
Verdier Duality (Lecture 19)

March 9, 2011

Fix a polyhedron X and a stable ∞-category C.

Construction 1. Let Q : Cop → Sp be a quadratic functor. Let T be a triangulation of X. We define
QT : ShvcT (C)op → Sp by the formula

QT (F) = lim−→
τ∈T

Q(F(τ)).

It is not difficult to see that QT is a quadratic functor on ShvcT (K,C)op, whose associative bilinear functor
is given by

BT (F,F′) = lim−→
τ∈T

B(F(τ),F′(τ)),

where B is the bilinear functor associated to Q.

In the situation of Construction 1, suppose we are given another triangulation S of X which refines T .
Let i∗ : ShvcT (X;C)→ ShvcS(X;C) be as defined earlier. The composition

ShvcT (X;C)op
i∗→ ShvcS(X;C)

QS→

is given by the formula F 7→ lim−→σ∈S Q(F(i(σ))). We claim that this composition is canonically equivalent to

QT . To prove this, it suffices to show that i induces a cofinal map Sop → T op. Unwinding the definitions, we
must show that for every simplex τ ∈ T , the partially ordered set {σ ∈ S : i(σ) ⊆ τ} has weakly contractible
nerve. This is clear, since the geometric realization of this nerve is homeomorphic to the simplex τ . It
follows that the functors QT are compatible as T ranges over all triangulations of X, and amalgamate to a
quadratic functor

Qconst : Shvcconst(X;C)op → Sp .

Let us now assume that the quadratic functor Q on C is representable, and let D be the corresponding
duality functor. We claim that for every triangulation T of K, the quadratic functor QT is also representable,
and the corresponding duality functor DT is given by the formula

DT (F)(τ) = lim−→
σ

{
D(F(σ)) if τ ⊆ σ
0 otherwise.

(Note that this functor carries ShvcT (K;C) to itself).
For simplicity, let us assume that DT exists and show that it is given by the formula above. (A slightly

more complication version of the same argument will show that it is given by the above formula.) Fix an
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object C ∈ C and a simplex τ ∈ T . For every object F ∈ ShvT (X;C), we have homotopy equivalences

MorC(C, (DT F)(τ)) ' MorShvT (X;C)(F
τ,C ,DT F)

' BT (Fτ,C ,F)

' lim−→
τ ′∈T

B(Fτ,C(τ ′),F(τ ′))

' lim−→
τ ′

MorC(C,

{
DF(τ ′) if τ ⊆ τ ′

0 otherwise.
)

' MorC(C, lim−→

{
DF(τ ′) if τ ⊆ τ ′

0 otherwise.
)

depending functorially on C, so by Yoneda’s lemma we get a canonical equivalence

(DT F)(τ) = lim−→
τ ′

{
D(F(τ)) if τ ⊆ τ ′

0 otherwise.

Example 2. Let F be a constant functor taking the value C ∈ C.The above formula shows that

(DT F)(τ) ' DΓ(Fτ,C) = D(C(X,X−{x})) = D(C) ∧ (X/X − {x})

(here x ∈ X denotes a point belonging to the interior of σ, and we regard the stable∞-category C as tensored
over the ∞-category of finite pointed spaces).

Now suppose that S is a triangulation refining T . We claim that the functor

i∗ : ShvcT (X;C)→ ShvcT ′(X;C)

intertwines the duality functors DT and DT ′ . Since QT ' QT ′ ◦ i∗, for every object F ∈ ShvcT (X;C) we have
a canonical map i∗DT (F) → DT ′(i∗ F). We claim that this map is invertible. To prove this, consider an
arbitrary G ∈ ShvcS(X;C). We wish to prove that the canonical map

BT (i+ G,F) ' MorShvc
T

(i+ G,DT F) MorShvc
S(X;C)(G, i

∗DT F)→ MorShvc
S(X;C)(G,DSi∗ F) ' BS(G, i∗ F)

is an equivalence. The left hand side is given by

lim−→
τ∈T

B( lim−→
σ∈S,σ⊆τ

G(σ),F(τ)) ' lim−→
τ∈T

lim←−
σ∈S,σ⊆τ

B(G(σ),F(τ)).

In the last lecture, we saw that the collection of σ ⊆ τ such that i(σ) = τ is cofinal in the collection of all
σ ⊆ τ . We may therefore rewrite the above limit as

lim−→
τ∈T

lim←−
σ∈S,σ⊆τ

B(G(σ),F(i(σ)).

Define H : S → Spop by the formula H(σ) = B(G(σ),F(iσ)). Then the above construction is given by
Γ(i+ H) (computed in the ∞-category Spop). In the last lecture, we saw that this is equivalent to

Γ(H) = lim−→
σ∈S

B(G(σ),F(i(σ))) = BS(G, i∗ F),

as desired.
Amalgamating the duality functors DT as T runs over all triangulations of X, we obtain a duality functor

VD : Shvcconst(X;C)op → Shvcconst(X;C).
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We will refer to this functor as Verdier duality.
Suppose now that we have two finite polyhedra X and Y , and a PL map f : X → Y . To f we can associate

a pullback functor f∗ : Shvconst(Y ;C) → Shvconst(X;C). This pullback functor admits right adjoint, which
we will denote by f∗. For F ∈ Shvconst(X;C), can explicitly describe f∗(F) as follows. Choose triangulations
S and T of X and Y , respectively, such that F is S-constructible and f is simplicial: that is, it induces a
linear map from each simplex of S to each simplex of T (carrying vertices to vertices). Then f∗ F can be
identified with the T -constructible sheaf on Y given by the formula

(f∗ F)(τ) = lim←−
σ∈S,τ⊆f(σ)

F(σ).

Using a cofinality argument, we can also write

(f∗ F)(τ) = lim←−
f(σ)=τ

F(σ).

Let G ∈ ShvT (Y,C). Then we have a canonical equivalence

BS(F, f∗ G) = lim−→
σ

B(F(σ),G(f(σ))) = lim−→
τ

lim−→
f(σ)=τ

B(F(σ),G(τ)) ' lim−→
τ

( lim←−
f(σ)=τ

F(σ),G(τ)) = BT (f∗ F,G).

We can rewrite the left side as

MorShvS(X;C)(f
∗ G,DS F) ' MorShvT (Y ;C)(G, f∗DS F)

and the right side as
MorShvT (Y ;C)(G,DT f∗ F).

Yoneda’s lemma gives us a canonical isomorphism

DT f∗ F ' f∗DS F .

Passing to the direct limit over all triangulations, we deduce that Verdier duality commutes with pushfor-
wards.

Proposition 3. Let Q : Cop → Sp be a nondegenerate quadratic functor. Then for any finite polyhedron X
equipped with a triangulation T , the quadratic functor QT : ShvT (X;C)op → Sp is nondegenerate. Passing
to the direct limit over T , obtain a nondegenerate quadratic functor Qconst : Shvconst(X;C)op → Sp.

Proof. Let F ∈ ShvT (X;C); we wish to show that the canonical map

θF : F → DTDT F

is invertible. For every simplex τ ∈ T and every object C ∈ C, define Fτ,C by the formula

Fτ,C(τ ′) =

{
C if τ ′ ⊆ τ
0 otherwise.

Arguing as in the previous lecture, we see that the objects Fτ,C generate the stable ∞-category ShvT (X;C).
It will therefore suffice to prove that θF is an equivalence when F = Fτ,C . Note that Fτ,C = f∗ G, where f
denotes the inclusion τ → X and G is a constant functor taking the value C. Since Verdier duality commutes
with pushforwards, we can replace X by τ and thereby reduce to the case where X is a simplex, T is a the
collection of faces of X, and F is the constant functor taking the value C ∈ C. Let n be the dimension of X.

We now compute
DT (F)(σ) = D(C(X,X−{x}))
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where x is a point belonging to the interior of σ. If σ is a proper face of X, then X and X − {x} are both
contractible so that DT (F)(σ) = 0. If σ = X, then the cofiber X/(X − {x}) is homotopy equivalent to Sn,
so that DT (F)(σ) ' ΣnD(C). Thus DT (F) is the functor F′ given by the formula

F′(σ) =

{
ΣnD(C) if σ = X

0 otherwise.

We now compute DT F′ using the formula

(DT F′)(τ) = lim−→
σ

{
DF′(σ) if τ ⊆ σ
0 otherwise.

Using our formula for F′, we can rewrite this as

lim−→
σ

{
D(ΣnD(C)) if σ = X

0 otherwise.

The nondegeneracy of Q gives an equivalence DΣnD(C) ' Σ−nC. We therefore obtain (DT F′) ' (X, ∂ X)∧
Σ−nC ' C for every simplex τ ∈ T , so that we have an isomorphism DT F′ ' F. With a bit more effort,
one can show that this isomorphism is given by the functor θF defined above.
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