Poincare Spaces and Spivak Fibrations (Lecture 26)

April 1, 2011

Let X be a topological space and \mathcal{C} an ∞ -category. We let $\operatorname{Shv}_{\operatorname{lc}}(X;\mathcal{C})$ denote the ∞ -category of maps from the Kan complex $\operatorname{Sing}_{\bullet}(X)$ into \mathcal{C} . We will refer to $\operatorname{Shv}_{\operatorname{lc}}(X;\mathcal{C})$ as the ∞ -category of locally constant \mathcal{C} -valued sheaves on X, or sometimes as the ∞ -category of local systems of \mathcal{C} -valued sheaves on X. If X is a polyhedron with triangulation T, then we can identify $\operatorname{Shv}_{\operatorname{lc}}(X;\mathcal{C})$ with the full subcategory of $\operatorname{Shv}_T(X;\mathcal{C})$ spanned by those functors which carry each inclusion $\tau \subseteq \tau'$ of simplices to an invertible morphism of \mathcal{C} .

Let $f: X \to Y$ be a map of topological spaces. Then f induces a pullback functor $f^*: \operatorname{Shv}_{\operatorname{lc}}(Y; \mathfrak{C}) \to \operatorname{Shv}_{\operatorname{lc}}(X; \mathfrak{C})$. Suppose that \mathfrak{C} is the ∞ -category of spectra. Then f^* preserves all limits and colimits, and therefore admits both a left adjoint $f_!$ and a right adjoint f_* .

In the special case where Y is a point, we will denote the functors $f_!$ and f_* by $C_*(X; \bullet)$ and $C^*(X; \bullet)$, respectively. If X is a polyhedron with triangulation T, these are described by the formulas

$$C_*(X; \mathcal{F}) = \varinjlim_{\tau} \mathcal{F}(\tau) \qquad C^*(X; \mathcal{F}) = \varprojlim_{\tau} \mathcal{F}(\tau).$$

If X is a *finite* polyhedron, we conclude that the construction $C^* : \text{Shv}_{\text{lc}}(X; \text{Sp}) \to \text{Sp}$ commutes with homotopy colimits.

Suppose now that X is connected with base point x. Then $\operatorname{Shv}_{\operatorname{lc}}(X;\operatorname{Sp})$ can be identified with the ∞ -category of modules over the A_{∞} -ring $R = \Sigma_+^{\infty}\Omega(X)$. Any functor $F : \operatorname{LMod}_R \to \operatorname{Sp}$ is determined by its value $F(R) \in \operatorname{Sp}$, together with its right R-module structure. Indeed, the fact that F commutes with homotopy colimits implies that F is given by $F(M) \simeq F(R) \wedge_R M$. We can identify F(R) with a local system ζ on X, so that F is given by the formula $F(M) = C_*(X; M \wedge \zeta)$. This description generalizes immediately to the case where X is not assumed to be connected:

Proposition 1. Let $F : \operatorname{Shv_{lc}}(X;\operatorname{Sp}) \to \operatorname{Sp}$ be a functor which commutes with homotopy colimits. Then F is given by $F(\mathfrak{F}) = C_*(\mathfrak{F} \wedge \zeta)$, where ζ is a local system of spectra on X. Moreover, the local system ζ is determined uniquely up to equivalence.

In particular, if X is a finite polyhedron (or any space equivalent to a finite polyhedron) and $f: X \to *$ denotes the projection map, we have an equivalence of functors

$$f_*(\bullet) \simeq C_*(\bullet \wedge \zeta_X)$$

for some local system ζ_X on X.

Definition 2. We say that a finite polyhedron X is a *Poincare space* if ζ_X is a spherical fibration (that is, if each of the fibers $\zeta_X(x)$ is an invertible spectrum). In this case, we say that ζ_X is the *Spivak normal fibration* of X.

Remark 3. Let X be a finite polyhedron containing a point x. Let $i : \{x\} \to X$ denote the inclusion and $p : X \to *$ the projection map, so that $p \circ i$ is a homeomorphism. Then we have a homotopy equivalence of spectra

$$i^*\zeta_X \simeq (p \circ i)_! i^*\zeta_X \simeq p_!(i_! i^*\zeta_X) \simeq p_!((i_! S) \wedge \zeta_X) \simeq C^*(X; i_! S).$$

In other words, the stalk $\zeta_X(x)$ is given by taking global sections of the local system of spectra on X that assigns to each point $y \in X$ the suspension spectra $\Sigma_+^{\infty} P_{x,y}$, where $P_{x,y}$ denotes the path space $\{p : [0,1] \to X : p(0) = x, p(1) = y\}$.

Remark 4. Let \underline{S} denote the constant local system on X with value the sphere spectrum, so we have a canonical map $S \to C^*(X;\underline{S}) \simeq C_*(X;\underline{S} \wedge \zeta_X) \simeq C_*(X;\zeta_X)$. We can identify this map with a point of $\Omega^{\infty}C_*(X;\zeta_X)$, which we will refer to as the fundamental class of X and denote by [X].

The fundamental class determines the equivalence of functors $C^*(X; \bullet) \simeq C_*(X; \bullet \wedge \zeta_X)$: it is given by

$$C^*(X; \mathfrak{F}) \simeq \operatorname{Mor}(\underline{S}, \mathfrak{F}) \to \operatorname{Mor}(\zeta_X, \mathfrak{F} \wedge \zeta_X) \to \operatorname{Mor}(C_*(X; \zeta_X), C_*(X; \mathfrak{F} \wedge \zeta_X)) \overset{[X]}{\to} C_*(X; \mathfrak{F} \wedge \zeta_X).$$

Example 5. Let X be a simply connected finite polyhedron. Then X is a Poincare space if and only if there exists a fundamental class $\eta_X \in H_n(X; \mathbf{Z})$ which induces cap product isomorphisms $\phi_i : H^i(X; \mathbf{Z}) \to H_{n-i}(X; \mathbf{Z})$. The "only if" direction is obvious: if X is a Poincare space, then $\zeta_X \wedge \mathbf{Z}$ is necessarily equivalent to $\Sigma^{-n}\mathbf{Z}$ (orientability is obvious, since X is simply connected) so we can take η_X to be the image of the fundamental class [X]; the desired result then follows from the equivalence

$$C^*(X; \mathbf{Z}) \simeq C_*(X; \mathbf{Z} \wedge \zeta_X) \simeq C_*(X; \Sigma^{-n} \mathbf{Z}).$$

The converse requires the simple connectivity of X. Note that η_X induces a map of spectra $C^*(X; \mathbf{Z}) \to \Sigma^{-n} \mathbf{Z}$, hence a map $C_*(X; \mathbf{Z} \wedge \zeta_X) \to \Sigma^{-n} \mathbf{Z}$ which is adjoint to a map $\theta : \mathbf{Z} \wedge \zeta_X \to \Sigma^{-n} \mathbf{Z}$. We claim that θ is invertible (from which it will follow that each fiber of ζ_X is equivalent to the invertible spectrum $\Sigma^{-n}S$). Since X is simply connected (and the fibers of ζ_X are k-connective for $k \ll 0$), it will suffice to show that θ induces an equivalence after applying the functor C_* . That is, we must show that the canonical map

$$C^*(X; \underline{\mathbf{Z}}) \simeq C_*(X; \underline{\mathbf{Z}} \wedge \zeta_X) \to \Sigma^{-n} C_*(\underline{\mathbf{Z}})$$

is a homotopy equivalence. On the level of homotopy groups, this is precisely the condition that the maps ϕ_i are isomorphisms.

Let us now depart from our previous convention and regard quadratic functors as *covariant* functors from a stable ∞ -category \mathcal{C} to spectra. If R is an A_{∞} -ring with involution, we have a quadratic functor $Q^s : \mathrm{RMod}_R \to \mathrm{Sp}$ given by

$$Q^s(M) = (M \wedge_R M)^{h\Sigma_2},$$

which restricts to a nondegenerate quadratic functor on RMod_R^{fp}. If X is a space equipped with a spherical fibration ζ and $f: X \to *$ denotes the projection map, then we obtain a quadratic functor $Q_{\zeta}: \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R) \to \operatorname{Sp}$ given by the formula $Q_{\zeta}(\mathfrak{F}) = C_*(X; \zeta \wedge Q^s(\mathfrak{F}))$, which is nondegenerate when restricted to the ∞ -category of compact objects of $\operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$.

Let \underline{R} denote the constant sheaf on X having the value R. Given a map of spectra $\eta: S \to C_*(X; \zeta)$, we obtain a map $S \to C_*(X; \zeta \wedge R^{h\Sigma_2}) \simeq Q_{\zeta}(\underline{R})$, which we will denote by q. Then the pair (\underline{R}, q) is a quadratic object of $\operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$. Let B_{ζ} denote the polarization of Q_{ζ} , given by the formula

$$B_{\zeta}(\mathfrak{F},\mathfrak{F}')=C_{*}(X;\mathfrak{F}\wedge_{R}\mathfrak{F}'\wedge\zeta).$$

If X is a Poincare space and $\zeta = \zeta_X$ is its Spivak normal fibration, then we have a homotopy equivalence

$$B_{\mathcal{L}}(R, \mathcal{F}) = C_*(X; R \wedge_R \mathcal{F} \wedge \mathcal{L}) \simeq C_*(X; \mathcal{F} \wedge \mathcal{L}) \simeq C^*(X; \mathcal{F}) \simeq \operatorname{Mor}(R, \mathcal{F}).$$

This tells us that \underline{R} is self-dual: that is, (\underline{R},q) is a Poincare object of $\operatorname{Shv}_{\operatorname{lc}}(X;\operatorname{RMod}_R)$. We therefore obtain an element $\sigma_X^{vs} \in \Omega^{\infty} \mathbb{L}^{vs}(X,\zeta_X,R)$, called the visible symmetric signature of the Poincare complex X.

For later use, we will need a slight generalization of the notion of a Poincare complex. Suppose we are given a map of finite spaces $\partial X \to X$ (which, up to homotopy equivalence, we may as well suppose is given

by an inclusion between finite polyhedra). Given a local system of spectra \mathcal{F} on X, we let $\mathcal{F} \mid \partial X$ denote the pullback of \mathcal{F} to ∂X , and form fiber sequences

$$C_*(\partial X; \mathcal{F} | \partial X) \to C_*(X; \mathcal{F}) \to C_*(X, \partial X; \mathcal{F})$$

$$C^*(X, \partial X; \mathcal{F}) \to C^*(X; \mathcal{F}) \to C^*(\partial X; \mathcal{F} | \partial X).$$

Arguing as above, we see that $C^*(X, \partial X; \bullet)$ commutes with homotopy colimits and is therefore given by $\mathcal{F} \mapsto C_*(X; \zeta_{(X,\partial X)} \wedge \mathcal{F})$ for some local system $\zeta_{(X,\partial X)}$. The equivalence between $C^*(X, \partial X; \bullet)$ is determined by a fundamental class $[X]: S \to C_*(X, \partial X; \zeta_{(X,\partial X)})$. Note that [X] determines a composite map

$$[\partial X]: S \stackrel{[X]}{\to} C_*(X, \partial X; \zeta_{(X, \partial X)}) \to \Sigma C_*(\partial X; \zeta_{(X, \partial X)} | \partial X) \simeq C_*(\partial X; \Sigma \zeta_{(X, \partial X)} | \partial X).$$

Definition 6. A pair of finite spaces $(X, \partial X)$ is a *Poincare pair* if the following conditions are satisfied:

- (1) The local system $\zeta_{(X,\partial X)}$ defined above is a spherical fibration.
- (2) The map $[\partial X]$ is a fundamental class for ∂X : that is, it induces a homotopy equivalence

$$C^*(\partial X; \mathfrak{F}) \to C_*(\partial X; (\Sigma \zeta_{X,\partial X} | \partial X) \wedge \mathfrak{F})$$

for every local system \mathcal{F} on ∂X . (So that the Spivak normal fibration of ∂X is given by $\Sigma(\zeta_{X,\partial X}|\partial X)$.)

Remark 7. Let $(X, \partial X)$ be a pair of finite spaces \mathcal{F} be a local system of spectra on X. We have a commutative diagram of fiber sequences

where the vertical maps are given by cap product with [X] and $[\partial X]$. The left vertical map is a homotopy equivalence by construction, and the right vertical map is a homotopy equivalence when $(X, \partial X)$ is a Poincare pair. It follows that if $(X, \partial X)$ is a Poincare pair, then the middle map is also a homotopy equivalence: that is, the cap product map

$$C^*(X; \mathcal{F}) \to C_*(X, \partial X; \zeta_{(X \partial X)} \wedge \mathcal{F})$$

is a homotopy equivalence.

Suppose that $i: \partial X \to X$, and let R be an A_{∞} -ring with involution. We have a visible symmetric signature $\sigma_{\partial X}^{vs} \in \mathbb{L}^{vs}(\partial X, \zeta_{\partial X}, R)$, given by (\underline{R}, q) . Then q determines a symmetric bilinear form q_{∂} on the object $i_!\underline{R} \in \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$ with respect to the quadratic functor $Q_{\Sigma\zeta_{(X,\partial X)}}$. We have a canonical map $i_!\underline{R} \to \underline{R}$, and a fiber sequence

$$C_*(X,\partial\,X;\zeta_{(X,\partial\,X)}\wedge\underline{R}^{h\Sigma_2})\to C_*(X;\Sigma\zeta_{(X,\partial\,X)}\wedge i_!\underline{R}^{h\Sigma_2})\to C_*(X;\Sigma\zeta_{(X,\partial\,X)}\wedge\underline{R}^{h\Sigma_2}).$$

Consequently, the fundamental class [X] provides a nullhomotopy of the image of q_{∂} in $Q_{\Sigma\zeta(X,\partial X)}(\underline{R})$. This nullhomotopy exhibits \underline{R} as a Lagrangian for the Poincare object $(i_!\underline{R};q_{\partial})$. In other words, it gives a canonical lifting of $\sigma_{\partial X}^{v_X}$ to the homotopy fiber of the map

$$\mathbb{L}^{vs}(\partial X, \zeta_{\partial X}, R) \to \mathbb{L}^{vs}(X, \Sigma \zeta_{(X,\partial X)}, R).$$

Let us denote this lifting by σ_X^{vs} . We will refer to it as the visible symmetric signature of X (or the visible symmetric signature of the Poincaré pair $(X, \partial X)$).

Notation 8. Let $f: Y \to X$ be a map of spaces and let ζ be a spherical fibration on X. We let $\mathbb{L}^{vs}(X, Y, \zeta, R)$ denote the homotopy cofiber of the map

$$\mathbb{L}^{vs}(Y, f^*\zeta, R) \to \mathbb{L}^{vs}(X, \zeta, R).$$

Equivalently $\mathbb{L}^{vs}(X,Y,\zeta,R)$ is the homotopy fiber of the map

$$\mathbb{L}^{vs}(Y, f^*\Sigma\zeta, R) \to \mathbb{L}^{vs}(X, \Sigma\zeta, R).$$

The upshot of the above discussion is that if $(X, \partial X)$ is a Poincare pair, we can identify σ_X^{vs} with a point in the 0th space of $\mathbb{L}^{vs}(X, \partial X, \zeta_{(X,\partial X)}, R)$. When $\partial X = \emptyset$, this specializes to the definition of the visible symmetric signature of a Poincare space described earlier.