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In this lecture we will compute the quadratic L-groups of Z in even dimensions. We begin by considering
Lq−2(Z). Consider the pair (LModfp

Z ,Σ
2Qq). Note that Σ2Qq(ΣZ) ' Σ2(Σ−2Z)hΣ2 can be identified with

the homotopy coinvariants of the group Σ2 acting on the Eilenberg-MacLane spectrum corresponding to Z,
where the action is via the sign representation. In particular, we deduce that π0Σ2Qq(ΣZ) is isomorphic to
the group Z/2Z.

Let (M, q) be a Poincare object of (LModfp
Z ,Σ

2Qq). Using surgery below the middle dimension, we can
replace (M, q) by a cobordant Poincare object which is concentrated in degree 1: that is, we can assume
that M = ΣF for some finitely generated free abelian group L (which we identify with the corresponding
Eilenberg-MacLane spectrum). Every element η ∈ L determines a map ΣZ→ M , so that q|ΣZ determines
an element e(η) ∈ π0(Σ2Qq(ΣZ)) ' Z/2Z.

We can understand the construction η 7→ e(η) more explicitly as follows. Consider the surjective ring
homomorphism Z → F2, where F2 denotes the finite field with two elements. Then F2 ∧Z M ' Σ(L/2L)

inherits the structure of a Poincare object of (LModfp
F2
,Σ2Qq). Since F2 has characteristic 2, we can ignore

signs and identify the reduction of q modulo 2 as a quadratic form q0 on the F2-vector space L/2L. The
invariant e is given by the composition

L→ L/2L
q0→ Z/2Z.

Proposition 1. The canonical map Lq−2(Z)→ Lq−2(F2) 'W (F2) ' Z/2Z is an isomorphism.

Proof. We first prove injectivity. Let (M, q) be a Poincare object of (LModfp
Z ,Σ

2Qq), and assume as above
that M = ΣL for some finitely generated free abelian group L. Suppose that the image of (M, q) in W (F2)
is trivial; we wish to show that (M, q) is nullcobordant. We proceed by induction on the rank of L. If this
rank is positive, then the quadratic form q0 on L/2L cannot be anisotropic (since (M, q) 7→ 0 ∈ W (F2)).
We can therefore choose a nonzero element η ∈ L/2L such that q0(η) = 0. Lift η to an element η ∈ L. Then
η is not divisible by 2 (since η 6= 0). Dividing η by an odd integer if necessary, we may assume that Zη is a
direct summand of L. Since e(η) = q0(η) = 0, we can do surgery along η to obtain a new Poincare object
(M ′, q′). Note that the homotopy groups of M ′ are given by the homology of the chain complex

Zη → L
φ→ Z.

The indivisibility of η (and nondegeneracy of q) imply that φ is surjective, so that the homology of this
chain complex is concentrated in a single degree (and is therefore free, by duality). Moreover, the rank of
the relevant homology group has dropped by 2, so we can finish using the inductive hypothesis.

It remains to show that the map Lq−2(Z)→W (F2) is surjective. For this, we just have to show that the
nontrivial element of W (F2) can be lifted to Lq−2(Z). We can represent this element by the nondegenerate
quadratic space (V, q0), where V is a two-dimensional vector space over F2 with basis x, y ∈ V , and q0 is
given by the formula q0(ax+ a′y) = a2 + aa′ + a′2. Let b0 : V × V → F2 be the bilinear form given by

b0(x, x) = b0(x, y) = b0(y, y) = 1 b0(y, x) = 0.
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Then q0 is the quadratic form associated to b0. Note that b0 lifts to a bilinear form b on Zx⊕ Zy, given by

b(x, x) = b(x, y) = b(y, y) = 1 b(y, x) = 0.

The associated skew-symmetric bilinear form

ε(v, w) = b(v, w)− b(w, v)

is nondegenerate (since ε(x, y) = 1). Note that b determines a point q ∈ Ω∞Σ2Qq(Σ(Zx ⊕ Zy)), and that
(Zx⊕ Zy, q) is a Poincare object lifting (V, q0).

We now compute the group Lq0(Z). The inclusion Z ↪→ R determines a map ψ : Lq0(Z)→ Lq0(R) = Z.

Proposition 2. The map ψ is injective. Its image is the subgroup 8Z ⊆ Z.

Proof. By surgery below the middle dimension, we see that every element of Lq0(Z) can be represented by a
pair (M, q), where M is a free abelian group of finite rank and q is a nondegenerate quadratic form on M .
Here q is determined by its associated bilinear form b : M×M → Z, given by b(x, y) = q(x+y)−q(x)−q(y).
This symmetric bilinear form is even (for any element x ∈M we have b(x, x) = q(2x)− q(x)− q(x) = 2q(x))
and unimodular (that is, it induces an isomorphism of abelian groups M → Hom(M,Z) ). Conversely,

any even symmetric bilinear form b determines a quadratic form q by the formula q(x) = b(x,x)
2 , which is

nondegenerate if and only if b is unimodular. We will prove the proposition by citing some nontrivial results
about the structure of even unimodular lattices. Proofs can be found, for example, in Serre’s book “A course
in arithmetic.”

The facts we need are the following:

• The image of ψ is contained in the subgroup 8Z ⊆ Z. More concretely, we assert that if (M, q) is any
even unimodular lattice, then the signature of M is divisible by 8.

• The map ψ is surjective: that is, there exists an even unimodular lattice of signature 8. In fact, there
exists a unique positive definite even unimodular lattice of rank (and therefore signature) 8, the E8-
lattice. All we need here is the existence. For this, we can give a direct construction. Let L be the
free abelian group on generators e1, . . . , e8 and h. Equip it with an symmetric bilinear form b so that
the generators are orthogonal and b(ei, ei) = 1, b(h, h) = −1. This is an odd unimodular lattice of
signature 7. Let v denote the vector e1 + e2 + . . .+ e8 + 3h. Note that b(v, v) = 8(1) + 32(−1) = −1. It
follows that L splits as a direct sum L0⊕Zv, where L0 is a unimodular lattice of rank 8 and signature
8. Note that for every w ∈ L, the integers b(w,w) and b(w, v) are congruent modulo 2 (it suffices to
check this on generators, where it is obvious). Thus L0 is an even unimodular lattice of signature 8.

• The map ψ is injective. Suppose we are given an even unimodular lattice (M, q) of signature zero. Let
n be the rank of M ; note that n must be even, since M is nondegenerate modulo 2. Let H denote the
hyperbolic plane: that is, (Z2, q0) where q0 is the quadratic form given by q0(a, b) = ab. Then H⊕

n
2

and (M, q) are indefinite even unimodular lattices of the same rank and signature. It follows from the
theory of quadratic forms that H⊕

n
2 and (M, q) are isomorphic. Consequently, to prove that (M, q) is

nullcobordant, it suffices to show that H is nullcobordant, which is obvious.

Combining the above results with the 4-fold periodicity of Lq∗(Z), we obtain the following:

Theorem 3. The quadratic L-groups of Z are given by

Lqn(Z) =


8Z if n = 4k (signature)

0 if n = 4k + 1

Z/2Z if n = 4k + 2 (Kervaire invariant)

0 if n = 4k + 3.
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Let us conclude by saying a few words about the symmetric L-groups Ls∗(Z). The norm map Qq → Qs

induces a map
φ : Lq∗(Z)→ Ls∗(Z).

Note that for any pair of spectra X and Y with actions of the group Σ2, there is a canonical map

XhΣ2
∧ Y hΣ2 → (X ∧ Y )hΣ2

.

Consequently, if (M, q) is a Poincare object of (LModfp
Z , Q

s), then M⊗E8 inherits the structure of a Poincare

object of (LModfp
Z , Q

q), where E8 denotes the E8 lattice. This construction determines a map of L-groups

ψ : Ls∗(Z)→ Lq∗(Z).

The composite map φ ◦ ψ : Ls∗(Z)→ Ls∗(Z) is also given by tensoring with the E8 lattice: this time, viewed
as a lattice equipped with a symmetric bilinear form. Our construction of the E8 lattice above shows that
E8 is stably isomorphic to the lattice Z8 with orthonormal basis e1, . . . , e8: in fact, they become isomorphic
after taking the direct sum with the unimodular lattice of rank 1 and signature −1. It follows that φ ◦ ψ
is given by multiplication by 8. In particular, ψ induces an injection Ls∗(Z)[ 1

2 ] → Lq∗(Z)[ 1
2 ] whose image is

a summand of Lq∗[
1
2 ]. This map is surjective in degree 0 (it hits the E8 lattice by construction, which is a

generator for Lq0(Z)). By periodicity, it is surjective in degree 4k for every integer k. It is therefore surjective
in all degrees (since Lqn(Z)[ 1

2 ] ' 0 when n is not divisible by 4, by Theorem 3). It follows that ψ is an
isomorphism after inverting 2. This proves:

Proposition 4. The map φ induces an isomorphism Lq∗(Z)[ 1
2 ]→ Ls∗(Z)[ 1

2 ]. In particular, we have

Lsn(Z)[
1

2
] '

{
Z[ 1

2 ] if n = 4k

0 otherwise.

With more effort, it is possible to compute the symmetric L-groups of Z precisely. The answer is given
by

Lsn(Z) '


Z if n = 4k

Z/2Z if n = 4k + 1

0 otherwise.
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