
Categorical Background (Lecture 2)

February 2, 2011

In the last lecture, we stated the main theorem of simply-connected surgery (at least for manifolds of
dimension 4m), which highlights the importance of the signature σX as an invariant of an (oriented) Poincare
complex. Let us begin with a few remarks about how this invariant is defined.

Let V be a finite dimensional vector space over the real numbers and let q : V → R be a nondegenerate
quadratic form on V , with associated bilinear form (, ) : V × V → R. We can always choose an orthogonal
basis {x1, . . . , xa, y1, . . . , yb} for V satisfying

(xi, xi) = 1 (yi, yi) = −1.

The sum a + b is the dimension of the vector space V , and the difference a − b is called the signature of q,
and denoted σ(q).

Theorem 1 (Sylvester). Let V be a finite dimensional vector space over R equipped with a nondegenerate
quadratic form q : V → R. Then the signature σ(q) is well-defined: that is, it does not depend on the
choice of orthogonal basis for V . Moreover, if V ′ is another finite dimensional vector space over R with a
quadratic form q′ : V ′ → R, then there exists an isometry (V, q) ' (V ′, q′) if and only if dimV = dimV ′ and
σ(q) = σ(q′).

The notion of a vector space V with a quadratic form makes sense over an arbitrary field k. We have
emphasized the case k = R for two reasons: first, the classification of quadratic forms over R is particularly
simple (because of Theorem 1). Second, information about the intersection form on the middle cohomology
H2m(X;R) of a simply connected Poincare complex of dimension 4m plays an important role in determining
whether or not X is homotopy equivalent to a manifold. However, quadratic forms over other fields are also
of geometric interest. For example, if X is a simply connected Poincare complex of dimension 4m + 2 > 4,
then the problem of finding a manifold in the homotopy type of X turns out to depend on more subtle
properties of quadratic forms over the field F2. We would ultimately like to treat manifolds of all dimensions
in a uniform way, which will require us to somehow interpolate between the fields k = R and k = F2. We
can do this by considering quadratic forms over the integers, or over more general rings.

The theory of quadratic forms over an arbitrary ring R can be very complicated. For example, the
classification of quadratic forms over the field Q of rational numbers is a nontrivial achievement in number
theory (the Hasse-Minkowski theorem). In general, we cannot detect whether two quadratic forms are
isomorphic by means of simple integer invariants, as in Theorem 1. However, there are more elaborate
theories that are designed to generalize the dimension and signature to other contexts:
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K-theory L-theory

input: projective module module with quadratic form

for R-vector spaces dimension signature

classical version Grothendieck group K0 Witt group

invariant of manifolds Euler characteristic signature

local-global principle Gauss-Bonnet theorem Hirzebruch signature formula

We are ultimately interested in understanding the right hand column of this table. But let us first spend
some time discussing the left column, which is perhaps more familiar. We begin by recalling the definition
of the Grothendieck group K0(A) of an associative ring A. The collection of isomorphism classes of finitely
generated projective A-modules forms a commutative monoid under the formation of direct sums. The
group completion of this monoid is denoted by K0(A), and called the (0th) K-group of A. Put another way,
the K-group K0(A) is the abelian group generated by symbols [P ], where P ranges over all projective left
A-modules of finite rank, subject to the relations given by

[P ⊕ P ′] = [P ] + [P ′].

Remark 2. If A is a field, then all finitely generated A-modules are automatically projective, and are
determined up to isomorphism by their rank (in other words, by their dimension as A-vector spaces). Con-
sequently, there is a canonical isomorphism K0(A) ' Z, which assigns to each A-module P its dimension
dimA(P ). Consequently, we can think of the K-group K0(A) as a device which allows us to generalize the
notion of dimension to the case of modules over arbitrary rings.

Let us now consider the following question:

Question 3. What is K-theory an invariant of?

We give several answers, beginning with the obvious.

(a) K-theory is an invariant of rings.

However, we can immediately improve on (a). Note that the Grothendieck group K0(A) is defined purely
in terms of the category of finitely generated projective modules over A. In particular, Morita equivalent
rings (such as matrix rings Mn(A)) have the same K-theory as A. We can therefore improve on our first
answer:

(b) K-theory is an invariant of additive categories.

For our purposes, it will be convenient to give a variation on this answer. Recall that we are ultimately
interested in assigning geometric invariants to manifolds and other Poincare complexes. We can obtain some
by considering algebraic invariants to vector spaces. Let k be a field. For any finite CW complex X, we can
consider the Betti numbers

bi = dimk Hi(X; k).

In general, these invariants depend on the field k. However, the Euler characteristic

χ(X) =
∑
i

(−1)ibi =
∑
i

(−1)i dimk Hi(X; k)
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does not depend on k. This invariant χ(X) is not generally not the dimension of a vector space (for example,
it can be negative). Instead, we should think of it as an invariant of a chain complex of vector spaces: the
singular chain complex C∗(X; k).

More generally, we would like to say that for any ring A, the chain complex C∗(X;A) determines a class
in the Grothendieck group K0(A). (Of course, we know what this class should be: namely, χ(X)[A] ∈ K0(A).
Ignore this for the moment.) We generally cannot define this class to be the alternating sum∑

i

(−1)i[Hi(X;A)],

because the individual A-modules Hi(X;A) need not be projective.
To show that C∗(X;A) determines a well-defined class in the group K0(A), it is convenient to describe

K0(A) in a different way. Rather than representing K-theory classes by projective modules over A, we take
as representatives chain complexes of modules over A. Of course, we do not want to allow arbitrary chain
complexes. In order to obtain reasonable invariants, we should restrict our attention to chain complexes which
are perfect: that is, which are quasi-isomorphic to bounded chain complexes of finite projective modules. If
X is a finite CW complex, then the singular chain complex C∗(X;A) is always perfect: for example, it is
quasi-isomorphic to the chain complex which computes the cellular homology of X.

Let Perf denote the category whose objects are bounded chain complexes of finite projective modules.
For every perfect complex M•, we can find a quasi-isomorphism P• → M•, where P• ∈ Perf . The chain
complex P• need not be unique. However, it is unique up to chain homotopy equivalence. We can obtain a
stronger uniqueness result by passing to the homotopy category. Let hPerf be the category with the same
objects as Perf , but whose morphisms are given by chain homotopy classes of chain maps. The category
hPerf is called the perfect derived category of A. Every perfect complex of A-modules determines an object
of hPerf , which is well-defined up to isomorphism. Moreover, hPerf is an example of a triangulated category:
that is, there is a notion of distinguished triangle

P ′• → P• → P ′′• → P ′•[1]

in hPerf . Let K ′0(A) denote the abelian group generated by symbols [P•], where P• is an object of hPerf ,
with relations [P•] = [P ′•] + [P ′′• ] for every distinguished triangle

P ′• → P• → P ′′• → P ′•[1].

Every finitely generated projective A-module can be regarded as a perfect complex which is concentrated in
degree zero, and this construction determines a map of abelian groups K0(A)→ K ′0(A). One can show that
this map is an isomorphism. In other words, one can define the Grothendieck group using (perfect) chain
complexes of modules, rather than individual modules. With this definition, it is easy to see that C∗(X;A)
determines a well-defined K-theory class, for every finite CW complex X. This suggests a different answer
to Question 3:

(c) K-theory is an invariant of triangulated categories.

For purposes of this course, answer (c) is a little bit misleading. The passage from the category Perf
to its homotopy category hPerf has upsides and downsides. It has the virtue of allowing us to treat quasi-
isomorphic chain complexes as if they are actually isomorphic. Unfortunately, it also loses a lot of information,
because it has the effect of identifying chain homotopic morphisms without remembering any information
about the chain homotopy. For our purposes, we will need to work with an intermediate object Dperf(A),
which will allow us to treat quasi-isomorphisms between chain complexes as if they were isomorphisms while
retaining information about chain homotopies. The fine print is that unlike Perf and hPerf , Dperf(A) is
not a category: rather it is a more general object called an ∞-category.

We are now ready to give our final answer to Question 3:

(d) K-theory is an invariant of stable ∞-categories.
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Our goal in this lecture and the next is to explain the meaning of this statement. To do so will require
a long digression.

Definition 4. Let C be a category. The nerve of C is a simplicial set N(C) whose n-simplices are given by
composable sequences of morphisms

C0 → C1 → · · · → Cn

in C.

If C is a category, then C can be recovered (up to canonical isomorphism) from its nerve N(C). The
objects of C are in bijection with the 0-simplices of N(C). If X and Y are objects in C, then MapC(X,Y ) can
be identified with the set of 1-simplices of N(C) joining X with Y . Given a pair of composable morphisms
f ∈ HomC(X,Y ) and g ∈ HomC(Y,Z), there is a unique 2-simplex of N(C) having 0th face g and 2nd face
f , and the composition g ◦ f is the 1st face of this 2-simplex:

Y
g

  
X

f
>>

// Z.

We can summarize this discussion as follows: the construction C 7→ N(C) determines a fully faithful em-
bedding from the category of (small) categories into the category of simplicial sets. The essential image is
described by the following claim:

Fact 5. Let S be a simplicial set. Then S is isomorphic to the nerve of a category if and only if the following
condition is satisfied:

(∗) For every pair of integers 0 < i < n, every map f0 : Λn
i → S extends uniquely to an n-simplex

f : ∆n → S.

Here Λn
i denotes the ith horn: the simplicial subset of ∆n obtained by removing the interior and the face

opposite the ith vertex.

Example 6. When i = 1 and n = 2, condition (∗) says that every pair of “composable” edges f and g
determine a unique 2-simplex

Y
g

  
X

f
>>

// Z.

Recall that a simplicial set S is a Kan complex if it satisfies the following variant of (∗):

(∗′) For every pair of integers 0 ≤ i ≤ n, every map f0 : Λn
i → S extends to an n-simplex f : ∆n → S.

Conditions (∗) and (∗′) look similar, but neither implies the other. Condition (∗) requires that we can
uniquely fill any inner horn (that is, a horn Λn

i with 0 < i < n), but says nothing about the extremal cases
i = 0 and i = n. Condition (∗′) requires that we can fill every horn Λn

i , but does not require the filler to be
unique. However, these two conditions admit a common generalization:

Definition 7. An ∞-category is a simplicial set S satisfying the following condition:

(∗′′) For every pair of integers 0 < i < n, every map f0 : Λn
i → S extends to an n-simplex f : ∆n → S.

Remark 8. In the literature, ∞-categories are often referred to as quasi-categories or weak Kan complexes.

Example 9. If C is a category, then its nerve N(C) is an ∞-category. Since passage to the nerve loses no
information about a category, this construction allows us to view the usual definition of a category as a
special case of the notion of ∞-category.
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Example 10. Any Kan complex is an∞-category. In particular, if X is a topological space, then the singular
complex Sing(X) (whose n-simplices are given by continuous maps from a topological n-simplex into X) is
an ∞-category. Since the singular complex Sing(X) determines X up to weak homotopy equivalence, not
much information is lost by the construction X 7→ Sing(X). Consequently, for many purposes, we can think
of ∞-categories as a generalization of topological spaces.

We will typically use the symbol C to denote an ∞-category. We will refer to the 0-simplices of C as its
objects and the 1-simplices of C as its morphisms. In the simplest case (i = 1 and n = 2), the horn-filling
condition (∗′′) asserts that for every pair of “composable” morphisms f : X → Y and g : Y → Z, we can
find a 2-simplex σ :

Y
g

��
X

f
>>

h // Z

in C. Here we can think of h as a composition of f and g, and we will write h = g ◦f . A word of warning is in
order: condition (∗′′) does not require that σ is unique, so there may be several choices for the composition
h. However, one can show that h is unique up to a suitable notion of homotopy. This turns out to be good
enough for many purposes: Definition 7 provides a robust generalization of classical category theory. Many
of the useful concepts from classical category theory (limits and colimits, adjoint functors, etcetera) can be
generalized to the setting of ∞-categories.
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