L-Groups of Polyhedra (Lecture 20)

March 11, 2011

Let \mathcal{C} be a stable ∞ -category equipped with a nondegenerate quadratic functor $Q: \mathcal{C}^{op} \to \operatorname{Sp}$. Let X be a finite polyhedron. In the last lecture, we proved that Q determines a nondegenerate quadratic functor $\operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C})^{op} \to \operatorname{Sp}$. Let us denote this functor by Q_X , to emphasize its dependence on X. We let $L(X;\mathcal{C},Q)$ denote the L-theory space of the pair $(\operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C}),Q_X)$.

Example 1. When X consists of a single point, we have $L(X; \mathcal{C}, Q) \simeq L(\mathcal{C}, Q)$.

Remark 2. Let $f: X \to Y$ be a map of finite polyhedra, and choose triangulations S and T of X and Y such that f is linear on each simplex. Let $\mathcal{F} \in \text{Shv}_S(X; \mathcal{C})$. Then we have a canonical map

$$Q_S(\mathcal{F}) \simeq \varinjlim_{\sigma \in S} Q(\mathcal{F}(\sigma)) \simeq \varinjlim_{\tau \in T} \varinjlim_{f(\sigma) = \tau} Q(\mathcal{F}(\sigma)) \to \varinjlim_{\tau \in T} Q(\varprojlim_{f(\sigma) = \tau} \mathcal{F}(\sigma)) = Q_T(f_* \, \mathcal{F}).$$

Taking the direct limit over triangulations, we obtain a natural transformation $Q_X \to Q_Y \circ f_*$. This natural transformation induces a natural transformation

$$f_* \circ \mathbb{VD} \to \mathbb{VD} \circ f_*$$

which we showed to be an equivalence in the previous lecture.

Consequently, the pushforward functor f_* carries quadratic objects of $\operatorname{Shv}_{\operatorname{const}}(X; \mathcal{C})$ to quadratic objects of $\operatorname{Shv}_{\operatorname{const}}(Y; \mathcal{C})$ and carries Poincare objects to Poincare objects. We obtain a map of classifying spaces $\operatorname{Poinc}(\operatorname{Shv}_{\operatorname{const}}(X; \mathcal{C}), Q_X) \to \operatorname{Poinc}(\operatorname{Shv}_{\operatorname{const}}(Y; \mathcal{C}), Q_Y)$. The same reasoning gives a map of simplicial spaces

$$\operatorname{Poinc}(\operatorname{Shv}_{\operatorname{const}}(X; \mathcal{C}), Q_X)_{\bullet} \to \operatorname{Poinc}(\operatorname{Shv}_{\operatorname{const}}(Y; \mathcal{C}), Q_Y)_{\bullet}$$

hence a map of L-theory spaces

$$L(X; \mathcal{C}, Q) \to L(Y; \mathcal{C}, Q).$$

In other words, $L(X; \mathcal{C}, Q)$ depends functorially on X.

We now study the functor $X \mapsto L(X; \mathcal{C}, Q)$.

Lemma 3. Let $n \geq 0$ be an integer, and suppose that $f, g: X \to Y$ are homotopic PL maps of finite polyhedra. Then f and g induce the same map $L_n(X; \mathcal{C}, Q) \to L_n(Y; \mathcal{C}, Q)$.

Proof. Replacing Q by $\Sigma^{-n}Q$, we can reduce to the case n=0. Let (\mathcal{F},q) be a Poincare object of $\operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C})$. We wish to show that the Poincare objects $f_*\mathcal{F}$ and $g_*\mathcal{F}$ are cobordant. Choose a PL map $h:X\times[0,1]\to Y$ which is a homotopy from f to g. Let $i_0:X\simeq X\times\{0\}\hookrightarrow X\times[0,1]$ be the canonical map, and define i_1 similarly. Since the pushforward functor h_* carries cobordisms to cobordisms, it will suffice to show that $i_{0,*}\mathcal{F}$ and $i_{1,*}\mathcal{F}$ are cobordant as Poincare objects of $\operatorname{Shv}_{\operatorname{const}}(X\times[0,1];\mathcal{C})$. It now suffices to observe that a bordism between these objects is given by $p^*\mathcal{F}$, where $p:X\times[0,1]\to X$ denotes the projection.

From Lemma 3 we immediately deduce the following consequence:

Proposition 4. Let $f: X \to Y$ be a PL homotopy equivalence between finite polyhedra. Then f induces a homotopy equivalence $L(X; \mathcal{C}, Q) \to L(Y; \mathcal{C}, Q)$.

Let Poly denote the category whose objects are finite polyhedra and whose morphisms are PL maps. The construction $X \mapsto L(X; \mathcal{C}, Q)$ determines a functor from the category Poly to the ∞ -category S of spaces. It follows from Proposition 4 that this functor factors through $\operatorname{Poly}[W^{-1}]$, where $\operatorname{Poly}[W^{-1}]$ denotes the ∞ -category obtained from Poly by formally inverting all homotopy equivalences between finite polyhedra. The ∞ -category $\operatorname{Poly}[W^{-1}]$ is equivalent to the full subcategory $S^{\operatorname{fin}} \subseteq S$ spanned by those spaces which are homotopy equivalent to a finite polyhedron (or equivalently, to a finite CW complex). We may therefore regard the functor $X \mapsto L(X; \mathcal{C}, Q)$ as defined on the ∞ -category S^{fin} of finite spaces.

To continue our analysis, it will be convenient to introduce a slight variation on the above construction. Let X be a finite polyhedron, and let $Y \subseteq X$ be a closed subpolyhedron. We then have a fully faithful embedding $i_*: \operatorname{Shv}_{\operatorname{const}}(Y; \mathcal{C}) \to \operatorname{Shv}_{\operatorname{const}}(X; \mathcal{C})$ which commutes with Verdier duality. It follows that the quotient ∞ -category $\operatorname{Shv}_{\operatorname{const}}(X; \mathcal{C}) / \operatorname{Shv}_{\operatorname{const}}(Y; \mathcal{C})$ inherits a nondegenerate quadratic functor. This quotient can be identified with a full subcategory of $\operatorname{Shv}_{\operatorname{const}}(X,Y;\mathcal{C}) \subseteq \operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C})$: namely, the subcategory spanned by those sheaves \mathcal{F} such that $i^*\mathcal{F} \simeq 0$. (Note that, for any $\mathcal{F} \in \operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C})$, the ∞ -category of sheaves $\mathcal{F}' \in \operatorname{Shv}_{\operatorname{const}}(X;\mathcal{C})$ equipped with a map $\mathcal{F}' \to \mathcal{F}$ whose cofiber is supported on Y has a final object, given by the extension by zero of $\mathcal{F}|(X-Y)$.) We let $L(X,Y;\mathcal{C},Q)$ denote the L-theory space of $(\operatorname{Shv}_{\operatorname{const}}(X,Y;\mathcal{C}),Q_X)$. We have seen that there is a fiber sequence of spaces

$$L(Y; \mathcal{C}, Q) \to L(X; \mathcal{C}, Q) \to L(X, Y; \mathcal{C}, Q).$$

More generally, for $Z \subseteq Y \subseteq Z$, we have a fiber sequence

$$L(Y, Z; \mathcal{C}, Q) \to L(X, Z; \mathcal{C}, Q) \to L(X, Y; \mathcal{C}, Q).$$

Note that the ∞ -category $\operatorname{Shv}_{\operatorname{const}}(X,Y;\mathcal{C})$ can be identified with the full subcategory of $\operatorname{Shv}_{\operatorname{const}}(X/Y;\mathcal{C})$ spanned by those sheaves which vanish at the base point of X/Y. For every pointed polyhedron Z, let $L^{\operatorname{red}}(Z;\mathcal{C},Q)$ denote the relative L-theory space $L(Z,*;\mathcal{C},Q)$. The construction $Z\mapsto L^{\operatorname{red}}(Z;\mathcal{C},Q)$ is functorial with respect to pointed PL maps between pointed finite polyhedra. Moreover, Proposition 4 implies that it carries homotopy equivalences to homotopy equivalences, and therefore extends (in an essentially unique way) to a map

$$L^{\mathrm{red}}(\bullet; \mathfrak{C}, Q) : \mathfrak{S}_*^{\mathrm{fin}} \to \mathfrak{S},$$

where S_*^{fin} denotes the ∞ -category of pointed finite spaces.

Proposition 5. The functor $L^{red}(\bullet; \mathfrak{C}, Q) : \mathfrak{S}^{fin}_* \to \mathfrak{S}$ is excisive: that is, it carries homotopy pushout squares to homotopy pullback squares.

Proof. Consider a homotopy pushout square of finite pointed spaces

$$\begin{array}{ccc} X \longrightarrow X' \\ \downarrow & & \downarrow \\ Y \longrightarrow Y'. \end{array}$$

Without loss of generality, we may assume that each of these spaces is a finite polyhedron, each of the maps are PL, the horizontal maps are inclusions. Consider the diagram

Since the rows are fiber sequences, to show that the left square is a homotopy pullback, it will suffice to show that θ is a homotopy equivalence. This is clear, since the map $X'/X \to Y'/Y$ is a homotopy equivalence, by virtue of our assumption that σ is a homotopy pushout square.

It follows from Proposition 5 that we can write

$$L^{\mathrm{red}}(X; \mathfrak{C}, Q) \simeq \Omega^{\infty}(X \wedge \mathbf{L}(\mathfrak{C}, Q))$$

for some spectrum $\mathbb{L}(\mathcal{C},Q)$, which we will call the *L*-theory spectrum of the pair (\mathcal{C},Q) . In particular, $L(X;\mathcal{C},Q) \simeq L^{\mathrm{red}}(X_+;\mathcal{C},Q)$ can be identified with the zeroth space of $X_+ \wedge \mathbb{L}(\mathcal{C},Q)$. Taking X to be a point, we get $\Omega^{\infty}\mathbb{L}(\mathcal{C},Q) = L(\mathcal{C},Q)$, so that the homotopy groups of the spectrum $\mathbb{L}(\mathcal{C},Q)$ are the *L*-groups of the pair (\mathcal{C},Q) . More generally,

$$L_n(X; \mathfrak{C}, Q) \simeq \pi_n(X_+ \wedge \mathbb{L}(\mathfrak{C}, Q))$$

is the nth homology group of X with coefficients in the spectrum $\mathbb{L}(\mathcal{C}, Q)$.