# Koszul Duality in Algebraic Geometry (Lecture 24) 

April 7, 2014

Let $k$ be an algebraically closed field, let $X$ be an algebraic curve over $k$, and let $G$ be a smooth affine group scheme over $X$. Let us assume for simplicity that $G$ is everywhere reductive. Associated to $G$, we have prestack morphisms

$$
\begin{aligned}
\operatorname{Ran}_{G}(X) & \xrightarrow{\phi} \operatorname{Ran}(X) \\
\operatorname{Ran}^{G}(X) & \xrightarrow{\psi} \operatorname{Ran}(X) .
\end{aligned}
$$

Recall that the objects of $\operatorname{Ran}_{G}(X)$ are tuples $(R, S, \mu, \mathcal{P}, \gamma)$ where $R$ is a finitely generated $k$-algebra, $S$ is a nonempty finite set, $\mu: S \rightarrow X(R)$ is a map, $\mathcal{P}$ is a $G$-bundle on $X_{R}$, and $\gamma$ is a trivialization of $\mathcal{P}$ on $X-|\mu|$. The objects of $\operatorname{Ran}^{G}(X)$ are tuples $(R, T, \nu, \mathcal{P})$ where $R$ is a finitely generated $k$-algebra, $T$ is a nonempty finite set, $\nu: T \rightarrow X(R)$ is a map, and $\mathcal{P}$ on a $G$-bundle on $X-|\nu|$. These two maps have different variance properties. Given a nonempty finite set $S$, the projection map

$$
\operatorname{Ran}_{G}(X)_{S}=\operatorname{Ran}_{G}(X) \times_{\operatorname{Ran}(X)} X^{S} \rightarrow X^{S}
$$

is Ind-proper (since $G$ is everywhere reductive); for a nonempty finite set $T$, the map

$$
\operatorname{Ran}^{G}(X)^{T}=\operatorname{Ran}^{G}(X) \times \operatorname{Ran}(X) X^{T} \rightarrow X^{T}
$$

is instead a smooth morphism of algebraic stacks. Given a surjection of nonempty finite sets $S \rightarrow S^{\prime}$, we have a natural map

$$
\operatorname{Ran}_{G}(X)_{S^{\prime}} \rightarrow X^{S^{\prime}} \times_{X^{s}} \operatorname{Ran}_{G}(X)_{S},
$$

while a surjection $T \rightarrow T^{\prime}$ instead induces a map

$$
\operatorname{Ran}^{G}(X)^{T^{\prime}} \leftarrow X^{T^{\prime}} \times X_{X^{T}} \operatorname{Ran}^{G}(X)^{T} .
$$

As a consequence of these differences, the maps $\phi$ and $\psi$ can be used to produce two different types of sheaves on $\operatorname{Ran}(X)$. We have previously defined the !-sheaf $\mathcal{B}=\left[\operatorname{Ran}^{G}(X)\right]_{\operatorname{Ran}(X)}$, which we can think of informally as given by $\psi_{*} \psi^{*} \omega_{\operatorname{Ran}(X)}$. Similarly, one can construct a $*-$ sheaf $\mathcal{A}=\phi_{*} \phi^{*} \underline{\mathbf{Z}}_{\ell \operatorname{Ran}(X)}$. Our goal in this lecture is to describe how these constructions are related. As we have hinted earlier, these objects are related by a covariant form a Verdier duality, at least after an appropriate normalization.

We begin with an informal discussion. Consider the prestack $\operatorname{Ran}(X) \times_{\text {Spec } k} \operatorname{Ran}(X)$. Let us informally identify the points of $\operatorname{Ran}(X) \times_{\text {Spec } k} \operatorname{Ran}(X)$ with pairs $(S, T)$, where $S$ and $T$ are nonempty finite subsets of $X$. Given such a pair, any $G$-bundle $\mathcal{P}$ on $X$ can be restricted to a $G$-bundle on $T$. This construction determines a commutative diagram


Ignoring the distinction between !-sheaves and $*$-sheaves for the moment, we can think of this diagram as supplying a map

$$
\theta: \underline{\mathbf{Z}}_{\ell \operatorname{Ran}(X)} \boxtimes \mathcal{B} \rightarrow \mathcal{A} \boxtimes \omega_{\operatorname{Ran}(X)} .
$$

For every pair $(S, T)$, we can pass to the stalk at $S$ and costalk at $T$ to obtain a map

$$
\theta_{S, T}=\bigotimes_{t \in T} C^{*}\left(\mathrm{BG}_{t} ; \mathbf{Z}_{\ell}\right) \rightarrow \bigotimes_{s \in S} C^{*}\left(\operatorname{Gr}_{s}^{G} ; \mathbf{Z}_{\ell}\right)
$$

Geometrically, this map arises from a map of prestacks

$$
\rho_{S, T}: \prod_{s \in S} \operatorname{Gr}_{s}^{G} \rightarrow \prod_{t \in T} \mathrm{BG}_{t}
$$

Note that if $S \neq T$, then this map exhibits some degenerate behavior. For example, if there exists an element $s_{0} \in S$ which does not belong to $T$, then the map $\rho_{S, T}$ factors through the product $\prod_{s \neq s_{0}} \mathrm{Gr}_{s}^{G}$, which we can think of as parametrizing $G$-bundles on $X-\left\{s_{0}\right\}$ with a trivialization on $X-S$ (in order to restrict a $G$-bundle to the set $T$, we do not need it to be defined at the point $s_{0}$ ). Similarly, if there exists an element $t_{0} \in T$ which does not belong to $S$, then the map $\rho_{S, T}$ factors through $\prod_{t \neq t_{0}} \mathrm{BG}_{t}$ (since any $G$-bundle trivial on $X-S$ will be trivial at the point $t_{0}$ ). In either case, we conclude that the composite map

$$
\begin{aligned}
\bigotimes_{t \in T} C_{\mathrm{red}}^{*}\left(\mathrm{BG}_{t} ; \mathbf{Z}_{\ell}\right) & \rightarrow \bigotimes_{t \in T} C^{*}\left(\mathrm{BG}_{t} ; \mathbf{Z}_{\ell}\right) \\
& \xrightarrow{\theta_{S, T}} \bigotimes_{s \in S} C^{*}\left(\mathrm{Gr}_{s}^{G} ; \mathbf{Z}_{\ell}\right) \\
& \rightarrow \bigotimes_{s \in S} C_{\mathrm{red}}^{*}\left(\mathrm{Gr}_{s}^{G} ; \mathbf{Z}_{\ell}\right)
\end{aligned}
$$

vanishes.
It is possible to introduce "reduced versions" of the sheaves $\mathcal{A}$ and $\mathcal{B}$, which we will denote by $\mathcal{A}_{\text {red }}$ and $\mathcal{B}_{\text {red }}$, whose (co)stalks are given by

$$
S^{*} \mathcal{A}_{\mathrm{red}}=\bigotimes_{s \in S} C^{*}\left(\operatorname{Gr}_{s}^{G} ; \mathbf{Z}_{\ell}\right) \quad T^{!} \mathcal{B}_{\mathrm{red}}=\bigotimes_{t \in T} C^{*}\left(\mathrm{BG}_{t} ; \mathbf{Z}_{\ell}\right)
$$

An elaboration of the above argument shows that $\theta$ induces a map

$$
\theta_{\text {red }}: \underline{Z}_{\ell \operatorname{Ran}(X)} \boxtimes \mathcal{B}_{\text {red }} \rightarrow \mathcal{A}_{\text {red }} \boxtimes \omega_{\operatorname{Ran}(X)}
$$

which vanishes away from the diagonal of $\operatorname{Ran}(X) \times_{\operatorname{Spec} k} \operatorname{Ran}(X)$. Heuristically, this means that $\theta_{\text {red }}$ factors through a map

$$
\underline{\mathbf{Z}}_{\ell \operatorname{Ran}(X)} \boxtimes \mathcal{B}_{\mathrm{red}} \rightarrow \Delta_{*} \Delta^{!} \mathcal{A}_{\mathrm{red}} \boxtimes \omega_{\operatorname{Ran}(X)}
$$

which we can identify with a map

$$
\mathcal{B}_{\mathrm{red}}=\Delta^{*}\left(\underline{\mathbf{Z}}_{\ell \operatorname{Ran}(X)} \boxtimes \mathcal{B}_{\mathrm{red}}\right) \rightarrow \Delta^{!}\left(\mathcal{A}_{\mathrm{red}} \boxtimes \omega_{\operatorname{Ran}(X)}\right) \simeq \mathcal{A}_{\mathrm{red}}
$$

The main idea of our proof is to show that this map is an equivalence. However, this does not quite make sense as we have formulated it: the right hand side is a !-sheaf on $\operatorname{Ran}(X)$, and the left hand side is a $*$-sheaf on $\operatorname{Ran}(X)$. Moreover, many of the objects which appeared in the above discussion (like the external tensor product $\left.\mathcal{A}_{\text {red }} \boxtimes \omega_{\operatorname{Ran}(X)}\right)$ need to be interpreted as some sort of hybrid between $*$-sheaves and !-sheaves. It will therefore be convenient to recast the above discussion in a less symmetrical way (essentially by "pushing forward" all of our sheaves onto the second copy of $\operatorname{Ran}(X))$, which involves only !-sheaves on $\operatorname{Ran}(X)$.

Let us now dispense with heuristics and describe the strategy we will actually pursue. For every nonempty finite set $S$, we let $\operatorname{Ran}_{G}(X)_{S}$ denote the fiber product $\operatorname{Ran}_{G}(X) \times \operatorname{Ran}(X) X^{S}$. We then have maps of Ranprestacks

$$
\operatorname{Ran}_{G}(X)_{S} \times \times_{\operatorname{Spec} k} \operatorname{Ran}(X) \rightarrow X^{S} \times{ }_{\text {Spec } k} \operatorname{Bun}_{G}(X) \times_{\text {Spec } k} \operatorname{Ran}(X) \rightarrow \operatorname{Ran}^{G}(X)
$$

depending functorially on $S$. We therefore obtain maps of !-sheaves

$$
\mathcal{B} \rightarrow C^{*}\left(X^{S} ; \mathbf{Z}_{\ell}\right) \otimes C^{*}\left(\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) \otimes \omega_{\operatorname{Ran}(X)} \rightarrow C^{*}\left(\operatorname{Ran}_{G}(X)_{S} ; \mathbf{Z}_{\ell}\right)
$$

depending functorially on $S$. Passing to chiral homology, we obtain maps

$$
\int_{\operatorname{Ran}(X)} \mathcal{B} \xrightarrow{\alpha_{S}} C^{*}\left(X^{S} ; \mathbf{Z}_{\ell}\right) \otimes_{\mathbf{Z}_{\ell}} C^{*}\left(\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) \xrightarrow{\beta_{S}} C^{*}\left(\operatorname{Ran}_{G}(X)_{S} ; \mathbf{Z}_{\ell}\right)
$$

The inverse limit of the maps $\beta_{S}$ as $S$ varies can be identified with the natural map $C^{*}(\operatorname{Ran}(X) \times \operatorname{Spec} k$ $\left.\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) \rightarrow C^{*}\left(\operatorname{Ran}_{G}(X) ; \mathbf{Z}_{\ell}\right)$ : this is predual to the equivalence

$$
\begin{aligned}
C_{*}\left(\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) & \simeq C_{*}\left(\operatorname{Ran}(X) ; \mathbf{Z}_{\ell}\right) \otimes_{\mathbf{z}_{\ell}} C_{*}\left(\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) \\
& \simeq C_{*}\left(\operatorname{Ran}(X) \times_{\operatorname{Spec} k} \operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right) \\
& \rightarrow C_{*}\left(\operatorname{Ran}_{G}(X) ; \mathbf{Z}_{\ell}\right)
\end{aligned}
$$

supplied by nonabelian Poincare duality. The inverse limit of the maps $\alpha_{S}$ as $S$ varies can be identified with the map

$$
\int_{\operatorname{Ran}(X)} \mathcal{B} \rightarrow C^{*}\left(\operatorname{Bun}_{G}(X) ; \mathbf{Z}_{\ell}\right)
$$

that we discussed in the previous lecture. Consequently, we are reduced to proving the following:
Proposition 1. The induced map

$$
\int_{\operatorname{Ran}(X)} \mathcal{B} \rightarrow{\underset{S}{S}}_{\lim _{S}} C^{*}\left(\operatorname{Ran}_{G}(X)_{S} ; \mathbf{Z}_{\ell}\right)
$$

is an equivalence in $\operatorname{Mod}_{\mathbf{z}_{\ell}}$.
We will prove this by factoring the the composite map

$$
\xi: \operatorname{Ran}_{G}(X)_{S} \times_{\operatorname{Spec} k} \operatorname{Ran}(X) \rightarrow X^{S} \times_{\operatorname{Spec} k} \operatorname{Bun}_{G}(X) \times_{\operatorname{Spec} k} \operatorname{Ran}(X) \rightarrow \operatorname{Ran}^{G}(X)
$$

in a different way. For this, we need an auxiliary construction.
Construction 2. Fix a nonempty finite set $S$ and a pair of subsets $K_{-} \subseteq K_{+} \subseteq S$. We define a prestack $\mathcal{C}\left(K_{-}, K_{+}\right)$as follows:

- The objects of $\mathcal{C}\left(K_{-}, K_{+}\right)$are tuples $(R, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma)$ where $R$ is a finitely generated $k$ algebra, $T$ is a nonempty finite set, $\mu: S \rightarrow X(R)$ and and $\nu: T \rightarrow X(R)$ are maps of sets such that $\left|\mu\left(K_{+}\right)\right| \cap|\nu(T)|=\emptyset, \mathcal{P}$ is a $G$-bundle on $X_{R}-\left|\mu\left(S_{-}\right)\right|$which can be extended to a $G$-bundle on $X_{R}$, and $\gamma$ is a trivialization of $\mathcal{P}$ over $X_{R}-|\mu(S)|$.
- A morphism from $(R, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma)$ to $\left(R^{\prime}, \mu^{\prime}, \nu^{\prime}: T^{\prime} \rightarrow X\left(R^{\prime}\right), \mathcal{P}^{\prime}, \gamma^{\prime}\right)$ consists of a $k$-algebra homomorphisms $\phi: R \rightarrow R^{\prime}$ such that $\mu^{\prime}$ is given by the composition $S \xrightarrow{\mu} X(R) \xrightarrow{X(\phi)} X\left(R^{\prime}\right)$, a surjection of finite sets $\lambda: T \rightarrow T^{\prime}$ which fits into a commutative diagram

and a $G$-bundle isomorphisms between $\mathcal{P} \times_{\text {Spec } R} \operatorname{Spec} R^{\prime}$ and $\mathcal{P}^{\prime}$ over the scheme $X_{R^{\prime}}-\left|\mu^{\prime}\left(K_{-}\right)\right|$which carries $\gamma$ to $\gamma^{\prime}$.

Remark 3. If the set $S$ and the subset $K_{+} \subseteq S$ are fixed, then we can regard $\mathcal{C}\left(K_{-}, K_{+}\right)$as a covariant functor of $K_{-}$: for every inclusion $K_{-} \subseteq K_{-}^{\prime} \subseteq K_{+}$, we have a forgetful functor

$$
\mathcal{C}\left(K_{-}, K_{+}\right) \rightarrow \mathcal{C}\left(K_{-}^{\prime}, K_{+}\right)
$$

given by restriction of $G$-bundles. Here it is helpful to think of $\mathcal{C}\left(K_{-}^{\prime}, K_{+}\right)$as the quotient of $\mathcal{C}\left(K_{-}, K_{+}\right)$ obtained by identifying $G$-bundles which differ away from the image of $K_{+}^{\prime}$ in $X$.

Remark 4. If the set $S$ and the subset $K_{-} \subseteq S$ are fixed, then we can regard $\mathcal{C}\left(K_{-}, K_{+}\right)$as a contravariant functor of $K_{+}$: for every inclusion $K_{-} \subseteq K_{+} \subseteq K_{+}^{\prime}$, we can identify $\mathcal{C}\left(K_{-}, K_{+}^{\prime}\right)$ with a full subcategory of $\mathcal{C}\left(K_{-}, K_{+}\right)$(given by those objects $(R, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma)$ which satisfy the additional condition that $\left.\mu\left(K_{+}^{\prime}\right) \cap \nu(T)=\emptyset\right)$.

Example 5. If $K_{-}=K_{+}=\emptyset$, then we can identify $\mathcal{C}\left(K_{-}, K_{+}\right)$with the product $\operatorname{Ran}_{G}(X)_{S} \times{ }_{\operatorname{Spec} k} \operatorname{Ran}(X)$.
Definition 6. Fix a nonempty finite set $S$. We let $\operatorname{Ran}_{G}^{\dagger}(X)_{S}$ denote the category obtained via the Grothendieck construction on the functor $\left(K_{-}, K_{+}\right) \mapsto \mathcal{C}\left(K_{-}, K_{+}\right)$. More precisely, we have the following:

- The objects of $\operatorname{Ran}_{G}^{\dagger}(X)_{S}$ are tuples $\left(R, K_{-}, K_{+}, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma\right)$ where $R$ is a finitely generated $k$-algebra, $K_{-}$and $K_{+}$are subsets of $S$ with $K_{-} \subseteq K_{+}, T$ is a nonempty finite set, $\mu: S \rightarrow X(R)$ and and $\nu: T \rightarrow X(R)$ are maps of sets such that $\left|\mu\left(K_{+}\right)\right| \cap|\nu(T)|=\emptyset, \mathcal{P}$ is a $G$-bundle on $X_{R}-\left|\mu\left(K_{-}\right)\right|$ which can be extended to a $G$-bundle on $X_{R}$, and $\gamma$ is a trivialization of $\mathcal{P}$ over $X_{R}-|\mu(S)|$.
- There are no morphisms

$$
\left(R, K_{-}, K_{+}, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma\right) \rightarrow\left(R^{\prime}, K_{-}^{\prime}, K_{+}^{\prime}, \mu^{\prime}, \nu^{\prime}: T^{\prime} \rightarrow X\left(R^{\prime}\right), \mathcal{P}^{\prime}, \gamma^{\prime}\right)
$$

unless $K_{-}^{\prime} \subseteq K_{-} \subseteq K_{+} \subseteq K_{+}^{\prime}$. If this condition is satisfied, then a morphism from $\left(R, K_{-}, K_{+}, \mu, \nu\right.$ : $T \rightarrow X(R), \mathcal{P}, \gamma)$ to $\left(R^{\prime}, K_{-}^{\prime}, K_{+}^{\prime}, \mu^{\prime}, \nu^{\prime}: T^{\prime} \rightarrow X(R), \mathcal{P}^{\prime}, \gamma^{\prime}\right)$ consists of a $k$-algebra homomorphism $\phi: R \rightarrow R^{\prime}$ carrying $\mu$ to $\mu^{\prime}$, a surjection of finite sets $\lambda: T \rightarrow T^{\prime}$ which fits into a commutative diagram

and a $G$-bundle isomorphism between $\mathcal{P}$ and $\mathcal{P}^{\prime}$ over the scheme $X_{R^{\prime}}-\left|\mu^{\prime}\left(K_{-}^{\prime}\right)\right|$ which carries $\gamma$ to $\gamma^{\prime}$.
The construction $\left(R, K_{-}, K_{+}, \mu, \nu: T \rightarrow X(R), \mathcal{P}, \gamma\right) \mapsto\left(R, T, \nu,\left.\mathcal{P}\right|_{|\nu(T)|}\right)$ determines a forgetful functor $f_{S}: \operatorname{Ran}_{G}^{\dagger}(X)_{S} \rightarrow \operatorname{Ran}^{G}(X)$. We let $\mathcal{B}_{S}$ denote the lax !-sheaf on $\operatorname{Ran}(X)$ given by the formula

$$
\mathcal{B}_{S}^{(T)}=\left[\operatorname{Ran}_{G}^{\dagger}(X)_{S} \times_{\operatorname{Ran}(X)} X^{T}\right]_{X^{T}}
$$

Note that the map $f_{S}$ induces a map of lax !-sheaves $\mathcal{B} \rightarrow \mathcal{B}_{S}$, depending functorially on $S$. Moreover, the identification $\mathcal{C}(\emptyset, \emptyset) \simeq \operatorname{Ran}_{G}(X)_{S} \times_{\text {Spec } k} \operatorname{Ran}(X)$ determines a fully faithful embedding

$$
\operatorname{Ran}_{G}(X)_{S} \times_{\text {Spec } k} \operatorname{Ran}(X) \hookrightarrow \operatorname{Ran}_{G}^{\dagger}(X)_{S}
$$

which induces a pullback map $\mathcal{B}_{S} \rightarrow C^{*}\left(\operatorname{Ran}_{G}(X)_{S} ; \mathbf{Z}_{\ell}\right) \otimes \omega_{\operatorname{Ran}(X)}$. Using the commutativity of the diagram

we see that the map $\xi$ of Proposition 1 can be identified with the composition

$$
\begin{aligned}
& \int_{\operatorname{Ran}(X)} \mathcal{B} \stackrel{\xi^{\prime}}{\rightarrow} \int_{\operatorname{Ran}(X)} \underset{\stackrel{\lim _{S}}{\leftrightarrows}}{\mathcal{B}_{S}}
\end{aligned}
$$

$$
\begin{aligned}
& \simeq{\underset{\overleftarrow{S}}{ }}_{\lim ^{*}} C^{*}\left(\operatorname{Ran}_{G}(X)_{S} ; \mathbf{Z}_{\ell}\right) .
\end{aligned}
$$

We are therefore reduced to proving the following pair of assertions:
Proposition 7. The map $\xi^{\prime \prime}$ is an equivalence in $\operatorname{Mod}_{\mathbf{z}_{\ell}}$.
Proposition 8. The canonical map $\mathcal{B} \rightarrow \varliminf_{\lim _{S}} \mathcal{B}_{S}$ is an equivalence of !-sheaves on $\operatorname{Ran}(X)$.
The proof of Proposition 7 is mostly formal: the difficulty lies in showing that passage to the inverse limit over $S$ "commutes" with passage to chiral homology. In terms of our heuristic picture, this is because the *-sheaf $\mathcal{A}_{\text {red }}$ is generated by compactly supported sections: in fact, in any given degree, the cohomologies of the sheaf $\mathcal{A}_{\text {red }}$ are supported on the substack $\operatorname{Ran}(X)_{\leq n}$ for $n \gg 0$. We will not present the details in class.

Proposition 8 can be regarded as a local calculation on the Ran space, which relates the cohomology of the Grassmannians $\mathrm{Gr}_{G, x}$ to the cohomology of the classifying stacks $B G_{y}$. We will return to this in the next lecture.

