
L-Groups of Fields (Lecture 13)

February 23, 2011

Our goal in this section is to carry out some calculuations of L-groups in simple cases. We begin with
the following observation:

Proposition 1. Let R be an associative ring with involution. Then the L-groups of R (symmetric or
quadratic) are 4-periodic. That is, there are canonical isomorphisms

Lsn(R) ' Lsn+4(R) Lqn(R) ' Lqn+4(R)

Proof. Let C = LModfp
R . Since C is a stable ∞-category, the suspension functor is an equivalence from

C to itself. Let B be the symmetric bilinear functor given by B(M,N) = MorR−R(M ∧ N,R). Then
B(ΣM,ΣN) ' Σ−2B(M,N). Here Σ−2B is also a symmetric bilinear functor, where the symmetric group
Σ2 acts on B and also on the desuspenion functor Σ−2 by permuting the suspension coordinates. Because
the “swap” map on the sphere S2 = S1 ∧ S1 reverses orientation, this second action is nontrivial: it acts by
a sign. However, the square of this action is trivial. Consequently, we have a equivalence B(Σ2M,Σ2N) '
Σ−4B(M,N), compatible with the action of Σ2 (where Σ2 does not act on the desuspension functor Σ−4).
Consequently, the double suspension map C→ C determines equivalences

(C, Qs) ' (C,Σ−4Qs) (C, Qq) ' (C,Σ−4Qq).

Remark 2. Suppose that 2 = 0 in R. Then we can ignore signs. The proof of Proposition 1 then shows
that the L-groups of R are 2-periodic.

Let us now restrict our attention to the case where R is a (commutative) field k, equipped with the
trivial involution. Note that if the characteristic of k is different from 2, then there is no difference between
symmetric and quadratic L-theory. We will confine our attention to quadratic L-theory in what follows.

Proposition 3. Let k be a field. Then the odd-dimensional quadratic L-groups Lq−2m−1(k) are trivial.

Proof. Let (V, q) be a Poincare object of (LModfp
k ,Σ

2m+1Qq). We wish to show that (V, q) is nullcobordant.
In the last lecture, we saw that we can reduce to the case where V is k-connective. The nondegeneracy of q
gives an isomorphism V ' Σ2m+1D(V ). Since we are working over a field, this has concrete consequences:
for every integer i, πiV is the k-linear dual of π2m+1−i(V ). In particular, the homotopy groups πiV vanish

for i /∈ {m,m+ 1}. Let W = πmV so that W∨ ' πm+1V . Let W [m] ∈ LModfp
k denote the module given by

W , placed in degree k. Since k is a field, W is free as a k-module. We may therefore construct a map

α : W [m]→ V

which induces the identity map
W ' πmW [m]→ πmV 'W.

Note that Σ2m+1Qq(W [k]) ' (W ⊗kW )[1]hΣ2 is connected, so q|W [m] is automatically nullhomotopic. Any
choice of nullhomotopy exhibits W [m] as a Lagrangian in V .
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Proposition 4. Let k be a field of characteristic different from 2. Then the L-groups Lq−4m−2(k) are trivial.
(If k has characteristic 2, then Lq−4m−2(k) ' Lq0(k) by Remark 2.)

Proof. Let (M, q) be a Poincare object of (LModfp
k ,Σ

4m+2Qq). The results of the last lecture show that
we can assume that M = V [2m + 1] for some vector space V over k. Let B(V, V ) denote the k-vector
space of symmetric bilinear forms on V (regarded as a spectrum concentrated in a single degree). Then
Σ4m+2Qq(M) = Σ4m+2(Σ−4m−2B(V, V ))hΣ2

. Here we can ignore the distinction between invariants and
coinvariants (since 2 is invertible in k). However, we cannot ignore the fact that Σ2 acts nontrivially on the
suspension coordinates. The upshot is that Σ4m+2Qq(M) is the Eilenberg-MacLane spectrum corresponding
to the vector space of skew-symmetric bilinear forms b : V × V → k. Since (M, q) is a Poincare object,
the corresponding skew-symmetric form is nondegenerate. It follows from elementary linear algebra that
the dimension of V must be even, and that V admits a subspace L ⊆ V of such that b|(L × L) is trivial
dim(V ) = 2 dim(L). Then L is a Lagrangian in V , so that (M, q) is nullcobordant.

Here is a slight variant on the above argument: if V 6= 0, then by skew-symmetry the bilinear form
b vanishes on the one-dimensional subspace generated by any nonzero element v ∈ V . We can therefore
perform surgery to reduce the dimension of V . Repeat until V ' 0.)

In view of Propositions 1, 3, and 4, the calculation of the (quadratic) L-groups of fields reduces to the
problem of understanding the group Lq0(k). This is an interesting classical invariant.

Definition 5. Let k be a field. A quadratic space over k is a pair (V, q), where V is a finite-dimensional
vector space over k and q : V → k is a quadratic form. That is, q satisfies

q(ax) = a2q(x) q(x+ y) = q(x) + q(y) + b(x, y)

for some bilinear form b : V × V → k. We say that q is nondegenerate if b is nondegenerate.

Example 6. Let k be any field. There is a quadratic space H = (k2, q) over k, where q is given by the
formula q(a, b) = ab. We refer to H as the hyperbolic plane.

There is an evident direct sum operation on quadratic spaces: given a pair of quadratic spaces (V, q) and
(V ′, q′), we define (V, q)⊕ (V ′, q′) to be (V ⊕ V ′, q ⊕ q′), where q ⊕ q′ : V ⊕ V ′ → k is given by the formula

(q ⊕ q′)(v, v′) = q(v) + q′(v′).

Remark 7. Let (V, q) be a nondegenerate quadratic space over a field k. Suppose we are given a nonzero
element x ∈ V such that q(x) = 0. Since the associated bilinear form b is nondegenerate, we can choose
y ∈ V with b(x, y) = 1. Note that b(x, x) = q(2x) − q(x) − q(x) = 2q(x) = 0. It follows that q(y + ax) =
q(y) + ab(y, x) + q(ax) = q(y) + a. In particular, q(y − q(y)x) = 0. Replacing y by y − q(y)x, we can reduce
to the case where q(y) = 0. Then if V0 denotes the subspace of V generated by x and y, then we have an
isomorphism (V0, q|V0) ' H. In particular, q is nondegenerate on V0 and we therefore have a decomposition
(V, q) ' H ⊕ (V1, q|V1), where V1 is the orthogonal complement of V0.

More generally, if we are given a subspace W ⊆ V of dimension a such that q|W = 0, we can apply this
argument repeatedly to obtain a decomposition (V, q) ' H⊕a ⊕ (V ′, q′).

Definition 8. Let k be a field. We say that two nondegenerate quadratic spaces (V, q) and (V ′, q′) are stably
equivalent if (V, q)⊕H⊕a is isomorphic to (V ′, q′)⊕H⊕b for some integers a and b. The collection of stable
equivalences classes of nondegenerate quadratic spaces over k is called the Witt group of k. We will denote
it by W (k) (not to be confused with the ring of Witt vectors over k).

The set W (k) evidently has the structure of a commutative monoid under direct sum. In fact, this
monoid structure is a group: for any nondegenerate quadratic space (V, q) where V has dimension d, the
sum (V, q) ⊕ (V,−q) has an isotopic subspace of dimension d (the image of V under the diagonal map
V → V ⊕ V ) and is therefore isomorphic to H⊕d by Remark 7.
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Remark 9. Let (V, q) be any nondegenerate quadratic space over k. Using Remark 7 repeatedly, we deduce
that (V, q) is isomorphic to a direct sum (V ′, q′)⊕H⊕d for some integer d, where (V ′, q′) is anisotropic: that
is, q′ does not vanish on any nonzero element of V ′. Consequently, every class in the Witt group W (k) can be
represented by an anisotropic quadratic space (V, q). In fact, this representative is unique up to isomorphism.
This is a consequence of the Witt cancellation theorem, which asserts that if we have an isomorphism of
nondegenerate quadratic spaces

(V, q)⊕ (V ′′, q′′) ' (V ′, q′)⊕ (V ′′, q′′),

then (V, q) and (V ′, q′) must already be isomorphic.

Let (V, q) be a nondegenerate quadratic space over a field k. Viewing V as a chain complex over k

concentrated in degree zero, we can think of (V, q) as a Poincare object of (LModfp
k , Q

q). This construction
determines a map W (k)→ Lq0(k).

Proposition 10. Let k be a field. Then the map φ : W (k)→ Lq0(k) is an isomorphism of abelian groups.

Proof. We have already seen that φ is surjective (using surgery below the middle dimension). Let us show
that φ is injective. Let (V, q) be a quadratic space over k, and suppose that there exists a Lagrangian in V

(as a Poincare object of (LModfp
k , Q

q). Denoting this Lagrangian by L, we have a fiber sequence of spectra

L
α→ V → cofib(α)

which is self-dual (with the duality on V determined by q). In particular, we have a self-dual short exact
sequence of vector spaces

0→ (Imπ0L→ V )→ V → (ImV → π0 cofib(α))→ 0.

The self-duality implies that the dimensions of the outer two vector spaces are the same, so that the dimension
of V is twice as large as the dimension of W = Im(π0L → V ). The map W → V factors through L, so
q|W = 0. Using Remark 7, we deduce that V is isomorphic to a direct sum of hyperbolic planes so that
(V, q) is equivalent to zero in the Witt group W (k).

Example 11. Let k = F2 be the finite field with two elements. Let (V, q) be a nondegenerate quadratic space
over k. Then the dimension of V must be even (since the symmetric bilinear form b is also a nondegenerate
skew-symmetric bilinear form). Suppose that V is anisotropic: then q(v) = 1 for every nonzero element
v ∈ V . It follows that if v, w ∈ W are distinct and nonzero, then b(v, w) = q(v + w) − q(v) − q(w) = 1. If
u, v, w ∈W are linearly independent, we get

1 = b(u, v + w) = b(u, v) + b(u,w) = 0.

Thus any nontrivial anisotropic quadratic space must be of dimension 2. There is such a space (V, q): take
V = F2 ⊕ F2, and q to be given by the formula

q(a, b) = a2 + ab+ b2.

It follows from the Witt cancellation theorem that (V, q) determines a nontrivial element of W (k) (this can
also be deduced by evaluating some of the invariants introduced below). We therefore have an isomorphism
W (k) ' Z/2Z.

To any nondegenerate quadratic space (V, q) over k = F2, we can associate an invariant in the group
W (k = Z/2Z. This is called the Arf invariant of (V, q). It can be described concretely as follows: the Arf
invariant of q is 0 if q takes the value 0 more often than 1 (that is, if the set q−1{0} ⊆ V is larger than the
set q−1{1} ⊆ V ), and takes the value 1 otherwise. A more conceptual description of this invariant is given
below.
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Example 12. Let k be an algebraically closed field. Any two nondegenerate quadratic spaces (V, q) over k
of the same dimension are isomorphic. It follows that W (k) is isomorphic to Z/2Z if the characteristic of k
is different from 2, and is trivial if the characteristic of k is equal to 2 (since any nondegenerate quadratic
space must be even dimension in the latter case).

Example 13. Let k be the field of real numbers (or any real-closed field). Then Sylvester’s invariance
of signature theorem gives an isomorphism of abelian groups W (k) ' Z, which carries a nondegenerate
quadratic space (V, q) to the signature σ(q) ∈ Z.

Remark 14. Let k be a field of characteristic 6= 2. For every nonzero element a ∈ k, we have a nondegenerate
quadratic form q : k → k given by x 7→ ax2. We denote the image of this element in W (k) by 〈a〉. These
elements generate W (k) under addition, because any nondegenerate quadratic space (V, q) has an orthogonal
basis. It is possible to explicitly write down a set of relations between these generators, and thereby obtain
a presentation for W (k).

We now describe some invariants that can help get a handle on the structure of a Witt ring W (k). We
first note that since the hyperbolic plane H has dimension 2, every element of W (k) has a well-defined
dimension modulo 2. This yields a group homomorphism

d : W (k)→ Z/2Z.

The map d is surjective when k has characteristic different from 2, and is the zero map when k has charac-
teristic 2. Let I denote the kernel of d.

Suppose we are given an element of I ⊆ W (k). We can represent this element by a nondegenerate
quadratic space (V, q) of even dimension over k. We define the Clifford algebra Cl(V, q) to be the quotient
of the free associative k-algebra on V by the relations

x2 = q(x)

for x ∈ V . This Clifford algebra has a canonical Z/2Z-grading

Cl(V, q) ' Cl0(V, q)⊕ Cl1(V, q),

where we take the elements of V to have degree 1. If V 6= 0, then one can show that the center of Cl0(V, q)
is a rank 2 étale extension of k: that is, it is either isomorphic to k× k or to a separable quadratic extension
field k′ of k. This extension of k determines a map Gal(k/k)→ Z/2Z, (which is the zero map if and only if
the center is isomorphic to k × k). The formation of this invariant determines a group homomorphism

ψ : I → H1(Gal(k/k); Z/2Z).

The image of a quadratic space (V, q) under this map is called the discriminant of (V, q). When the charac-
teristic of k is different from 2, we can identify the discriminant with an element in k×/(k×)2 (using Kummer
theory). When k has characteristic 2, we can identify the discriminant with an element of the cokernel of
the map

k
x7→x−x2

−→ k

(using Artin-Schreier theory). When k = F2, we recover the Arf invariant discussed above.
Let J ⊆ W (k) denote the kernel of the map ψ defined above. Elements of J can be represented by

quadratic spaces (V, q) of even dimension such that the center of Cl0(V, q) splits as a product k × k. It
follows that Cl0(V, q) itself splits as a product of two factors. One can show that each of these factors is a
central simple algebra over k, and determines a 2-torsion element in the Brauer group of k. Let us assume
that k has characteristic different from 2, so we can identify Z/2Z with the subset {1,−1} ⊆ k×. Extracting
these Brauer invariants gives a homomorphism

J → H2(Gal(k/k); Z/2Z).
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This pattern continues. If the characteristic of k is different from 2, then the Witt group W (k) actually
has the structure of a ring (given symmetric bilinear forms on vector spaces V and W , we obtain a symmetric
bilinear form on V ⊗W ). The map d : W (k) → Z/2Z is a ring homomorphism, so that I ⊆ W (k) is an
ideal. The following is a deep result of Voevodsky:

Theorem 15 (The Milnor Conjecture). If k is a field of characteristic different from 2, there are canonical
isomorphisms

Im/Im+1 ' Hm(Gal(k/k); Z/2Z)
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