Algebraic Surgery (Lecture 11)

February 17, 2011

Before getting to the main topic of this lecture, let us pick up a few loose ends from the previous lecture. Recall that for every A_{∞} -ring R with involution, we defined stable ∞ -categories $\operatorname{LMod}_R^{\operatorname{perf}}$ and $\operatorname{LMod}_R^{\operatorname{fp}}$ which are equipped with quadratic functors Q and Q^{symm} . We ask the following question: how general are these examples, among all pairs (\mathcal{C},Q) where \mathcal{C} is a stable ∞ -category and Q a nondegenerate quadratic functor on \mathcal{C} ?

- Let \mathcal{C} be any stable ∞ -category containing an object X. Then the spectrum $\operatorname{Mor}_{\mathcal{C}}(X,X)$ is an A_{∞} -ring spectrum R. Moreover, the construction $M \mapsto X \wedge_R M$ determines a fully faithful embedding $\operatorname{LMod}_R^{\operatorname{fp}} \to \mathcal{C}$, carrying R to X. The essential image of this functor is the smallest stable subcategory of \mathcal{C} containing X. If \mathcal{C} is idempotent complete, then this functor extends to a fully faithful embedding $\operatorname{LMod}_R^{\operatorname{perf}} \to \mathcal{C}$.
- Suppose now that \mathcal{C} is equipped with a symmetric bilinear functor B, and let $Q: \mathcal{C}^{op} \to \operatorname{Sp}$ be given by the formula $Q(X) = B(X,X)^{h\Sigma_2}$. Let us assume that B is nondegenerate, and denote the associated duality functor by \mathbb{D} . The functor \mathbb{D} is a contravariant equivalence from \mathcal{C} to itself. Consequently, for any object $X \in \mathcal{C}$ we have a canonical equivalence of A_{∞} -rings $\operatorname{Mor}_{\mathcal{C}}(X,X) \simeq \operatorname{Mor}_{\mathcal{C}}(\mathbb{D}(X),\mathbb{D}(X))^{op}$. If (X,q) is a Poincare object of \mathcal{C} , then this equivalence determines an involution σ on the A_{∞} -ring $R = \operatorname{Mor}_{\mathcal{C}}(X,X)$.

We can summarize the above discussion as follows: a pair (\mathcal{C}, Q) is of the form $(\operatorname{LMod}_R^{\operatorname{fp}}, Q)$ if and only if $Q(X) \simeq B(X, X)^{h\Sigma_2}$ for $X \in \mathcal{C}$, and there exists a Poincare object (M, q) in \mathcal{C} such that M generates \mathcal{C} as a stable ∞ -category.

Example 1. Let R be an associative ring, and let $\mathcal{D}^{fp}(R)$ be the ∞ -category of bounded chain complexes of finitely generated free modules. We can regard R as an object of $\mathcal{D}^{fp}(R)$. Let A = Mor(R, R). The homotopy groups of A are then given by the formula

$$\pi_i A = \operatorname{Ext}_R^{-i}(R, R) = \begin{cases} R & \text{if } i = 0\\ 0 & \text{if } i \neq 0. \end{cases}$$

In other words, we can identify A with the discrete A_{∞} -ring corresponding to R. Following the above outline, we obtain a fully faithful embedding $\operatorname{LMod}_A^{\operatorname{fp}} \to \mathcal{D}^{\operatorname{fp}}(R)$. Since $\mathcal{D}^{\operatorname{fp}}(R)$ is generated by R (under taking fibers and cofibers), we see that this fully faithful embedding is an equivalence.

Our goal in the next few lectures is to obtain a concrete description of the quadratic L-theory for a ring R with involution (and, more generally, for an A_{∞} -ring with involution). The obstacle we have to overcome is this: by definition, elements of L_0 (R) are represented by arbitrary finite complexes of free R-modules P_{\bullet} , equipped with a quadratic form represented by a cycle q in $\operatorname{Hom}(P_{\bullet} \otimes P_{\bullet}, R)_{h\Sigma_2}$. We saw in the last lecture that there is a concrete description of what it means to give have a cycle, at least in the special case where R is a commutative ring with trivial involution and P_{\bullet} is concentrated in a single degree. In this lecture, we describe a mechanism which can be used to show that an arbitrary Poincare object (P_{\bullet}, q) is cobordant

(and therefore represents the same L-theory class) to a Poincare object whose underlying chain complex is concentrated in a single degree. The cobordism itself will be constructed using the method of *surgery*.

Let us begin in a general setting. Let \mathcal{C} be a stable ∞ -category, $Q:\mathcal{C}^{op}\to \operatorname{Sp}$ a nondegenerate quadratic functor with polarization B, and \mathbb{D} the associated duality functor. Suppose we are given a fiber sequence

$$X' \stackrel{\alpha}{\to} X \to X/X'$$

in \mathcal{C} . Let $q \in \Omega^{\infty}Q(X)$, and suppose that we are given a nullhomotopy of $q|X' \in \Omega^{\infty}Q(X')$. We have seen that this is generally not enough information to allow us to descend q to a point of $\Omega^{\infty}Q(X/X')$, because q may have nontrivial image $b \in \Omega^{\infty}B(X',X)$. Note however that q does have trivial image in $\Omega^{\infty}B(X',X')$. In other words, the composite map

$$X' \stackrel{\alpha}{\to} X \to \mathbb{D}(X) \stackrel{\mathbb{D}(\alpha)}{\to} \mathbb{D}(X')$$

is canonically nullhomotopic. We therefore obtain a triangle

$$X' \stackrel{\alpha}{\to} X \stackrel{\beta}{\to} \mathbb{D}(X)$$

in the stable ∞ -category \mathcal{C} . In general, this triangle is not a fiber sequence. Its failure to be a fiber sequence can be measured by taking *homology*: that is, by extracting the object

$$\operatorname{cofib}(X \to \operatorname{fib}(\beta)) \simeq \operatorname{fib}(\operatorname{cofib}(\alpha) \to \mathbb{D}(X))$$

of \mathcal{C} (which vanishes if and only if the sequence above is a fiber sequence). Let us denote this homology object by X_{α} . This is abusive: it depends not only on α , but on a choice of nullhomotopy of q|X'.

Let us write $X_{\alpha} = \text{fib}(\beta)/X$. We have seen that there is a fiber sequence

$$Q(X_{\alpha}) \to Q(\operatorname{fib}(\beta)) \to Q(X') \times_{B(X',X')} B(\operatorname{fib}(\beta),X').$$

The point q determines a point of $\Omega^{\infty}B(X,X')$, classifying the map $\beta: X \to \mathbb{D}X'$. By construction, this map is canonically nullhomotopy after composition with the map $\mathrm{fib}(\beta) \to X$. Consequently, the restriction $q|\mathrm{fib}(\beta)$ has trivial image in $\Omega^{\infty}(Q(X')\times_{B(X',X')}B(\mathrm{fib}(\beta),X'))$, and therefore lifts to a point $q_{\alpha}\in\Omega^{\infty}Q(X_{\alpha})$. We may therefore view (X_{α},q_{α}) as another quadratic object of (\mathfrak{C},Q) . We say that (X_{α},q_{α}) is obtained from (X,q) via surgery on α .

The point q_{α} determines a map from X_{α} to its dual. This map can be described more explicitly as follows. Note that if we are given a triangle

$$Y' \to Y \to Y''$$
.

in C, then we can dualize to obtain a new triangle

$$\mathbb{D}(Y'') \to \mathbb{D}(Y) \to \mathbb{D}(Y')$$

in \mathcal{C} . The process of extracting homology is self-dual (rather, the two descriptions of homology given above are dual to one another). The map $X_{\alpha} \to \mathbb{D} X_{\alpha}$ is given by the map on homology induced by a map of triangles

Here the outer maps vertical maps are isomorphisms and the middle map is induced by q. Consequently, the cofiber of the map $X_{\alpha} \to \mathbb{D}(X_{\alpha})$ is given by the homology of the triangle

$$0 \to \operatorname{cofib}(X \to \mathbb{D}(X)) \to 0$$
,

which is the same as the cofiber of the map $X \to \mathbb{D}(X)$. In particular, one cofiber vanishes if and only if the other does. We have proven:

Proposition 2. Let (X,q) be a Poincare object of \mathbb{C} . Suppose we are given a map $\alpha: X' \to X$ and a nullhomotopy of q|X', and let (X_{α},q_{α}) be obtained by surgery along α . Then (X_{α},q_{α}) is also a Poincare object of \mathbb{C} .

In fact, we can say more. By construction, q_{α} and q have the same restriction to $L = \mathrm{fib}(X \to \mathbb{D}(X'))$. The identification of these restrictions determines a map

$$X' \simeq \mathrm{fib}(L \to X_{\alpha}) \to \mathbb{D} \, \mathrm{cofib}(L \to X) = \mathbb{D}(\mathbb{D}(X')) \simeq X'.$$

Unwinding the definitions, one shows that this map is the identity up to a sign. Consequently, the Poincare object (X, q) and (X_{α}, q_{α}) are cobordant, and determine the same element of the abelian group $L_0(\mathcal{C}, Q)$.

Remark 3. With some additional effort, one can show that *all* cobordisms arise via this construction. That is, every Poincare object cobordant to (X,q) has the form (X_{α},q_{α}) , for some map $\alpha: X' \to X$ and some nullhomotopy of q|X'.