equivalence.

Suppose that i : ∂ X → X, and let R be an A∞-ring with involution. We have a visible symmetric
signature σvs∂ X ∈ Lvs(∂ X, ζ∂ X , R), given by (R, q). Then q determines a symmetric bilinear form q∂ on the
object i!R ∈ Shvlc(X; RModR) with respect to the quadratic functor QΣζ(X,∂ X)

. We have a canonical map
i!R→ R, and a fiber sequence

C∗(X, ∂ X; ζ(X,∂ X) ∧RhΣ2)→ C∗(X; Σζ(X,∂ X) ∧ i!RhΣ2)→ C∗(X; Σζ(X,∂ X) ∧RhΣ2).

Consequently, the fundamental class [X] provides a nullhomotopy of the image of q∂ in QΣζ(X,∂ X)
(R). This

nullhomotopy exhibits R as a Lagrangian for the Poincare object (i!R; q∂). In other words, it gives a canonical
lifting of σvs∂ X to the homotopy fiber of the map

Lvs(∂ X, ζ∂ X , R)→ Lvs(X,Σζ(X,∂ X), R).

Let us denote this lifting by σvsX . We will refer to it as the visible symmetric signature of X (or the visible
symmetric signature of the Poincare pair (X, ∂ X)).
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Notation 8. Let f : Y → X be a map of spaces and let ζ be a spherical fibration on X. We let Lvs(X,Y, ζ, R)
denote the homotopy cofiber of the map

Lvs(Y, f∗ζ,R)→ Lvs(X, ζ,R).

Equivalently Lvs(X,Y, ζ,R) is the homotopy fiber of the map

Lvs(Y, f∗Σζ,R)→ Lvs(X,Σζ,R).

The upshot of the above discussion is that if (X, ∂ X) is a Poincare pair, we can identify σvsX with a point
in the 0th space of Lvs(X, ∂ X, ζ(X,∂ X), R). When ∂ X = ∅, this specializes to the definition of the visible
symmetric signature of a Poincare space described earlier.
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