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Let X be a finite polyhedron with a triangulation T and let C be an ∞-category. We will say that
T -constructible sheaf F : T → C is locally constant if F(τ) → F(τ ′) is invertible whenever τ ≤ τ ′. We
let Shvlc(X;C) denote the full subcategory of ShvT (X;C) spanned by the locally constant sheaves. This
∞-category does not depend on the choice of triangulation: if S is a refinement of T , then the pullback
functor ShvT (X;C) → ShvS(X;C) induces an equivalence on the full subcategories spanned by the locally
constant sheaves.

Let R be an A∞-ring, fixed for the remainder of this lecture. Our goal is to study local systems of
R-modules on C: that is, locally constant sheaves on C with values in the ∞-category of R-modules.

Fix a finite polyhedron X and a triangulation T of X. Let ShvT (X : R) denote the ∞-category of

T -constructible sheaves on X with values in LModfp
R : that is, contravariant functors T op → LModfp

R . The

formation of R-linear duals gives a contravariant equivalence of LModfp
R with RModfp

R ; we may therefore

identify ShvT (X;R) with the opposite of the ∞-category coShvT (X; RModfp
R ) of T -constructible cosheaves

with values in RModfp
R (that is, functors T op → RModfp

R ). This is contained in the larger ∞-category
coShvT (X; RModR) of cosheaves with values in RModR. In fact, we can identify coShvT (X; RModR) with

the ∞-category of Ind-objects Ind(coShvT (X; RModfp
R ).

Let coShvlc(X : RModR) denote the full subcategory of coShvT (X; RModR) spanned by the locally
constant cosheaves (that is, those cosheaves for which F(τ)→ F(τ ′) is an equivalence for every τ ′ ⊆ τ ∈ T ).
Note that coShvlc(X; RModR) is closed under all limits and colimits in coShvT (X; RModR). It follows that
the inclusion

coShvlc(X; RModR) ↪→ coShvT (X; RModR)

admits both left and right adjoints. We will denote a left adjoint to this inclusion by L. Let coShv0
T (X; RModR)

denote the full subcategory of coShvT (X; RModR) spanned by those objects F such that T (F) ' 0: that is,

those objects F such that MorcoShvT (X;RModR)(F,G) ' 0 whenever G is locally constant. We let coShv0
T (X; RModfp

R )

denote the intersection coShv0
T (X; RModR) ∩ coShvT (X; RModfp

R ).

Lemma 1. The full subcategory coShv0
T (X; RModR) is generated (under filtered colimits) by coShv0

T (X; RModfp
R ).

Consequently, we have a canonical equivalence

coShv0
T (X; RModR) ' Ind coShv0

T (X; RModfp
R ).

Proof. Since every object of coShv0
T (X; RModfp

R ) is a compact object of coShvT (X; RModR), we get a fully
faithful embedding

Ind(coShv0
T (X; RModfp

R )→ coShvT (X; RModR).

Let C denote the essential image of this embedding; it is a full subcategory of ShvT (X; RModR). We clearly
have C ⊆ coShv0

T (X; RModR). Let us prove the reverse inclusion. For any object F ∈ coShv0
T (X; RModR),

we can choose a fiber sequence
F′ → F

α→ F′′
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where F′ ∈ C and Mor(G,F′′) ' 0 for every G ∈ C (here F′ is given by the colimit of the filtered diagram

of all objects of coShv0
T (X; RModfp

R ) equipped with a map to F). For every simplex τ ∈ T , let Fτ ∈
coShvT (X; RModR) be given by the formula

Fτ (σ) =

{
R if σ ⊆ τ
0 otherwise.

For any cosheaf G, we have Mor(Fτ ,G) ' G(τ). Let τ ′ ⊆ τ , and form a cofiber sequence

Fτ ′ → Fτ → Fτ /Fτ ′ .

If G is locally constant, we have Mor(Fτ /Fτ ′ ,G) ' fib(G(τ)→ G(τ ′)) ' 0, so that Fτ /Fτ ′ ∈ coShv0
T (X; RModfp

R ).
It follows that Mor(Fτ /Fτ ′ ,F′′) ' 0, so that F′′(τ) ' F′′(τ ′). Since τ and τ ′ are arbitrary, we deduce that
F′′ is locally constant. Since F ∈ coShv0

T (X; RModR), the map α is nullhomotopic. Then F is a direct
summand of F′, and therefore belongs to C as desired.

Under the contravariant equivalence of ∞-categories coShvT (X; RModfp
R ) ' ShvT (X; LModfp

R ), the sub-

category coShv0
T (X; RModfp

R ) corresponds to a full subcategory Shv0
T (X : LModfp

R ) ⊆ ShvT (X; LModfp
R ),

which is evident closed under the formation of direct summands. Several lectures ago, we constructed a
quotient ∞-category

ShvT (X; LModfp
R )/ Shv0

T (X; LModfp
R )

as a full subcategory of Pro(ShvT (X; LModfp
R )) ' Ind(coShvT (X; RModfp

R ))op ' coShvT (X; RModR)op.
Unwinding the definitions, we see that this subcategory consists precisely of those objects of the form LF,
where F ∈ coShvT (X; RModR)fp). Let us denote this subcategory by coShvfp

lc (X; RModR).
We now study the ∞-category coShvlc(X; RModR) ' Shvlc(X; RModR) in more detail. For sim-

plicity, let us restrict our attention to the case where X is connected. For every point x ∈ X, let
ix : {x} → X denote the inclusion map. Pullback along ix determines a functor x∗ : Shvlc(X; RModR) →
RModR (given by evaluation at the unique simplex τ ∈ T containing x in its interior). This functor
commutes with all limits and colimits. In particular, it admits a left adjoint, which we will denote by
x+ : RModR → Shvlc(X; RModR). Since x∗ commutes with filtered colimits, x+(R) is a compact object
of Shvlc(X; RModR). Moreover, it is a compact generator of Shvlc(X; RModR): if F ∈ Shvlc(X; RModR),
then Mor(x+(R),F) ' 0 if and only if MorRModR

(R, x∗ F) = x∗ F vanishes. Since X is connected, this
is equivalent to the vanishing of all stalks of F: that is, to the condition that F ' 0. It follows that
Shvlc(X; RModR) is equivalent to the ∞-category RModR′ , where R′ is the A∞-ring whose underlying
spectrum is MorShvlc(X;RModR)(x+(R), x+(R)) ' MorRModR

(R, x∗x+R) ' x∗x+R.
We can describe R′ more explicitly. More generally, suppose we are given any pair of points x, y ∈ X.

We can form a homotopy pullback diagram of topological spaces (commutative up to canonical homotopy)

Px,y
φ //

ψ

��

{x}

x

��
{y}

y // X,

where Px,y is the path space {p : [0, 1] → X : p(0) = x, p(1) = y}. Let φ∗ and ψ∗ denote the pullback
functors on locally constant sheaves of right R-modules, and let φ+ and ψ+ be their left adjoints. There is a
natural “base-change” isomorphism y∗x+ ' ψ+φ

∗ of functors from RModR to itself. Consequently, y∗x+(R)
is given by ψ+ of the constant sheaf on Px,y with values in R. This is given by the smash product spectrum
Px,y ∧R (here we regard Px,y as an unpointed space) whose homotopy groups are given by the R-homology
groups R∗(Px,y) of the space Px,y. In particular, we have R′ = Px,x ∧R. If R is connective, we obtain

π0R
′ = R0(Px,x) =

⊕
η∈π0Px,x

π0R ' (π0R)[π1X].
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Let us now describe the full subcategory coShvfp
lc (X; RModR) ⊆ coShvlc(X; RModR)

θ' RModR′ . This

is a stable subcategory, consisting of those objects of the form L(F), where F ∈ coShvT (X; RModfp
R ). Note

that coShvT (X; RModfp
R ) is generated, as a stable ∞-category, by objects of the form Fτ,M , where

Fτ,M (σ) =

{
M if σ ⊆ τ
0 otherwise

and M is a finitely presented right R-module. It is therefore generated as a stable ∞-category by objects of
the form Fτ,R = Fτ . We observe that LFτ ' y+(R), where y is any point in the interior of τ : indeed, for
any object G ∈ coShvlc(X; RModR) we have

Mor(LFτ ,G) ' Mor(Fτ ,G) ' G(τ) ' y∗ G ' Mor(y+(R),G).

Let x be our fixed base point of X. Since X is connected, for any point y ∈ X there is an isomorphism
x+(R) ' y+(R) in coShvlc(X; RModR) (obtained by choosing a path joining x and y). Consequently, the

full subcategory coShvfp
lc (X; RModR) ⊆ coShvlc(X; RModR) is generated, as a stable subcategory, by the

object x+(R). In particular, it corresponds to the full subcategory

RModfp
R′ ⊆ RModR

under the equivalence θ. Passing to opposite ∞-categories, we obtain the following result:

Theorem 2. Let X be a connected finite polyhedron with base point x, T a triangulation of X, R an A∞-
ring, and R′ = Px,x ∧ R the A∞-ring constructed above. Let Shv0

T (X; LModfp
R ) ⊆ ShvT (X; LModfp

R ) be
defined as above. Then there is a canonical equivalence of ∞-categories

ShvT (X; LModfp
R )/ Shv0

T (X; LModfp
R ) ' LModfp

R′ .

Let Shv0
const(X; LModfp

R ) ' lim−→T
Shv0

T (X; LModfp
R . Passing to the direct limit over T , we obtain an

equivalence
Shvconst(X; LModfp

R )/ Shv0
const(X; LModfp

R ) ' LModfp
R′ .

Warning 3. Working with perfect module spectra in place of finitely presented module spectra, one can
construct a fully faithful embedding

ShvT (X; LModperf
R )/ Shv0

T (X; LModfp
R ) ' LModperf

R′ .

This embedding is generally not an equivalence, which is why we have generally confined our attention to
the study of finitely presented modules rather than perfect modules.

Definition 4. Let X be a spectrum. We say that X is invertible if there exists another spectrum Y and
a homotopy equivalence X ∧ Y ' S, where S is the sphere spectrum. One can show that a spectrum X is
invertible if and only if X ' ΣnS for some integer n. We let Spinv denote the full subcategory of Sp spanned
by the invertible spectra.

Let X be a space (for now, let’s say a polyhedron). A spherical fibration over X is a locally constant
sheaf on X with values in Spinv.

Example 5. Let M be a piecewise linear manifold of dimension n, and let F be the constant sheaf of spectra
taking the value S. Then the Verdier dual D(F) is a spherical fibration over M . For every point x ∈ M ,
we have seen that the stalk x∗D(F) can be described as the suspension spectrum of the homotopy quotient
M/M − {x}, which is (noncanonically) homotopy equivalent to an n-sphere.
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Now suppose that R is an A∞-ring equipped with an involution σ. Let Q : (LModfp
R )op → Sp denote

either of the quadratic functors Qq or Qs. Let X be a polyhedron equipped with a triangulation T , and let
ζ : T → Spinv be a spherical fibration on X. We define a quadratic functor QT,ζ : ShvT (X; LModfp

R )op → Sp
by the formula

QT,ζ(F) = lim−→
τ∈T

ζ(τ) ∧Q(F).

Since ζ is a constant functor locally onX, the work of the previous lectures shows thatQT,ζ is a nondegenerate

quadratic functor on ShvT (X; LModfp
R )op. Passing to the limit over T , we obtain a nondegenerate quadratic

functor
Qζ : Shvconst(X; LModfp

R )op → Sp .

In particular, we obtain a “twisted” Verdier duality functor Dζ : Shvconst(X; LModfp
R )op → Shvconst(X; LModfpR ),

given by
Dζ(F) = ζ ∧ D(F)

(where D denotes the standard Verdier duality functor discussed earlier).
In the next lecture, we will apply the paradigm of Lecture 8 to the cofiber sequence of stable∞-categories

Shv0
const(X; LModfp

R )→ Shvconst(X; LModfp
R )→ Shvconst(X; LModfp

R )/ Shv0
const(X; LModfp

R )

and the quadratic functor Qζ .
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