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In this course, we will be concerned with variations on the following:

Question 1. Let X be a CW complex. When does there exist a homotopy equivalence X ' M , where M
is a compact smooth manifold?

In other words, what is special about the homotopy type of a compact smooth manifold M? One special
feature is obvious:

Fact 2. Compact manifolds satisfy Poincare duality.

Let us assume for simplicity that X is simply connected. If M is a compact smooth manifold homotopy
equivalent to X, M is also simply connected and therefore orientable. A choice of orientation determines
a fundamental homology class [M ] ∈ Hn(M ; Z), where n denotes the dimension of M . If f : M → X is a
homotopy equivalence, then [X] = f∗[X] is an element of Hn(X; Z) with the following property: for every
integer q, the operation of cap product with [X] induces an isomorphism

Hq(X; Z)→ Hn−q(X; Z).

This motivates the following definition:

Definition 3. Let X be a simply connected CW complex. We say that X is a simply connected Poincare
complex of dimension n if there exists a homology class [X] ∈ Hn(X; Z) such that cap product with [X]
induces isomorphisms

Hq(X; Z)→ Hn−q(X; Z)

for every integer q. In this case, we say that [X] is a fundamental class of X.

Example 4. Any compact smooth manifold of dimension n is a Poincare complex of dimension n.

Remark 5. Taking q = 0 in Definition 3 and using our assumption that X is connected, we obtain an
isomorphism

Z ' H0(X; Z)→ Hn(X; Z)

given by 1 7→ [X]. It follows that Hn(X; Z) must be a free abelian group of rank 1, and [X] must be a
generator of Hn(X; Z). Consequently, the fundamental class of X is well-defined up to sign.

Remark 6. If X is a simply connected Poincare complex of dimension n, then we have

Hq(X; Z) ' Hn−q(X; Z) ' 0

for q > n. In particular, n is uniquely determined by X: it is the largest degree of a nonvanishing homology
group of X.

Remark 7. Using the fact that Hm(X; Z) vanishes for m > n and that it is free when m = n, one can show
that X is homotopy equivalent to a CW complex whose cells have dimension ≤ n. However, we will not
need this fact and we will not require that X itself have this property.
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We can now give a partial answer to Question 1: if X is to be homotopy equivalent to a compact smooth
manifold, then X must be a Poincare complex. We can therefore refine Question 1 (in the simply connected
case) as follows:

Question 8. Let X be a simply connected Poincare complex of dimension n. When does there exist a
homotopy equivalence X 'M , where M is a smooth manifold of dimension n?

To address Question 8, we make another observation: if M is a smooth manifold of dimension n, then
M has a tangent bundle TM , which is a real vector bundle of rank n over M . Moreover, the tangent bundle
of M is closely connected with our discussion of Poincare duality.

We begin by considering the normal bundle of M . Choose an embedding i : M → Rk for some large
integer k. Let NM denote the normal bundle to this embedding. By choosing a tubular neighborhood of M
in Rk, we can identify NM with an open subset of Rk. The Thom space T (NM ) is given by the one-point
compactification of NM , given by NM ∪ {∗}. We have a Thom-Pontryagin collapse map

c : Sk = Rk ∪{∞} → T (NM ),

given by c(v) =

{
v if v ∈ N
∗ otherwise.

which determines an element [c] ∈ πk(T (NM ),∞). Since M is simply

connected, the normal bundle N is oriented. Choosing an orientation, we obtain a Thom isomorphism
Hk(T (NM ), ∗; Z) ' Hn(M ; Z). Composing with the Hurewicz map, we obtain a homomorphism

πk(T (NM ), ∗)→ Hk(T (NM ), ∗; Z) ' Hn(M ; Z).

The image of [c] under this composite map is a fundamental homology class [M ]. (with respect to the
orientation determined by the choice of orientation on NM ).

The vector bundle NM is not unique: it depends on a choice of embedding M ↪→ Rk. However, the
spectrum Σ∞−kT (NM ) is uniquely determined. We have a canonical exact sequence of vector bundles

TM → TRn |M → NM .

Choosing a splitting of this exact sequence, we obtain a direct sum decomposition NM ⊕ TM ' Rk, where
Rk denotes the trivial vector bundle of rank k. It follows that the spectrum Σ∞−kT (NM ) can be identified
with the Thom spectrum M−TM of the virtual vector bundle −TM on M . The element [c] ∈ πk(T (NM ),∞)
determines an element ηM ∈ π0M−TM , which is independent of the choice of embedding i.

We can summarize the above discussion as follows:

Fact 9. Let M be a simply connected smooth manifold of dimension n. Then there exists a vector bundle
ζ on M of dimension n (namely, the tangent bundle TM ) and a class ηM ∈ π0M−ζ such that the image of
ηM under the composite map

π0(M−ζ)→ H0(M−ζ ; Z) ' Hn(M ; Z)

is a fundamental class of M . Here the second map is the Thom isomorphism (determined by a choice of
orientation of ζ).

This gives us another necessary condition that a simply connected CW complex X must satisfy if X is
to be homotopy equivalent to a manifold of dimension n: there must exist a vector bundle ζ on X and a
homotopy class ηX ∈ π0X−ζ whose image [X] ∈ Hn(X; Z) exhibits X as a Poincare complex of dimension
n. We may therefore refine our question yet again:

Question 10. Let X be a simply connected Poincare complex of dimension n. Suppose we are given a
vector bundle ζ of dimension n on X and a homotopy class ηX ∈ π0X

−ζ whose image in Hn(X; Z) is a
fundamental homology class for X. Does there exist a smooth manifold M of dimension n and a homotopy
equivalence f : M → X such that f∗ζ is (stably) isomorphic to TM and f∗ηX = ηM ∈ π0M−TM ?
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We now give the answer to Question 10 in the simplest case. Assume that X is a simply connected
Poincare complex of dimension n = 4k. In this case, we have a symmetric bilinear form

〈, 〉 : H2k(X;R)×H2k(X;R)→ H4k(X;R)
[X]→ R

and Poincare duality ensures that this form is nondegenerate. We may therefore choose an orthogonal basis
(x1, . . . , xa, y1, . . . , yb) for H2k(X;R) satisfying 〈xi, xi〉 = 1 and 〈yi, yi〉 = −1. The difference a − b is called
the signature of X, and will be denoted by σX . Note that the sign of σX depends on a choice of fundamental
class for X.

If M is a compact smooth manifold of dimension n = 4k, then the signature of M is given by the
Hirzebruch signature formula. Namely, there is a formula

σM = L(p1(TM ), p2(TM ), . . . , pk(TM ))[M ].

Here L(p1(TM ), p2(TM ), . . . , pk(TM )) denotes some polynomial in the Pontryagin classes pi(TM ) (note that
the right hand side of this formula also depends up to sign on our choice of orientation of M). For example,

when n = 4 we have σM = p1(TM )
3 [M ], and when n = 8 we have

σM =
7p2(TM )− p1(TM )2

45
[M ].

Remark 11. If we choose a connection on the manifold M , then we can use Chern-Weil theory to obtain
explicit differential forms representing the Pontryagin classes of the tangent bundle TM . Consequently, the
signature of M can be computed by integrating over M an explicitly given n-form on M . We can therefore
regard the Hirzebruch signature formula as saying that there is a purely local formula for the signature, which
is defined a priori as a global invariant of M .

Remark 12. Here is a very rough heuristic justification for why there should exist a Hirzebruch signature
formula. If X is a Poincare complex of dimension 4k, then the signature σX is defined because we can
define an intersection form using Poincare duality. If X is a manifold, the Poincare duality is satisfied for a
“local” reason, so we might expect to obtain a “local” formula for σX . Later in this course, we will prove
the Hirzebruch signature formula by making this heuristic more precise.

This gives us one further condition that a triple, (X, ζ, νX ∈ π0X−ζ) must satisfy to obtain an affirmative
answer to Question 10. Namely, we must have

σX = L(p1(ζ), p2(ζ), . . . , pk(ζ))[X].

Simply-connected surgery provides a converse in high dimensions:

Theorem 13 (Browder, Novikov?). Let X be a simply connected Poincare complex of dimension 4k >
4, let ζ be a vector bundle (of rank 4k) on X, and let ηX ∈ π0X

−ζ be such that the image of ηX in
H4k(X; Z) is a fundamental class. Then Question 10 has an affirmative answer if and only if σX =
L(p1(ζ), p2(ζ), . . . , pk(ζ))[X]: that is, if and only if X satisfies the Hirzebruch signature formula.

Theorem 13 is a prototype for the type of result we would like to obtain in this class. We will pursue a
number of variations:

(a) We can contemplate Question 1 for Poincare complexes X which are not assumed to be simply con-
nected.

(b) Question 1 concerns the existence of a manifold M in the homotopy type of X. If the answer is
affirmative, one can further ask if M is unique.
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Let us briefly describe how problem (b) can be attacked. Suppose that we are given a Poincare complex
X and a pair of homotopy equivalences f : X →M , g : X →M ′, where M and M ′ are compact manifolds of
dimension n. We can then consider the “double mapping cylinder” Y = M

∐
X×{0}(X × [0, 1])

∐
X×{1}M

′.

The pair (Y,M qM ′) satisfies a relative version of Poincare duality. This suggests that we might look for
an (n + 1)-manifold B with boundary M qM ′ and a homotopy equivalence (B,M qM ′) → (Y,M qM ′)
which restricts to the identity map on M and M ′. If we can solve this problem, then B is an h-cobordism
from M to M ′: that is, a bordism from M to M ′ such that the inclusions M ↪→ B ←↩ M ′ are homotopy
equivalences. If n ≥ 5 and M is simply connected, then the h-cobordism theorem guarantees the existence
of a diffeomorphism B 'M × [0, 1], which in particular gives a diffeomorphism M 'M ′.

In summary, the problem of deciding whether M is unique can be regarded as another of roughly the
same type as Question 1. This motivates considering two more types of variations of Question 1:

(c) Rather than considering the absolute case of a Poincare complex X, we should consider the problem
of proving that a pair of spaces (X, ∂ X) is homotopy equivalent to a manifold with boundary.

(d) We should not restrict our attention to the case of a fixed dimension n: a lot of information about the
classification of manifolds of dimension n can be obtained by thinking about manifolds of dimension
> n. In particular, we should not restrict our attention to the case where n is a multiple of four.
(However, we will retain the assumption that n > 4: this is the domain of high-dimensional topology
where techniques of surgery work well).

If M is not simply connected, then an h-cobordism from M to M ′ does not generally guarantee that M
and M ′ are diffeomorphic: one encounters an algebraic obstruction called the Whitehead torsion. This is
an interesting story, but not one we will discuss in this class: we will be content to give the classification of
manifolds in a homotopy type up to h-cobordism.

In fact, we will do more. Suppose that M and M ′ are as above, and that Y has the homotopy type of an
h-cobordism B from M to M ′. We might then ask a higher-order uniqueness question: to what extent is the
bordism B uniquely determined? To ask these questions in an organized way, it is convenient to introduce
the structure space S(X) of a Poincare complex X. This is a space whose connected components are given
by manifolds M with a homotopy equivalence M → X, up to h-cobordism. Question 1 is the question of
whether or not S(X) is nonempty, and the uniqueness problem amounts to the question of whether or not
S(X) is connected. Better still, we might try to discuss the entire homotopy type of S(X).

(e) We can ask an analogue of Question 1 for manifolds equipped with various structure. Suppose, for
example, that we wanted to find a spin manifold in the homotopy type of the Poincare complex X.
The collection of h-cobordism classes of such manifolds can be described as connected components of a
slightly different structure space SSpin(X). By forgetting spin structures, we obtain a map of structure
spaces θ : SSpin(X) → S(X). Giving a spin structure on a manifold M is equivalent to giving a spin
structure on its tangent bundle TM : that is, to reducing the structure group of M from the orthogonal
group Ø(n) to the spin group Spin(N). Consequently, the homotopy fibers of the map θ are easy to
describe. Consequently, the problem of determining the homotopy type of SSpin(X) can be reduced to
the problem of determining the homotopy type of S(X).

What we have denoted by S(X) should really be denoted SSm(X), the smooth structure space, because
in the above discussion we required all manifolds to be smooth. We can also define a topological
structure space STop(X) by considering topological manifolds with a homotopy equivalence to X.
By forgetting smooth structures, we obtain a map of structures spaces SSm(X) → STop(X). The
relationship between SSm(X) and STop(X) is similar to the relationship between SSpin(X) and SSm(X):
according to smoothing theory, for topological manifolds M of dimension > 4, giving a smooth structure
on M is equivalent giving a vector bundle structure on the topological tangent bundle TM . In other
words, to classify smooth manifolds in the homotopy type of X we can proceed by first classifying the
topological manifolds in the homotopy type of X and then studying the problem of smoothing them,
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where the second step reduces to a purely homotopy-theoretic problem. Put another way, there is a
good homotopy-theoretic understanding of the homotopy fibers of the map SSm(X)→ STop(X).

However, there is a much more compelling reason to work with topological manifolds rather than
smooth manifolds: the topological versions of these questions often have nicer answers. For example,
there is only one topological manifold in the homotopy type of the n-sphere Sn (by the generalized
Poincare conjecture), but this topological manifold admits many different smooth structures (exotic
spheres). The ultimate algebraic description of structure spaces which we obtain will be cleanest in
the topological category. For example, SSm(X) is just a space, but we will later see that STop(X) is an
infinite loop space (if nonempty). A concrete consequence of this is that if we fix a topological manifold
M , then the collection of h-cobordism classes of manifolds in with a homotopy equivalence to M has
the structure of an abelian group.

Our ultimate goal in this course is to obtain a purely homotopy theoretic description of the structure
space S(X) of a Poincare complex X. Though we are not yet ready to formulate this description precisely,
let us assert that it has the same basic form as the statement of Theorem 13. Namely, we will associate
to X a certain invariant σ, called the visible symmetric signature of X. We will then show that finding a
manifold in the homotopy type of X amounts to verifying a “local formula” for this invariant, generalizing
the Hirzebruch signature formula (see Remark 11). The fine print is that this invariant is not an integer,
but something more sophisticated. Explaining exactly what that “something” is will require us to develop
the apparatus of algebraic L-theory. That is our objective for the first half of this course. In the second half,
we will return to the theory of manifolds, using the algebraic apparatus to prove a very general version of
Theorem 13.
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