
Polyhedra and PL Manifolds (Lecture 17)

February 27, 2011

In this lecture, we will review the notion of a piecewise linear manifold (which we will typically abbreviate
as PL manifold). More information can be found in the lecture notes of my MIT course 18.937.

Definition 1. Let K be a subset of a Euclidean space Rn. We will say that K is a linear simplex if it can
be written as the convex hull of a finite subset {x1, . . . , xk} ⊂ Rn which are independent in the sense that if∑
cixi = 0 ∈ Rn and

∑
ci = 0 ∈ R imply that each ci vanishes.

We will say that K is a polyhedron if, for every point x ∈ K, there exists a finite number of linear simplices
σi ⊆ K such that the union

⋃
i σi contains a neighborhood of X.

Remark 2. Any open subset of a polyhedron in Rn is again a polyhedron.

Remark 3. Every polyhedron K ⊆ Rn admits a triangulation: that is, we can find a collection of linear
simplices S = {σi ⊆ K} with the following properties:

(1) Any face of a simplex belonging to S also belongs to S.

(2) Any nonempty intersection of any two simplices of S is a face of each.

(3) The union of the simplices σi is K.

Definition 4. Let K ⊆ Rn be a polyhedron. We will say that a map f : K → Rm is linear if it is the
restriction of an affine map from Rn to Rm. We will say that f is piecewise linear (PL) if there exists a
triangulation {σi ⊆ K} such that each of the restrictions f |σi is linear.

If K ⊆ Rn and L ⊆ Rm are polyhedra, we say that a map f : K → L is piecewise linear if the underlying
map f : K → Rm is piecewise linear.

Remark 5. Let f : K → L be a piecewise linear homeomorphism between polyhedra. Then the inverse map
f−1 : L → K is again piecewise linear. To see this, choose any triangulation of K such that the restriction
of f to each simplex of the triangulation is linear. Taking the image under f , we obtain a triangulation of
L such that the restriction of f−1 to each simplex is linear.

Remark 6. The collection of all polyhedra can be organized into a category, where the morphisms are
given by piecewise linear maps. This allows us to think about polyhedra abstractly, without reference to an
embedding into a Euclidean space: a pair of polyhedra K ⊆ Rn and L ⊆ Rm can be isomorphic even if
n 6= m.

Remark 7. Let K be a polyhedron. The following conditions are equivalent:

(1) As a topological space, K is compact.

(2) K admits a triangulation having finitely many simplices.

(3) Every triangulation of K has only finitely many simplices.

If these conditions are satisfied, we say that K is a finite polyhedron.
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Definition 8. Let M be a polyhedron. We will say that M is a piecewise linear manifold (of dimension n)
if, for every point x ∈ M , there exists an open neighborhood U ⊆ M containing x and a piecewise linear
homeomorphism U ' Rn.

Remark 9. If M is a PL manifold of dimension n, then the underlying topological space of M is an
n-manifold. We can think of a PL manifold as a topological manifold equipped with some additional
structure. There are many ways to describe this additional structure. For example, let OM denote the
sheaf of continuous real-valued functions on M . A PL structure on M determines a subsheaf OPL

M , which
assigns to each open set U ⊆ M the collection of piecewise linear continuous functions U → R. As a
polyhedron, M is determined by its underlying topological space together with the sheaf OPL

M , up to PL
homeomorphism.

Let K be a polyhedron containing a vertex x, and choose a triangulation of K containing x as a vertex
of the triangulation. The star of x is the union of those simplices of the triangulation which contain x. The
link of x consists of those simplices belonging to the star of x which do not contain x. We denote the link of
x by lk(x).

As a subset of K, the link lk(x) of x depends on the choice of triangulation of K. However, one
can show that as an abstract polyhedron, lk(x) is independent of the triangulation up to piecewise linear
homeomorphism. Moreover, lk(x) depends only on a neighborhood of x in K.

If K = Rn and x ∈ K is the origin, then the link lk(x) can be identified with the sphere Sn−1 (which
can be regarded as a polyhedron via the realization Sn−1 ' ∂∆n). It follows that if K is any piecewise
linear n-manifold, then the link lk(x) is equivalent to Sn−1 for every point x ∈ K. Conversely, if K is any
polyhedron such that every link in K is an (n − 1)-sphere, then K is a piecewise linear n-manifold. To see
this, we observe that for each x ∈ K, if we choose a triangulation of K containing x as a vertex, then the
star of x can be identified with the cone on lk(x). If lk(x) ' Sn−1, then the star of x is a piecewise linear
(closed) disk, so that x has a neighborhood which admits a piecewise linear homeomorphism to the open
disk in Rn.

This argument proves the following:

Proposition 10. Let K be a polyhedron. The following conditions are equivalent:

(i) For each x ∈ K, the link lk(x) is a piecewise linear (n− 1)-sphere.

(ii) K is a piecewise linear n-manifold.

Remark 11. Very roughly speaking, we can think of a piecewise linear manifold M as a topological manifold
equipped with a triangulation. However, this is not quite accurate, since a polyhedron does not come
equipped with a particular triangulation. Instead, we should think of M as equipped with a distinguished
class of triangulations, which is stable under passing to finer and finer subdivisions.

Warning 12. Let K be a polyhedron whose underlying topological space is an n-manifold. Then K need
not be a piecewise linear n-manifold: it is generally not possible to choose local charts for K in a piecewise
linear fashion.

To get a feel for the sort of problems which might arise, consider the criterion of Proposition 10. To prove
that K is a piecewise linear n-manifold, we need to show that for each x ∈ K, the link lk(x) is a (piecewise-
linear) (n− 1)-sphere. Using the fact that K is a topological manifold, we deduce that H∗(K,K −{x}; Z) is
isomorphic to Z in degree n and zero elsewhere; this is equivalent to the assertion that lk(x) has the homology
of an (n− 1)-sphere. Of course, this does not imply that lk(x) is itself a sphere. A famous counterexample
is due to Poincare: if we let I denote the binary icosahedral group, regarded as a subgroup of SU(2) ' S3,
then the quotient P = SU(2)/I is a homology sphere which is not a sphere (since it is not simply connected).

The suspension ΣP is a 4-dimensional polyhedron whose link is isomorphic to P at precisely two points,
which we will denote by x and y. However, ΣP is not a topological manifold. To see this, we note that
the point x does not contain arbitrarily small neighborhoods U such that U − {x} is simply connected. In
other words, the failure of ΣP to be a manifold can be detected by computing the local fundamental group
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of P − {x} near x (which turns out to be isomorphic to the fundamental group of P ). However, if we apply
the suspension functor again, the same considerations do not apply: the space ΣP is simply connected (by
van Kampen’s theorem). Surprisingly enough, it turns out to be a manifold:

Theorem 13 (Cannon-Edwards). Let P be a topological n-manifold which is a homology sphere. Then the
double suspension Σ2P is homeomorphic to an (n+ 2)-sphere.

In particular, if we take P to be the Poincare homology sphere, then there is a homeomorphism Σ2P ' S5.
However, Σ2P is not a piecewise linear manifold: it contains two points whose links are given by ΣP , which
is not even a topological 4-manifold (let alone a piecewise linear 4-sphere).

The upshot of Warning 12 is that a topological manifold M (such as the 5-sphere) admits triangulations
which are badly behaved, in the sense that the underlying polyhedron is not locally equivalent to Euclidean
space.

Let us now review the relationship between smooth and PL manifolds.

Definition 14. Let K be a polyhedron and M a smooth manifold. We say that a map f : K →M piecewise
differentiable (PD) if there exists a triangulation of K such that the restriction of f to each simplex is
smooth. We will say that f is a PD homeomorphism if f is piecewise differentiable, a homeomorphism, and
the restriction of f to each simplex has injective differential at each point. In this case, we say that f is a
Whitehead triangulation of M .

The problems of smoothing and triangulating manifold can be formulated as follows:

(i) Given a smooth manifold M , does there exist a piecewise linear manifold N and a PD homeomorphism
N →M?

(ii) Given a piecewise linear manifold N , does there exist a smooth manifold M and a PD homeomorphism
N →M?

Question (i) is addressed by the following theorem of Whitehead.

Theorem 15 (Whitehead). Let M be a smooth manifold. Then M admits a Whitehead triangulation. That
is, there is exists a polyhedron K and a PD homeomorphism f : K → M . Moreover, K is automatically
a PL manifold, and is uniquely determined up to PL homeomorphism. (In fact, one can say more: K is
uniquely determined up a contractible space of choices. We will return to this point in a future lecture.)

Problem (ii) is more subtle. In general, piecewise linear manifolds cannot be smoothed (Kervaire) and
can admit inequivalent smoothings (Milnor’s exotic spheres give examples of smooth manifolds which are not
diffeomorphic, but whose underlying PL manifolds are PL homeomorphic). However, the difference between
smooth and PL manifolds is governed by an h-principle. Given a PL manifold N , the problem of finding a
PD homeomorphism to a smooth manifold can be rephrased as a homotopy lifting problem

BO(n)

��
N //

;;

BPL(n).

(We will return to this point in more detail later, when we discuss microbundles.) In other words, the
problem of finding a smooth structure on a PL manifold is equivalent to the problem of finding a suitable
candidate for its tangent bundle.
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