Locally Constant Sheaves (Lecture 21)

March 21, 2011

Let X be a finite polyhedron with a triangulation T and let C be an ∞ -category. We will say that T-constructible sheaf $\mathcal{F}: T \to \mathbb{C}$ is *locally constant* if $\mathcal{F}(\tau) \to \mathcal{F}(\tau')$ is invertible whenever $\tau \leq \tau'$. We let $\operatorname{Shv}_{\operatorname{lc}}(X; \mathbb{C})$ denote the full subcategory of $\operatorname{Shv}_T(X; \mathbb{C})$ spanned by the locally constant sheaves. This ∞ -category does not depend on the choice of triangulation: if S is a refinement of T, then the pullback functor $\operatorname{Shv}_T(X; \mathbb{C}) \to \operatorname{Shv}_S(X; \mathbb{C})$ induces an equivalence on the full subcategories spanned by the locally constant sheaves.

Let R be an A_{∞} -ring, fixed for the remainder of this lecture. Our goal is to study *local systems* of R-modules on C: that is, locally constant sheaves on C with values in the ∞ -category of R-modules.

Fix a finite polyhedron X and a triangulation T of X. Let $\operatorname{Shv}_T(X : R)$ denote the ∞ -category of T-constructible sheaves on X with values in $\operatorname{LMod}_R^{\operatorname{fp}}$: that is, contravariant functors $T^{op} \to \operatorname{LMod}_R^{\operatorname{fp}}$. The formation of R-linear duals gives a contravariant equivalence of $\operatorname{LMod}_R^{\operatorname{fp}}$ with $\operatorname{RMod}_R^{\operatorname{fp}}$; we may therefore identify $\operatorname{Shv}_T(X; R)$ with the opposite of the ∞ -category $\operatorname{coShv}_T(X; \operatorname{RMod}_R^{\operatorname{fp}})$ of T-constructible cosheaves with values in $\operatorname{RMod}_R^{\operatorname{fp}}$ (that is, functors $T^{op} \to \operatorname{RMod}_R^{\operatorname{fp}}$). This is contained in the larger ∞ -category $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$ of cosheaves with values in RMod_R . In fact, we can identify $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$ with the ∞ -category of Ind-objects $\operatorname{Ind}(\operatorname{coShv}_T(X; \operatorname{RMod}_R^{\operatorname{fp}})$.

Let $\operatorname{coShv}_{\operatorname{lc}}(X : \operatorname{RMod}_R)$ denote the full subcategory of $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$ spanned by the locally constant cosheaves (that is, those cosheaves for which $\mathcal{F}(\tau) \to \mathcal{F}(\tau')$ is an equivalence for every $\tau' \subseteq \tau \in T$). Note that $\operatorname{coShv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$ is closed under all limits and colimits in $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$. It follows that the inclusion

$$\operatorname{coShv}_{\operatorname{lc}}(X; \operatorname{RMod}_R) \hookrightarrow \operatorname{coShv}_T(X; \operatorname{RMod}_R)$$

admits both left and right adjoints. We will denote a left adjoint to this inclusion by L. Let $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R)$ denote the full subcategory of $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$ spanned by those objects \mathcal{F} such that $T(\mathcal{F}) \simeq 0$: that is, those objects \mathcal{F} such that $\operatorname{Mor}_{\operatorname{coShv}_T(X; \operatorname{RMod}_R)}(\mathcal{F}, \mathcal{G}) \simeq 0$ whenever \mathcal{G} is locally constant. We let $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}})$ denote the intersection $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R) \cap \operatorname{coShv}_T(X; \operatorname{RMod}_R^{\operatorname{fp}})$.

Lemma 1. The full subcategory $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R)$ is generated (under filtered colimits) by $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}})$. Consequently, we have a canonical equivalence

$$\operatorname{coShv}_T^0(X; \operatorname{RMod}_R) \simeq \operatorname{Ind} \operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}}).$$

Proof. Since every object of $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}})$ is a compact object of $\operatorname{coShv}_T(X; \operatorname{RMod}_R)$, we get a fully faithful embedding

$$\operatorname{Ind}(\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{lp}}) \to \operatorname{coShv}_T(X; \operatorname{RMod}_R)$$

Let \mathcal{C} denote the essential image of this embedding; it is a full subcategory of $\operatorname{Shv}_T(X; \operatorname{RMod}_R)$. We clearly have $\mathcal{C} \subseteq \operatorname{coShv}_T^0(X; \operatorname{RMod}_R)$. Let us prove the reverse inclusion. For any object $\mathcal{F} \in \operatorname{coShv}_T^0(X; \operatorname{RMod}_R)$, we can choose a fiber sequence

$$\mathfrak{F}' \to \mathfrak{F} \stackrel{\alpha}{\to} \mathfrak{F}''$$

where $\mathcal{F}' \in \mathcal{C}$ and $\operatorname{Mor}(\mathcal{G}, \mathcal{F}'') \simeq 0$ for every $\mathcal{G} \in \mathcal{C}$ (here \mathcal{F}' is given by the colimit of the filtered diagram of all objects of $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}})$ equipped with a map to \mathcal{F}). For every simplex $\tau \in T$, let $\mathcal{F}_\tau \in \operatorname{coShv}_T(X; \operatorname{RMod}_R)$ be given by the formula

$$\mathfrak{F}_{\tau}(\sigma) = \begin{cases} R & \text{if } \sigma \subseteq \tau \\ 0 & \text{otherwise.} \end{cases}$$

For any cosheaf \mathcal{G} , we have $\operatorname{Mor}(\mathcal{F}_{\tau}, \mathcal{G}) \simeq \mathcal{G}(\tau)$. Let $\tau' \subseteq \tau$, and form a cofiber sequence

$$\mathfrak{F}_{\tau'} \to \mathfrak{F}_{\tau} \to \mathfrak{F}_{\tau} / \mathfrak{F}_{\tau'}$$
.

If \mathcal{G} is locally constant, we have $\operatorname{Mor}(\mathcal{F}_{\tau}/\mathcal{F}_{\tau'}, \mathcal{G}) \simeq \operatorname{fib}(\mathcal{G}(\tau) \to \mathcal{G}(\tau')) \simeq 0$, so that $\mathcal{F}_{\tau}/\mathcal{F}_{\tau'} \in \operatorname{coShv}_{T}^{0}(X; \operatorname{RMod}_{R}^{\operatorname{fp}})$. It follows that $\operatorname{Mor}(\mathcal{F}_{\tau}/\mathcal{F}_{\tau'}, \mathcal{F}') \simeq 0$, so that $\mathcal{F}'(\tau) \simeq \mathcal{F}''(\tau')$. Since τ and τ' are arbitrary, we deduce that \mathcal{F}'' is locally constant. Since $\mathcal{F} \in \operatorname{coShv}_{T}^{0}(X; \operatorname{RMod}_{R})$, the map α is nullhomotopic. Then \mathcal{F} is a direct summand of \mathcal{F}' , and therefore belongs to \mathcal{C} as desired. \Box

Under the contravariant equivalence of ∞ -categories $\operatorname{coShv}_T(X; \operatorname{RMod}_R^{\operatorname{fp}}) \simeq \operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}})$, the subcategory $\operatorname{coShv}_T^0(X; \operatorname{RMod}_R^{\operatorname{fp}})$ corresponds to a full subcategory $\operatorname{Shv}_T^0(X : \operatorname{LMod}_R^{\operatorname{fp}}) \subseteq \operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}})$, which is evident closed under the formation of direct summands. Several lectures ago, we constructed a quotient ∞ -category

$$\operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{tp}}) / \operatorname{Shv}_T^0(X; \operatorname{LMod}_R^{\operatorname{tp}})$$

as a full subcategory of $\operatorname{Pro}(\operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}})) \simeq \operatorname{Ind}(\operatorname{coShv}_T(X; \operatorname{RMod}_R^{\operatorname{fp}}))^{op} \simeq \operatorname{coShv}_T(X; \operatorname{RMod}_R)^{op}$. Unwinding the definitions, we see that this subcategory consists precisely of those objects of the form $L\mathcal{F}$, where $\mathcal{F} \in \operatorname{coShv}_T(X; \operatorname{RMod}_R)^{\operatorname{fp}})$. Let us denote this subcategory by $\operatorname{coShv}_{\operatorname{lc}}^{\operatorname{fp}}(X; \operatorname{RMod}_R)$.

We now study the ∞ -category $\operatorname{coShv}_{\operatorname{lc}}(X; \operatorname{RMod}_R) \simeq \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$ in more detail. For simplicity, let us restrict our attention to the case where X is connected. For every point $x \in X$, let $i_x : \{x\} \to X$ denote the inclusion map. Pullback along i_x determines a functor $x^* : \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R) \to \operatorname{RMod}_R$ (given by evaluation at the unique simplex $\tau \in T$ containing x in its interior). This functor commutes with all limits and colimits. In particular, it admits a left adjoint, which we will denote by $x_+ : \operatorname{RMod}_R \to \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$. Since x^* commutes with filtered colimits, $x_+(R)$ is a compact object of $\operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$. Moreover, it is a compact generator of $\operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$: if $\mathcal{F} \in \operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$, then $\operatorname{Mor}(x_+(R), \mathcal{F}) \simeq 0$ if and only if $\operatorname{Mor}_{\operatorname{RMod}_R}(R, x^* \mathcal{F}) = x^* \mathcal{F}$ vanishes. Since X is connected, this is equivalent to the vanishing of all stalks of \mathcal{F} : that is, to the condition that $\mathcal{F} \simeq 0$. It follows that $\operatorname{Shv}_{\operatorname{lc}}(X; \operatorname{RMod}_R)$ is equivalent to the ∞ -category $\operatorname{RMod}_{R'}(R, x^* x_+ R) \simeq x^* x_+ R$.

We can describe R' more explicitly. More generally, suppose we are given any pair of points $x, y \in X$. We can form a homotopy pullback diagram of topological spaces (commutative up to canonical homotopy)

$$\begin{array}{c} P_{x,y} \overset{\phi}{\longrightarrow} \{x\} \\ \downarrow^{\psi} & \downarrow^{x} \\ \{y\} \overset{y}{\longrightarrow} X, \end{array}$$

where $P_{x,y}$ is the path space $\{p : [0,1] \to X : p(0) = x, p(1) = y\}$. Let ϕ^* and ψ^* denote the pullback functors on locally constant sheaves of right *R*-modules, and let ϕ_+ and ψ_+ be their left adjoints. There is a natural "base-change" isomorphism $y^*x_+ \simeq \psi_+\phi^*$ of functors from RMod_R to itself. Consequently, $y^*x_+(R)$ is given by ψ_+ of the constant sheaf on $P_{x,y}$ with values in *R*. This is given by the smash product spectrum $P_{x,y} \wedge R$ (here we regard $P_{x,y}$ as an *unpointed* space) whose homotopy groups are given by the *R*-homology groups $R_*(P_{x,y})$ of the space $P_{x,y}$. In particular, we have $R' = P_{x,x} \wedge R$. If *R* is connective, we obtain

$$\pi_0 R' = R_0(P_{x,x}) = \bigoplus_{\eta \in \pi_0 P_{x,x}} \pi_0 R \simeq (\pi_0 R)[\pi_1 X].$$

Let us now describe the full subcategory $\operatorname{coShv}_{lc}^{\mathrm{fp}}(X; \operatorname{RMod}_R) \subseteq \operatorname{coShv}_{lc}(X; \operatorname{RMod}_R) \stackrel{\theta}{\simeq} \operatorname{RMod}_{R'}$. This is a stable subcategory, consisting of those objects of the form $L(\mathcal{F})$, where $\mathcal{F} \in \operatorname{coShv}_T(X; \operatorname{RMod}_R^{\mathrm{fp}})$. Note that $\operatorname{coShv}_T(X; \operatorname{RMod}_R^{\mathrm{fp}})$ is generated, as a stable ∞ -category, by objects of the form $\mathcal{F}_{\tau,M}$, where

$$\mathcal{F}_{\tau,M}(\sigma) = \begin{cases} M & \text{if } \sigma \subseteq \tau \\ 0 & \text{otherwise} \end{cases}$$

and M is a finitely presented right R-module. It is therefore generated as a stable ∞ -category by objects of the form $\mathcal{F}_{\tau,R} = \mathcal{F}_{\tau}$. We observe that $L \mathcal{F}_{\tau} \simeq y_+(R)$, where y is any point in the interior of τ : indeed, for any object $\mathcal{G} \in \operatorname{coShv}_{lc}(X; \operatorname{RMod}_R)$ we have

$$\operatorname{Mor}(L\mathcal{F}_{\tau},\mathcal{G}) \simeq \operatorname{Mor}(\mathcal{F}_{\tau},\mathcal{G}) \simeq \mathcal{G}(\tau) \simeq y^* \mathcal{G} \simeq \operatorname{Mor}(y_+(R),\mathcal{G}).$$

Let x be our fixed base point of X. Since X is connected, for any point $y \in X$ there is an isomorphism $x_+(R) \simeq y_+(R)$ in $\operatorname{coShv}_{lc}(X; \operatorname{RMod}_R)$ (obtained by choosing a path joining x and y). Consequently, the full subcategory $\operatorname{coShv}_{lc}^{\mathrm{fp}}(X; \operatorname{RMod}_R) \subseteq \operatorname{coShv}_{lc}(X; \operatorname{RMod}_R)$ is generated, as a stable subcategory, by the object $x_+(R)$. In particular, it corresponds to the full subcategory

$$\operatorname{RMod}_{R'}^{\operatorname{fp}} \subseteq \operatorname{RMod}_R$$

under the equivalence θ . Passing to opposite ∞ -categories, we obtain the following result:

Theorem 2. Let X be a connected finite polyhedron with base point x, T a triangulation of X, R an A_{∞} ring, and $R' = P_{x,x} \wedge R$ the A_{∞} -ring constructed above. Let $\operatorname{Shv}_T^0(X; \operatorname{LMod}_R^{\operatorname{fp}}) \subseteq \operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}})$ be defined as above. Then there is a canonical equivalence of ∞ -categories

$$\operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}}) / \operatorname{Shv}_T^0(X; \operatorname{LMod}_R^{\operatorname{fp}}) \simeq \operatorname{LMod}_{R'}^{\operatorname{fp}}.$$

Let $\operatorname{Shv}^0_{\operatorname{const}}(X; \operatorname{LMod}^{\operatorname{fp}}_R) \simeq \varinjlim_T \operatorname{Shv}^0_T(X; \operatorname{LMod}^{\operatorname{fp}}_R)$. Passing to the direct limit over T, we obtain an equivalence

$$\operatorname{Shv}_{\operatorname{const}}(X; \operatorname{LMod}_R^{\operatorname{tp}}) / \operatorname{Shv}_{\operatorname{const}}^0(X; \operatorname{LMod}_R^{\operatorname{tp}}) \simeq \operatorname{LMod}_{R'}^{\operatorname{tp}}$$

Warning 3. Working with perfect module spectra in place of finitely presented module spectra, one can construct a fully faithful embedding

$$\operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{perf}}) / \operatorname{Shv}_T^0(X; \operatorname{LMod}_R^{\operatorname{fp}}) \simeq \operatorname{LMod}_{R'}^{\operatorname{perf}}$$

This embedding is generally not an equivalence, which is why we have generally confined our attention to the study of finitely presented modules rather than perfect modules.

Definition 4. Let X be a spectrum. We say that X is *invertible* if there exists another spectrum Y and a homotopy equivalence $X \wedge Y \simeq S$, where S is the sphere spectrum. One can show that a spectrum X is invertible if and only if $X \simeq \Sigma^n S$ for some integer n. We let $\operatorname{Sp}^{\operatorname{inv}}$ denote the full subcategory of Sp spanned by the invertible spectra.

Let X be a space (for now, let's say a polyhedron). A spherical fibration over X is a locally constant sheaf on X with values in Sp^{inv} .

Example 5. Let M be a piecewise linear manifold of dimension n, and let \mathcal{F} be the constant sheaf of spectra taking the value S. Then the Verdier dual $\mathbb{D}(\mathcal{F})$ is a spherical fibration over M. For every point $x \in M$, we have seen that the stalk $x^*\mathbb{D}(\mathcal{F})$ can be described as the suspension spectrum of the homotopy quotient $M/M - \{x\}$, which is (noncanonically) homotopy equivalent to an *n*-sphere.

Now suppose that R is an A_{∞} -ring equipped with an involution σ . Let $Q : (\mathrm{LMod}_R^{\mathrm{fp}})^{op} \to \mathrm{Sp}$ denote either of the quadratic functors Q^q or Q^s . Let X be a polyhedron equipped with a triangulation T, and let $\zeta : T \to \mathrm{Sp}^{\mathrm{inv}}$ be a spherical fibration on X. We define a quadratic functor $Q_{T,\zeta} : \mathrm{Shv}_T(X; \mathrm{LMod}_R^{\mathrm{fp}})^{op} \to \mathrm{Sp}$ by the formula

$$Q_{T,\zeta}(\mathfrak{F}) = \varinjlim_{\tau \in T} \zeta(\tau) \wedge Q(\mathfrak{F}).$$

Since ζ is a constant functor locally on X, the work of the previous lectures shows that $Q_{T,\zeta}$ is a nondegenerate quadratic functor on $\operatorname{Shv}_T(X; \operatorname{LMod}_R^{\operatorname{fp}})^{op}$. Passing to the limit over T, we obtain a nondegenerate quadratic functor

$$Q_{\zeta} : \operatorname{Shv}_{\operatorname{const}}(X; \operatorname{LMod}_R^{\operatorname{tp}})^{op} \to \operatorname{Sp}$$

In particular, we obtain a "twisted" Verdier duality functor \mathbb{D}_{ζ} : $\operatorname{Shv}_{\operatorname{const}}(X; \operatorname{LMod}_{R}^{\operatorname{fp}})^{op} \to \operatorname{Shv}_{\operatorname{const}}(X; \operatorname{LMod}_{R}^{fp})$, given by

$$\mathbb{D}_{\zeta}(\mathcal{F}) = \zeta \wedge \mathbb{D}(\mathcal{F})$$

(where $\mathbb D$ denotes the standard Verdier duality functor discussed earlier).

In the next lecture, we will apply the paradigm of Lecture 8 to the cofiber sequence of stable ∞ -categories

 $\operatorname{Shv}^0_{\operatorname{const}}(X;\operatorname{LMod}_R^{\operatorname{fp}}) \to \operatorname{Shv}_{\operatorname{const}}(X;\operatorname{LMod}_R^{\operatorname{fp}}) \to \operatorname{Shv}_{\operatorname{const}}(X;\operatorname{LMod}_R^{\operatorname{fp}})/\operatorname{Shv}^0_{\operatorname{const}}(X;\operatorname{LMod}_R^{\operatorname{fp}})$

and the quadratic functor Q_{ζ} .