Surgery Below the Middle Dimension (Lecture 12)

February 17, 2011

In the previous lecture, we discussed the process of *surgery*. If \mathcal{C} is a stable ∞ -category equipped with a nondegenerate functor Q and we are given a quadratic object (X,q), a map $\alpha: X' \to X$, and a nullhomotopy of q|X', then we can construct a new quadratic (X_{α}, q_{α}) by "surgery along α ". Our goal in this lecture is to show how this construction can be used to simplify a quadratic object.

First, we need to review a bit of terminology. Let X be a spectrum and $n \in \mathbb{Z}$ an integer. We say that X is *n*-connective if the homotopy groups $\pi_i X$ vanish for i < n. We say that X is connective if X is 0-connective: that is, if the negative homotopy groups of X are trivial. The collection of connective spectra is stable under smash products and homotopy colimits.

Let R be an A_{∞} -ring. Suppose M and N are right and left R-module spectra, respectively. Then $M \wedge_R N$ is the given by the geometric realization of a simplicial spectrum, whose nth term is an iterated smash product

$$M \wedge R \wedge \cdots \wedge R \wedge N$$
.

If M, R, and N are connective, then $M \wedge_R N$ is also connective.

For every perfect left module M over R, we let $\mathbb{D}(M)$ denote the mapping spectrum $\operatorname{Mor}_R(M,R)$. This is a perfect right module over R (which we can identify with a left R-module in the special case where R has an involution). We will say that M has projective amplitude $\leq n$ if $\mathbb{D}(M)$ is (-n)-connective. Let N be any other left R-module. We then have a canonical equivalence

$$\operatorname{Mor}_R(M,N) \simeq \mathbb{D}(M) \wedge_R N.$$

If M has projective amplitude $\leq n$ and both R and N are connective, then the above discussion shows that $\mathbb{D}(M) \wedge_R N$ is (-n)-connective. In particular, if M has projective amplitude ≤ 0 , then $\mathbb{D}(M) \wedge_R N$ is connective.

Proposition 1. Let R be a connective A_{∞} -ring. Let M be a perfect left R-module which is connective and of projective amplitude ≤ 0 . Then M is a direct summand of R^n for some n. In this case, we will say that M is projective.

Proof. Using the fact that M is perfect and that the negative homotopy groups $\pi_i M$ vanish, one can show that $\pi_0 M$ is a finitely generated R-module. We can therefore choose a map $R^n \to M$ which is surjective on π_0 . We have a fiber sequence

$$M' \to R^n \to M$$
,

where M' is also projective. This gives another fiber sequence of spectra

$$\operatorname{Mor}_R(M, M') \to \operatorname{Mor}_R(M, R^n) \to \operatorname{Mor}_R(M, M).$$

Since M' is connective and M is of projective amplitude ≤ 0 , the mapping spectrum $\operatorname{Mor}_R(M, M')$ is connective. Using the long exact sequence of homotopy groups, we see that the map $\pi_0 \operatorname{Mor}_R(M, R^n) \to \pi_0 \operatorname{Mor}_R(M, M)$ is surjective. This means that there is a map $\phi: M \to R^n$ lifting the identity map $\operatorname{id}_M: M \to M$, so that M is a direct summand of R^n .

Variant 2. In the situation of Proposition 1, if M is k-connective and of projective amplitude $\leq k$, then the same argument shows that M is a summand of $\Sigma^k R^n$ for some n.

Let us now suppose that R is a connective A_{∞} -ring equipped with an involution σ , and let Q^{quad} be the quadratic functor on $\text{LMod}_R^{\text{fp}}$ given by the formula $Q^{\text{quad}}(M) = \text{Mor}_{R-R}(M \wedge M, R)_{h\Sigma_2}$. We would like to study the L-groups $L_n^{\text{quad}}(R)$. We begin by studying the case where n is even, so we can write n = -2k. Then $L_n^{\text{quad}}(R) = L_0(\text{LMod}_R^{\text{fp}}, \Sigma^{2k}Q^{\text{quad}})$.

Suppose we are given a quadratic object (M,q) (so that q lies in the zeroth space of the spectrum $\Sigma^{2k}(\mathbb{D}(M) \wedge_R \mathbb{D}(M))_{h\Sigma_2}$). Note that if $M = \Sigma^m R$, then $\Sigma^{2k}Q^{\text{quad}}(M)$ can be identified with the homotopy coinvariants of Σ_2 acting on the spectrum $\Sigma^{2k-2m}(R)$ (through a mixture of the involution σ on R and a permutation of suspension coordinates). If m < k, then the homotopy groups of this spectrumvanish for $i \leq 0$. This remains true after passing to homotopy coinvariants: that is, the spectrum $\Sigma^{2k}Q^{\text{quad}}(M)$ is connected (even simply connected), so there exists a nullhomotopy of q.

Now let (M,q) be an arbitrary quadratic object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k}Q^{\operatorname{quad}})$. Suppose we are given a homotopy class $\eta \in \pi_m M$. Then η determines a map of R-module spectra $\alpha : \Sigma^m R \to M$. If m < k, then the above calculation shows that $q|\Sigma^m R$ is automatically nullhomotopic. Choosing a nullhomotopy, we can perform surgery to obtain a new quadratic object (M_α, q_α) . Let us study the homotopy groups of resulting object.

Consider the map $\beta: M \to \Sigma^{2k} \mathbb{D}(\Sigma^m R) = \Sigma^{2k-m} R$ determined by our choice of nullhomotopy of $q|\Sigma^m R$. We have an exact sequence

$$\pi_{i+1}\Sigma^{2k-m}R \to \pi_i \operatorname{fib}(\beta) \to \pi_i M \to \pi_i \Sigma^{2k-m}R.$$

Since R is connective, the homotopy group $\pi_i \Sigma^{2k-m} R = \pi_{i+m-2k} R$ vanishes if i+m < 2k. Similarly, $\pi_{i+1} \Sigma^{2k-m} R \simeq 0$ if i+m+1 < 2k. If m < k, then we conclude that π_i fib $(\beta) \simeq \pi_i M$ for $i \le k$.

We have another exact sequence

$$\pi_i \Sigma^m R \to \pi_i \operatorname{fib}(\beta) \to \pi_i M_\alpha \to \pi_{i-1} \Sigma^m R.$$

Since R is connective, we conclude that $\pi_i M_\alpha \simeq \pi_i \operatorname{fib}(\beta) \simeq \pi_i M$ for i < m, and that $\pi_m M_\alpha$ is the quotient of $\pi_m \operatorname{fib}(\beta) \simeq \pi_m M$ by the submodule generated by η . We can summarize our discussion as follows:

Lemma 3. Let (M,q) be a quadratic object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k}Q^{\operatorname{quad}})$. Suppose that we are given a class $\eta \in \pi_m M$, where m < k. Then (M,q) is cobordant to another Poincare object (M',q'), where $\pi_i M' \simeq \pi_i M$ for i < m, and $\pi_m M'$ is the quotient of $\pi_m M$ by the submodule generated by η .

Let (M,q) be as in Lemma 3, and assume that M is nonzero. Since R is connective, there exists a smallest integer m such that $\pi_m M$ is nonzero. Moreover, the finiteness of M guarantees that $\pi_m M$ is a finitely generated module over $\pi_0 R$. If m < k, we can apply Lemma 3 repeatedly to obtain another quadratic object (M', q'), with $\pi_i M' \simeq 0$ for $i \leq m$. Applying this argument repeatedly, we obtain the following result:

Proposition 4. Let (M,q) be a Poincare object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k}Q^{\operatorname{quad}})$. Then (M,q) is cobordant to a Poincare object (M',q') with $\pi_i M' \simeq 0$ for i < k.

The Poincare object (M', q') of Proposition 7 is k-connective. Moreover, since it is Poincare, we have a canonical equivalence $M' \simeq \Sigma^{2k} \mathbb{D} M'$, so that $\mathbb{D} M'$ is (-k)-connective: that is, M' has projective amplitude $\leq k$. Applying Variant 2, we obtain the following:

Proposition 5. Let R be a connective A_{∞} -ring with involution. Then every Poincare object (M,q) of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k}Q^{\operatorname{quad}})$ is cobordant to a Poincare object (M',q'), where M' is a direct summand of $\Sigma^k R^n$ for some n

In other words, every class in $L_{-2k}(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k}Q^{\operatorname{quad}})$ can be represented by a Poincare object (M,q) which is concentrated in the "middle dimension" k.

Remark 6. Exactly the same analysis applies if we replace $\operatorname{LMod}_R^{\operatorname{fp}}$ by $\operatorname{LMod}_R^{\operatorname{perf}}$. Note that it is important that we are working with quadratic L-theory rather than symmetric L-theory.

We now carry out the analogous discussion for L-groups in odd degrees. Let (M,q) be a quadratic object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k+1}Q^{\operatorname{quad}})$. Note that if $M = \Sigma^m R$ for $m \leq k$, then $\Sigma^{2k+1}Q^{\operatorname{quad}}(M) \simeq (\Sigma^{2k+1-2m}R)_{h\Sigma_2}$ is connected for $k \leq m$. Consequently, if (M,q) is a general Poincare object we can always do surgery on any class $\eta \in \pi_m M$ for $m \leq k$, to produce a new quadratic object (M_α, q_α) . Let us see what effect this surgery has on the homotopy groups of M.

Choose a class $\eta \in \pi_m M$, so that the quadratic form q on M determines a map

$$\beta: M \to \Sigma^{2k+1} \mathbb{D}(M) \to \Sigma^{2k+1} \mathbb{D}(\Sigma^m R) \simeq \Sigma^{2k+1-m} R.$$

We therefore have a long exact sequence of homotopy groups

$$\pi_{i+1}\Sigma^{2k+1-m}R \to \pi_i \operatorname{fib}(\beta) \to \pi_i M \to \pi_i \Sigma^{2k+1-m}R.$$

Consequently, π_i fib $(\beta) \simeq \pi_i M$ for i < 2k - m. In particular, if m < k, then the homotopy groups of fib (β) agree with the homotopy groups of M below m. Let us assume that m < k. We have a fiber sequence

$$\Sigma^m R \to \mathrm{fib}(\beta) \to M_\alpha$$
,

so $\pi_i M_\alpha \simeq \pi_i \operatorname{fib}(\beta) \simeq \pi_i M$ for i < m, while $\pi_m M_\alpha$ is obtained from $\pi_m \operatorname{fib}(\beta) \simeq \pi_m M$ by killing the class n.

Arguing as before, we obtain the following result:

Proposition 7. Let (M,q) be a Poincare object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k+1}Q^{\operatorname{quad}})$. Then (M,q) is cobordant to a Poincare object (M',q') with $\pi_i M' \simeq 0$ for i < k.

Unfortunately, this conclusion is not quite as strong. Since M' is Poincare, it is isomorphic to $\Sigma^{2k+1}\mathbb{D}(M')$, so that $\mathbb{D}(M')$ is (-k-1)-connective. That is, we know that M' is k-connective and has projective amplitude $\leq k+1$. This is not enough to conclude that M' is the suspension of a projective R-module: rather, we can ensure that it is concentrated in two degrees (in a sense which we will take up in the next lecture).

Remark 8. If (M,q) is a quadratic object of $(\operatorname{LMod}_R^{\operatorname{fp}}, \Sigma^{2k+1}, Q^{\operatorname{quad}})$, we can always do surgery on a class $\eta \in \pi_k M$. The problem is that this surgery does not always simplify matters: it has the effect of killing the class η , but might introduce new elements of π_m .