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Let k be an algebraically closed field, let X be an algebraic curve over k, and let G be a smooth affine
group scheme over X. Let us assume for simplicity that G is everywhere reductive. Associated to G, we
have prestack morphisms

RanG(X)
φ→ Ran(X)

RanG(X)
ψ→ Ran(X).

Recall that the objects of RanG(X) are tuples (R,S, µ,P, γ) where R is a finitely generated k-algebra, S is a
nonempty finite set, µ : S → X(R) is a map, P is a G-bundle on XR, and γ is a trivialization of P on X−|µ|.
The objects of RanG(X) are tuples (R, T, ν,P) where R is a finitely generated k-algebra, T is a nonempty
finite set, ν : T → X(R) is a map, and P on a G-bundle on X − |ν|. These two maps have different variance
properties. Given a nonempty finite set S, the projection map

RanG(X)S = RanG(X)×Ran(X) X
S → XS

is Ind-proper (since G is everywhere reductive); for a nonempty finite set T , the map

RanG(X)T = RanG(X)×Ran(X) X
T → XT

is instead a smooth morphism of algebraic stacks. Given a surjection of nonempty finite sets S → S′, we
have a natural map

RanG(X)S′ → XS′
×XS RanG(X)S ,

while a surjection T → T ′ instead induces a map

RanG(X)T
′
← XT ′

×XT RanG(X)T .

As a consequence of these differences, the maps φ and ψ can be used to produce two different types of
sheaves on Ran(X). We have previously defined the !-sheaf B = [RanG(X)]Ran(X), which we can think of
informally as given by ψ∗ψ

∗ωRan(X). Similarly, one can construct a ∗-sheaf A = φ∗φ
∗Z`Ran(X)

. Our goal in

this lecture is to describe how these constructions are related. As we have hinted earlier, these objects are
related by a covariant form a Verdier duality, at least after an appropriate normalization.

We begin with an informal discussion. Consider the prestack Ran(X)×Spec k Ran(X). Let us informally
identify the points of Ran(X)×Spec k Ran(X) with pairs (S, T ), where S and T are nonempty finite subsets
of X. Given such a pair, any G-bundle P on X can be restricted to a G-bundle on T . This construction
determines a commutative diagram

RanG(X)×Spec k Ran(X)

**

// Ran(X)×Spec k RanG(X)

tt
Ran(X)×Spec k Ran(X).
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Ignoring the distinction between !-sheaves and ∗-sheaves for the moment, we can think of this diagram as
supplying a map

θ : Z`Ran(X)
�B→ A�ωRan(X).

For every pair (S, T ), we can pass to the stalk at S and costalk at T to obtain a map

θS,T =
⊗
t∈T

C∗(BGt; Z`)→
⊗
s∈S

C∗(GrGs ; Z`).

Geometrically, this map arises from a map of prestacks

ρS,T :
∏
s∈S

GrGs →
∏
t∈T

BGt .

Note that if S 6= T , then this map exhibits some degenerate behavior. For example, if there exists an element
s0 ∈ S which does not belong to T , then the map ρS,T factors through the product

∏
s6=s0 GrGs , which we

can think of as parametrizing G-bundles on X − {s0} with a trivialization on X − S (in order to restrict a
G-bundle to the set T , we do not need it to be defined at the point s0). Similarly, if there exists an element
t0 ∈ T which does not belong to S, then the map ρS,T factors through

∏
t6=t0 BGt (since any G-bundle trivial

on X − S will be trivial at the point t0). In either case, we conclude that the composite map⊗
t∈T

C∗red(BGt; Z`) →
⊗
t∈T

C∗(BGt; Z`)

θS,T→
⊗
s∈S

C∗(GrGs ; Z`)

→
⊗
s∈S

C∗red(GrGs ; Z`)

vanishes.
It is possible to introduce “reduced versions” of the sheaves A and B, which we will denote by Ared and

Bred, whose (co)stalks are given by

S∗Ared =
⊗
s∈S

C∗(GrGs ; Z`) T ! Bred =
⊗
t∈T

C∗(BGt; Z`).

An elaboration of the above argument shows that θ induces a map

θred : Z`Ran(X)
�Bred → Ared �ωRan(X)

which vanishes away from the diagonal of Ran(X)×Spec kRan(X). Heuristically, this means that θred factors
through a map

Z`Ran(X)
�Bred → ∆∗∆

! Ared �ωRan(X),

which we can identify with a map

Bred = ∆∗(Z`Ran(X)
�Bred)→ ∆!(Ared �ωRan(X)) ' Ared .

The main idea of our proof is to show that this map is an equivalence. However, this does not quite make
sense as we have formulated it: the right hand side is a !-sheaf on Ran(X), and the left hand side is a ∗-sheaf
on Ran(X). Moreover, many of the objects which appeared in the above discussion (like the external tensor
product Ared �ωRan(X)) need to be interpreted as some sort of hybrid between ∗-sheaves and !-sheaves. It
will therefore be convenient to recast the above discussion in a less symmetrical way (essentially by “pushing
forward” all of our sheaves onto the second copy of Ran(X)), which involves only !-sheaves on Ran(X).
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Let us now dispense with heuristics and describe the strategy we will actually pursue. For every nonempty
finite set S, we let RanG(X)S denote the fiber product RanG(X)×Ran(X) X

S . We then have maps of Ran-
prestacks

RanG(X)S ×Spec k Ran(X)→ XS ×Spec k BunG(X)×Spec k Ran(X)→ RanG(X),

depending functorially on S. We therefore obtain maps of !-sheaves

B→ C∗(XS ; Z`)⊗ C∗(BunG(X); Z`)⊗ ωRan(X) → C∗(RanG(X)S ; Z`),

depending functorially on S. Passing to chiral homology, we obtain maps∫
Ran(X)

B
αS→ C∗(XS ; Z`)⊗Z`

C∗(BunG(X); Z`)
βS→ C∗(RanG(X)S ; Z`).

The inverse limit of the maps βS as S varies can be identified with the natural map C∗(Ran(X) ×Spec k

BunG(X); Z`)→ C∗(RanG(X); Z`): this is predual to the equivalence

C∗(BunG(X); Z`) ' C∗(Ran(X); Z`)⊗Z`
C∗(BunG(X); Z`)

' C∗(Ran(X)×Spec k BunG(X); Z`)

→ C∗(RanG(X); Z`),

supplied by nonabelian Poincare duality. The inverse limit of the maps αS as S varies can be identified with
the map ∫

Ran(X)

B→ C∗(BunG(X); Z`)

that we discussed in the previous lecture. Consequently, we are reduced to proving the following:

Proposition 1. The induced map ∫
Ran(X)

B→ lim←−
S

C∗(RanG(X)S ; Z`)

is an equivalence in ModZ`
.

We will prove this by factoring the the composite map

ξ : RanG(X)S ×Spec k Ran(X)→ XS ×Spec k BunG(X)×Spec k Ran(X)→ RanG(X)

in a different way. For this, we need an auxiliary construction.

Construction 2. Fix a nonempty finite set S and a pair of subsets K− ⊆ K+ ⊆ S. We define a prestack
C(K−,K+) as follows:

• The objects of C(K−,K+) are tuples (R,µ, ν : T → X(R),P, γ) where R is a finitely generated k-
algebra, T is a nonempty finite set, µ : S → X(R) and and ν : T → X(R) are maps of sets such that
|µ(K+)| ∩ |ν(T )| = ∅, P is a G-bundle on XR − |µ(S−)| which can be extended to a G-bundle on XR,
and γ is a trivialization of P over XR − |µ(S)|.

• A morphism from (R,µ, ν : T → X(R),P, γ) to (R′, µ′, ν′ : T ′ → X(R′),P′, γ′) consists of a k-algebra

homomorphisms φ : R → R′ such that µ′ is given by the composition S
µ→ X(R)

X(φ)→ X(R′), a
surjection of finite sets λ : T → T ′ which fits into a commutative diagram

T
λ //

ν

��

T ′

ν′

��
X(R)

X(φ) // X(R′),
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and a G-bundle isomorphisms between P×SpecR SpecR′ and P′ over the scheme XR′ −|µ′(K−)| which
carries γ to γ′.

Remark 3. If the set S and the subset K+ ⊆ S are fixed, then we can regard C(K−,K+) as a covariant
functor of K−: for every inclusion K− ⊆ K ′− ⊆ K+, we have a forgetful functor

C(K−,K+)→ C(K ′−,K+)

given by restriction of G-bundles. Here it is helpful to think of C(K ′−,K+) as the quotient of C(K−,K+)
obtained by identifying G-bundles which differ away from the image of K ′+ in X.

Remark 4. If the set S and the subset K− ⊆ S are fixed, then we can regard C(K−,K+) as a contravariant
functor of K+: for every inclusion K− ⊆ K+ ⊆ K ′+, we can identify C(K−,K

′
+) with a full subcategory of

C(K−,K+) (given by those objects (R,µ, ν : T → X(R),P, γ) which satisfy the additional condition that
µ(K ′+) ∩ ν(T ) = ∅).

Example 5. If K− = K+ = ∅, then we can identify C(K−,K+) with the product RanG(X)S×Spec kRan(X).

Definition 6. Fix a nonempty finite set S. We let Ran†G(X)S denote the category obtained via the
Grothendieck construction on the functor (K−,K+) 7→ C(K−,K+). More precisely, we have the follow-
ing:

• The objects of Ran†G(X)S are tuples (R,K−,K+, µ, ν : T → X(R),P, γ) where R is a finitely generated
k-algebra, K− and K+ are subsets of S with K− ⊆ K+, T is a nonempty finite set, µ : S → X(R) and
and ν : T → X(R) are maps of sets such that |µ(K+)| ∩ |ν(T )| = ∅, P is a G-bundle on XR − |µ(K−)|
which can be extended to a G-bundle on XR, and γ is a trivialization of P over XR − |µ(S)|.

• There are no morphisms

(R,K−,K+, µ, ν : T → X(R),P, γ)→ (R′,K ′−,K
′
+, µ

′, ν′ : T ′ → X(R′),P′, γ′)

unless K ′− ⊆ K− ⊆ K+ ⊆ K ′+. If this condition is satisfied, then a morphism from (R,K−,K+, µ, ν :
T → X(R),P, γ) to (R′,K ′−,K

′
+, µ

′, ν′ : T ′ → X(R),P′, γ′) consists of a k-algebra homomorphism
φ : R → R′ carrying µ to µ′, a surjection of finite sets λ : T → T ′ which fits into a commutative
diagram

T
λ //

ν

��

T ′

ν′

��
X(R)

X(φ) // X(R′),

and a G-bundle isomorphism between P and P′ over the scheme XR′ − |µ′(K ′−)| which carries γ to γ′.

The construction (R,K−,K+, µ, ν : T → X(R),P, γ) 7→ (R, T, ν,P ||ν(T )|) determines a forgetful functor

fS : Ran†G(X)S → RanG(X). We let BS denote the lax !-sheaf on Ran(X) given by the formula

B
(T )
S = [Ran†G(X)S ×Ran(X) X

T ]XT .

Note that the map fS induces a map of lax !-sheaves B→ BS , depending functorially on S. Moreover, the
identification C(∅, ∅) ' RanG(X)S ×Spec k Ran(X) determines a fully faithful embedding

RanG(X)S ×Spec k Ran(X) ↪→ Ran†G(X)S ,
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which induces a pullback map BS → C∗(RanG(X)S ; Z`)⊗ωRan(X). Using the commutativity of the diagram

RanG(X)S ×Spec k Ran(X) //

��

BunG(X)×Spec k Ran(X)

��
Ran†G(X)S // RanG(X),

we see that the map ξ of Proposition 1 can be identified with the composition∫
Ran(X)

B
ξ′→

∫
Ran(X)

lim←−
S

BS

ξ′′→ lim←−
S

∫
Ran(X)

(C∗(RanG(X)S ; Z`)⊗ ωRan(X))

' lim←−
S

C∗(RanG(X)S ; Z`).

We are therefore reduced to proving the following pair of assertions:

Proposition 7. The map ξ′′ is an equivalence in ModZ`
.

Proposition 8. The canonical map B→ lim←−S BS is an equivalence of !-sheaves on Ran(X).

The proof of Proposition 7 is mostly formal: the difficulty lies in showing that passage to the inverse limit
over S “commutes” with passage to chiral homology. In terms of our heuristic picture, this is because the
∗-sheaf Ared is generated by compactly supported sections: in fact, in any given degree, the cohomologies of
the sheaf Ared are supported on the substack Ran(X)≤n for n� 0. We will not present the details in class.

Proposition 8 can be regarded as a local calculation on the Ran space, which relates the cohomology of
the Grassmannians GrG,x to the cohomology of the classifying stacks BGy. We will return to this in the
next lecture.
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