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Let C be a stable ∞-category equipped with a nondegenerate quadratic functor Q : Cop → Sp. Let X
be a finite polyhedron. In the last lecture, we proved that Q determines a nondegenerate quadratic functor
Shvconst(X;C)op → Sp. Let us denote this functor by QX , to emphasize its dependence on X. We let
L(X;C, Q) denote the L-theory space of the pair (Shvconst(X;C), QX).

Example 1. When X consists of a single point, we have L(X;C, Q) ' L(C, Q).

Remark 2. Let f : X → Y be a map of finite polyhedra, and choose triangulations S and T of X and Y
such that f is linear on each simplex. Let F ∈ ShvS(X;C). Then we have a canonical map

QS(F) ' lim−→
σ∈S

Q(F(σ)) ' lim−→
τ∈T

lim−→
f(σ)=τ

Q(F(σ))→ lim−→
τ∈T

Q( lim←−
f(σ)=τ

F(σ)) = QT (f∗ F).

Taking the direct limit over triangulations, we obtain a natural transformation QX → QY ◦ f∗. This natural
transformation induces a natural transformation

f∗ ◦ VD→ VD ◦f∗

which we showed to be an equivalence in the previous lecture.
Consequently, the pushforward functor f∗ carries quadratic objects of Shvconst(X;C) to quadratic objects

of Shvconst(Y ;C) and carries Poincare objects to Poincare objects. We obtain a map of classifying spaces
Poinc(Shvconst(X;C), QX)→ Poinc(Shvconst(Y ;C), QY ). The same reasoning gives a map of simplicial spaces

Poinc(Shvconst(X;C), QX)• → Poinc(Shvconst(Y ;C), QY )•

hence a map of L-theory spaces
L(X;C, Q)→ L(Y ;C, Q).

In other words, L(X;C, Q) depends functorially on X.

We now study the functor X 7→ L(X;C, Q).

Lemma 3. Let n ≥ 0 be an integer, and suppose that f, g : X → Y are homotopic PL maps of finite
polyhedra. Then f and g induce the same map Ln(X;C, Q)→ Ln(Y ;C, Q).

Proof. Replacing Q by Σ−nQ, we can reduce to the case n = 0. Let (F, q) be a Poincare object of
Shvconst(X;C). We wish to show that the Poincare objects f∗ F and g∗ F are cobordant. Choose a PL
map h : X × [0, 1] → Y which is a homotopy from f to g. Let i0 : X ' X × {0} ↪→ X × [0, 1] be the
canonical map, and define i1 similarly. Since the pushforward functor h∗ carries cobordisms to cobordisms,
it will suffice to show that i0,∗ F and i1,∗ F are cobordant as Poincare objects of Shvconst(X × [0, 1];C). It
now suffices to observe that a bordism between these objects is given by p∗ F, where p : X × [0, 1] → X
denotes the projection.

From Lemma 3 we immediately deduce the following consequence:
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Proposition 4. Let f : X → Y be a PL homotopy equivalence between finite polyhedra. Then f induces a
homotopy equivalence L(X;C, Q)→ L(Y ;C, Q).

Let Poly denote the category whose objects are finite polyhedra and whose morphisms are PL maps. The
construction X 7→ L(X;C, Q) determines a functor from the category Poly to the ∞-category S of spaces.
It follows from Proposition 4 that this functor factors through Poly[W−1], where Poly[W−1] denotes the
∞-category obtained from Poly by formally inverting all homotopy equivalences between finite polyhedra.
The ∞-category Poly[W−1] is equivalent to the full subcategory Sfin ⊆ S spanned by those spaces which are
homotopy equivalent to a finite polyhedron (or equivalently, to a finite CW complex). We may therefore
regard the functor X 7→ L(X;C, Q) as defined on the ∞-category Sfin of finite spaces.

To continue our analysis, it will be convenient to introduce a slight variation on the above construction.
Let X be a finite polyhedron, and let Y ⊆ X be a closed subpolyhedron. We then have a fully faithful
embedding i∗ : Shvconst(Y ;C) → Shvconst(X;C) which commutes with Verdier duality. It follows that the
quotient ∞-category Shvconst(X;C)/ Shvconst(Y ;C) inherits a nondegenerate quadratic functor. This quo-
tient can be identified with a full subcategory of Shvconst(X,Y ;C) ⊆ Shvconst(X;C): namely, the subcategory
spanned by those sheaves F such that i∗ F ' 0. (Note that, for any F ∈ Shvconst(X;C), the ∞-category
of sheaves F′ ∈ Shvconst(X;C) equipped with a map F′ → F whose cofiber is supported on Y has a final
object, given by the extension by zero of F |(X − Y ).) We let L(X,Y ;C, Q) denote the L-theory space of
(Shvconst(X,Y ;C), QX). We have seen that there is a fiber sequence of spaces

L(Y ;C, Q)→ L(X;C, Q)→ L(X,Y ;C, Q).

More generally, for Z ⊆ Y ⊆ Z, we have a fiber sequence

L(Y,Z;C, Q)→ L(X,Z;C, Q)→ L(X,Y ;C, Q).

Note that the∞-category Shvconst(X,Y ;C) can be identified with the full subcategory of Shvconst(X/Y ;C)
spanned by those sheaves which vanish at the base point of X/Y . For every pointed polyhedron Z, let
Lred(Z;C, Q) denote the relative L-theory space L(Z, ∗;C, Q). The construction Z 7→ Lred(Z;C, Q) is func-
torial with respect to pointed PL maps between pointed finite polyhedra. Moreover, Proposition 4 implies
that it carries homotopy equivalences to homotopy equivalences, and therefore extends (in an essentially
unique way) to a map

Lred(•;C, Q) : Sfin
∗ → S,

where Sfin
∗ denotes the ∞-category of pointed finite spaces.

Proposition 5. The functor Lred(•;C, Q) : Sfin
∗ → S is excisive: that is, it carries homotopy pushout squares

to homotopy pullback squares.

Proof. Consider a homotopy pushout square of finite pointed spaces

X //

��

X ′

��
Y // Y ′.

Without loss of generality, we may assume that each of these spaces is a finite polyhedron, each of the maps
are PL, the horizontal maps are inclusions. Consider the diagram

Lred(X;C, Q) //

��

Lred(X ′;C, Q) //

��

Lred(X ′/X;C, Q)

θ

��
Lred(Y ;C, Q) // Lred(Y ′;C, Q) // Lred(Y ′/Y ;C, Q).
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Since the rows are fiber sequences, to show that the left square is a homotopy pullback, it will suffice to show
that θ is a homotopy equivalence. This is clear, since the map X ′/X → Y ′/Y is a homotopy equivalence,
by virtue of our assumption that σ is a homotopy pushout square.

It follows from Proposition 5 that we can write

Lred(X;C, Q) ' Ω∞(X ∧ L(C, Q))

for some spectrum L(C, Q), which we will call the L-theory spectrum of the pair (C, Q). In particular,
L(X;C, Q) ' Lred(X+;C, Q) can be identified with the zeroth space of X+ ∧ L(C, Q). Taking X to be a
point, we get Ω∞L(C, Q) = L(C, Q), so that the homotopy groups of the spectrum L(C, Q) are the L-groups
of the pair (C, Q). More generally,

Ln(X;C, Q) ' πn(X+ ∧ L(C, Q))

is the nth homology group of X with coefficients in the spectrum L(C, Q).

3


