L-Groups of Fields (Lecture 13)

February 23, 2011

Our goal in this section is to carry out some calculuations of L-groups in simple cases. We begin with
the following observation:

Proposition 1. Let R be an associative ring with involution. Then the L-groups of R (symmetric or
quadratic) are 4-periodic. That is, there are canonical isomorphisms

LS

n

(R)~ Ly a(R)  Li(R) ~ Ly, 4(R)

Proof. Let C = LModﬁg. Since C is a stable oco-category, the suspension functor is an equivalence from
C to itself. Let B be the symmetric bilinear functor given by B(M,N) = Morg_r(M A N,R). Then
B(XM,¥YN) ~ %"2B(M,N). Here ¥72B is also a symmetric bilinear functor, where the symmetric group
¥, acts on B and also on the desuspenion functor ¥ =2 by permuting the suspension coordinates. Because
the “swap” map on the sphere S2 = S' A S' reverses orientation, this second action is nontrivial: it acts by
a sign. However, the square of this action is trivial. Consequently, we have a equivalence B(X2M,¥2N) ~
Y ~4B(M, N), compatible with the action of ¥, (where X5 does not act on the desuspension functor ¥ =4).
Consequently, the double suspension map € — € determines equivalences

€ Q) ~(E37Q) (€7 =(Cx'Q).
O

Remark 2. Suppose that 2 = 0 in R. Then we can ignore signs. The proof of Proposition 1 then shows
that the L-groups of R are 2-periodic.

Let us now restrict our attention to the case where R is a (commutative) field k, equipped with the
trivial involution. Note that if the characteristic of k is different from 2, then there is no difference between
symmetric and quadratic L-theory. We will confine our attention to quadratic L-theory in what follows.

Proposition 3. Let k be a field. Then the odd-dimensional quadratic L-groups L%, (k) are trivial.

Proof. Let (V,q) be a Poincare object of (LMod;”, %2™+1Q4). We wish to show that (V, ¢) is nullcobordant.
In the last lecture, we saw that we can reduce to the case where V is k-connective. The nondegeneracy of ¢
gives an isomorphism V ~ ¥?m+D(V). Since we are working over a field, this has concrete consequences:
for every integer i, m;V is the k-linear dual of 7o, +1—;(V). In particular, the homotopy groups m;V vanish
fori ¢ {m,m+1}. Let W = m,,V so that WY ~ m,, .1 V. Let W[m] € LModzp denote the module given by
W, placed in degree k. Since k is a field, W is free as a k-module. We may therefore construct a map

a:Wm] =V

which induces the identity map
W~ Wm] = 1,V =~ W.

Note that 2" +H1Q(W[k]) ~ (W @, W)[1]sx, is connected, so q|W[m] is automatically nullhomotopic. Any
choice of nullhomotopy exhibits W[m] as a Lagrangian in V. O



Proposition 4. Let k be a field of characteristic different from 2. Then the L-groups LY ,,. (k) are trivial.
(If k has characteristic 2, then LY, _,(k) ~ Li(k) by Remark 2.)

Proof. Let (M, q) be a Poincare object of (LModzp,Z‘lm“Qq). The results of the last lecture show that
we can assume that M = V[2m + 1] for some vector space V over k. Let B(V,V) denote the k-vector
space of symmetric bilinear forms on V (regarded as a spectrum concentrated in a single degree). Then
$AMFIQIUM) = B H2(N=4m2B(V,V)),s,. Here we can ignore the distinction between invariants and
coinvariants (since 2 is invertible in k). However, we cannot ignore the fact that 35 acts nontrivially on the
suspension coordinates. The upshot is that 24™+2Q%(M) is the Eilenberg-MacLane spectrum corresponding
to the vector space of skew-symmetric bilinear forms b : V- x V' — k. Since (M, q) is a Poincare object,
the corresponding skew-symmetric form is nondegenerate. It follows from elementary linear algebra that
the dimension of V' must be even, and that V' admits a subspace L C V of such that b|(L x L) is trivial
dim(V) = 2dim(L). Then L is a Lagrangian in V, so that (M, q) is nullcobordant.

Here is a slight variant on the above argument: if V' # 0, then by skew-symmetry the bilinear form
b vanishes on the one-dimensional subspace generated by any nonzero element v € V. We can therefore
perform surgery to reduce the dimension of V. Repeat until V' ~ 0.) O

In view of Propositions 1, 3, and 4, the calculation of the (quadratic) L-groups of fields reduces to the
problem of understanding the group L{(k). This is an interesting classical invariant.

Definition 5. Let k be a field. A quadratic space over k is a pair (V,q), where V is a finite-dimensional
vector space over k and ¢ : V — k is a quadratic form. That is, ¢ satisfies

qlaz) = a*q(z) gz +y) = q(z) +q(y) +b(z,y)
for some bilinear form b : V x V — k. We say that ¢ is nondegenerate if b is nondegenerate.

Example 6. Let k be any field. There is a quadratic space H = (k?,q) over k, where ¢ is given by the
formula ¢(a,b) = ab. We refer to H as the hyperbolic plane.

There is an evident direct sum operation on quadratic spaces: given a pair of quadratic spaces (V, ¢) and
P q P g p q P »d
(V',q"), we define (V,q) & (V',¢') tobe (VO V' q& ), where ¢& ¢ : V&V’ — k is given by the formula

(q®q)(v,v) = qv) +¢' (V).

Remark 7. Let (V,q) be a nondegenerate quadratic space over a field k. Suppose we are given a nonzero
element € V such that g(xz) = 0. Since the associated bilinear form b is nondegenerate, we can choose
y € V with b(z,y) = 1. Note that b(z,z) = ¢(2z) — q(z) — q(z) = 2¢q(z) = 0. It follows that ¢(y + az) =
q(y) + ab(y, z) + q(azx) = q(y) + a. In particular, ¢(y — ¢(y)z) = 0. Replacing y by y — q(y)z, we can reduce
to the case where ¢(y) = 0. Then if V) denotes the subspace of V' generated by = and y, then we have an
isomorphism (Vp, q|Vp) =~ H. In particular, ¢ is nondegenerate on Vj and we therefore have a decomposition
(V,q) ~ H @ (V1,q|V1), where V; is the orthogonal complement of Vj.

More generally, if we are given a subspace W C V of dimension a such that ¢|/W = 0, we can apply this
argument repeatedly to obtain a decomposition (V,q) ~ H®* @ (V' ¢).

Definition 8. Let k be a field. We say that two nondegenerate quadratic spaces (V, ¢) and (V’, ¢’) are stably
equivalent if (V,q) © H®* is isomorphic to (V',q") © H®® for some integers a and b. The collection of stable
equivalences classes of nondegenerate quadratic spaces over k is called the Witt group of k. We will denote
it by W (k) (not to be confused with the ring of Witt vectors over k).

The set W (k) evidently has the structure of a commutative monoid under direct sum. In fact, this
monoid structure is a group: for any nondegenerate quadratic space (V,q) where V has dimension d, the
sum (V,q) ® (V,—q) has an isotopic subspace of dimension d (the image of V under the diagonal map
V — V @ V) and is therefore isomorphic to H®? by Remark 7.



Remark 9. Let (V, ¢) be any nondegenerate quadratic space over k. Using Remark 7 repeatedly, we deduce
that (V, q) is isomorphic to a direct sum (V',¢’) & H®? for some integer d, where (V',q') is anisotropic: that
is, ¢’ does not vanish on any nonzero element of V’. Consequently, every class in the Witt group W (k) can be
represented by an anisotropic quadratic space (V, g). In fact, this representative is unique up to isomorphism.
This is a consequence of the Witt cancellation theorem, which asserts that if we have an isomorphism of
nondegenerate quadratic spaces

(‘/7 q) @ (V”,q//) ~ (V/7ql) EB (‘/'//7q//)7
then (V,q) and (V’,¢") must already be isomorphic.

Let (V,q) be a nondegenerate quadratic space over a field k. Viewing V as a chain complex over k

concentrated in degree zero, we can think of (V,q) as a Poincare object of (Ll\/Iodl;l[’7 Q7). This construction
determines a map W (k) — L (k).

Proposition 10. Let k be a field. Then the map ¢ : W (k) — Li(k) is an isomorphism of abelian groups.

Proof. We have already seen that ¢ is surjective (using surgery below the middle dimension). Let us show
that ¢ is injective. Let (V,q) be a quadratic space over k, and suppose that there exists a Lagrangian in V
(as a Poincare object of (LModzp, Q7). Denoting this Lagrangian by L, we have a fiber sequence of spectra

L 3V — cofib(a)

which is self-dual (with the duality on V determined by ¢). In particular, we have a self-dual short exact
sequence of vector spaces

0— (ImmoL = V)=V — (ImV — m cofib(ar)) — 0.

The self-duality implies that the dimensions of the outer two vector spaces are the same, so that the dimension
of V is twice as large as the dimension of W = Im(nmoL — V). The map W — V factors through L, so
g|W = 0. Using Remark 7, we deduce that V' is isomorphic to a direct sum of hyperbolic planes so that
(V. q) is equivalent to zero in the Witt group W (k). O

Example 11. Let k = F5 be the finite field with two elements. Let (V, ¢) be a nondegenerate quadratic space
over k. Then the dimension of V' must be even (since the symmetric bilinear form b is also a nondegenerate
skew-symmetric bilinear form). Suppose that V is anisotropic: then g(v) = 1 for every nonzero element
v € V. It follows that if v,w € W are distinct and nonzero, then b(v,w) = q(v + w) — q(v) — q(w) = 1. If
u,v,w € W are linearly independent, we get

1 ="b(u,v+w) = b(u,v) + blu,w) =0.

Thus any nontrivial anisotropic quadratic space must be of dimension 2. There is such a space (V, q): take
V =F5 @ F5, and ¢ to be given by the formula

q(a,b) = a* + ab + b

It follows from the Witt cancellation theorem that (V,q) determines a nontrivial element of W (k) (this can
also be deduced by evaluating some of the invariants introduced below). We therefore have an isomorphism
W(k) ~ Z/2Z.

To any nondegenerate quadratic space (V,q) over k = F3, we can associate an invariant in the group
W (k = Z/2Z. This is called the Arf invariant of (V,q). It can be described concretely as follows: the Arf
invariant of ¢ is 0 if ¢ takes the value 0 more often than 1 (that is, if the set ¢=1{0} C V is larger than the
set ¢~1{1} C V), and takes the value 1 otherwise. A more conceptual description of this invariant is given
below.



Example 12. Let k be an algebraically closed field. Any two nondegenerate quadratic spaces (V, q) over k
of the same dimension are isomorphic. It follows that W (k) is isomorphic to Z/2Z if the characteristic of k
is different from 2, and is trivial if the characteristic of k is equal to 2 (since any nondegenerate quadratic
space must be even dimension in the latter case).

Example 13. Let k be the field of real numbers (or any real-closed field). Then Sylvester’s invariance
of signature theorem gives an isomorphism of abelian groups W (k) ~ Z, which carries a nondegenerate
quadratic space (V, q) to the signature o(q) € Z.

Remark 14. Let k be a field of characteristic # 2. For every nonzero element a € k, we have a nondegenerate
quadratic form ¢ : K — k given by x — ax?. We denote the image of this element in W (k) by (a). These
elements generate W (k) under addition, because any nondegenerate quadratic space (V, ¢) has an orthogonal
basis. It is possible to explicitly write down a set of relations between these generators, and thereby obtain
a presentation for W (k).

We now describe some invariants that can help get a handle on the structure of a Witt ring W (k). We
first note that since the hyperbolic plane H has dimension 2, every element of W (k) has a well-defined
dimension modulo 2. This yields a group homomorphism

d:W(k) — Z/2Z.

The map d is surjective when k has characteristic different from 2, and is the zero map when k has charac-
teristic 2. Let I denote the kernel of d.

Suppose we are given an element of I C W (k). We can represent this element by a nondegenerate
quadratic space (V,¢q) of even dimension over k. We define the Clifford algebra C1(V,q) to be the quotient
of the free associative k-algebra on V by the relations

for x € V. This Clifford algebra has a canonical Z/2Z-grading
CI(V,q) = Clo(V,q) ® CLi(V, q),

where we take the elements of V' to have degree 1. If V' # 0, then one can show that the center of Cly(V, q)
is a rank 2 étale extension of k: that is, it is either isomorphic to k X k or to a separable quadratic extension
field k' of k. This extension of k determines a map Gal(k/k) — Z/2Z, (which is the zero map if and only if
the center is isomorphic to k x k). The formation of this invariant determines a group homomorphism

¢ : I — HY (Gal(k/k); Z/27Z).

The image of a quadratic space (V, ¢) under this map is called the discriminant of (V,q). When the charac-
teristic of k is different from 2, we can identify the discriminant with an element in k> /(k*)? (using Kummer
theory). When k has characteristic 2, we can identify the discriminant with an element of the cokernel of
the map

koIS )
(using Artin-Schreier theory). When k = Fy, we recover the Arf invariant discussed above.

Let J C W (k) denote the kernel of the map ¢ defined above. Elements of J can be represented by
quadratic spaces (V,q) of even dimension such that the center of Cly(V,q) splits as a product k x k. It
follows that Cly(V, q) itself splits as a product of two factors. One can show that each of these factors is a
central simple algebra over k, and determines a 2-torsion element in the Brauer group of k. Let us assume
that k has characteristic different from 2, so we can identify Z/2Z with the subset {1,—1} C k*. Extracting
these Brauer invariants gives a homomorphism

J — H?(Gal(k/k); Z/2Z).



This pattern continues. If the characteristic of k is different from 2, then the Witt group W (k) actually
has the structure of a ring (given symmetric bilinear forms on vector spaces V and W, we obtain a symmetric
bilinear form on V' ® W). The map d : W (k) — Z/2Z is a ring homomorphism, so that I C W (k) is an
ideal. The following is a deep result of Voevodsky:

Theorem 15 (The Milnor Conjecture). If k is a field of characteristic different from 2, there are canonical
isomorphisms 7
I/ 1+ ~ H™(Gal(k/k); Z/2Z)



