The Product Formula (Lecture 19)

March 26, 2014

Throughout this lecture, we fix an algebraically closed field k, a prime number ℓ which is invertible in k, an algebraic curve X over k, and a smooth affine group scheme G over X.

Construction 1. We define a category $\operatorname{Ran}^{G}(X)$ as follows:

- The objects of $\operatorname{Ran}^G(X)$ are quadruples (R, T, ν, \mathcal{P}) where R is a finitely generated k-algebra, T is a nonempty finite set, $\nu : T \to X(R)$ is a map of sets, and \mathcal{P} is a G-bundle on the divisor $|\nu(T)| \subseteq X_R$ determined by ν .
- A morphism from (R, T, ν, \mathcal{P}) to $(R', T', \nu', \mathcal{P}')$ in the category $\operatorname{Ran}^G(X)$ consists of a morphism $(R, T, \nu) \to (R', T', \nu')$ in $\operatorname{Ran}(X)$, together with a *G*-bundle isomorphism of \mathcal{P}' with $|\nu'(T')| \times_{|\nu(T)|} \mathcal{P}$.

We will regard $\operatorname{Ran}^G(X)$ as a prestack via the forgetful functor $(R, T, \nu, \mathcal{P}) \mapsto R$. Note that there is an evident forgetful functor $\operatorname{Ran}^G(X) \to \operatorname{Ran}(X)$. For each nonempty finite set T, we let $\operatorname{Ran}^G(X)^{(T)}$ denote the fiber product $\operatorname{Ran}^G(X) \times_{\operatorname{Ran}(X)} X^T$.

Example 2. The prestack $\operatorname{Ran}^{G}(X)^{(1)}$ can be identified with the classifying stack BG: an *R*-valued point of $\operatorname{Ran}^{G}(X)^{(1)}$ is given by an *R*-valued point of *X* together with a *G*-bundle on Spec *R*.

Each of the prestacks $\operatorname{Ran}^{G}(X)^{(1)}$ is actually an Artin stack, which can be identified with the classifying stack of a smooth affine group scheme over X^{T} (given by the Weil restriction of G along an "incidence correspondence" between X and X^{T}).

Remark 3. Let $\alpha : T \to T'$ be a surjection of finite sets. Then α induces a diagonal map $\delta_{T/T'} : X^{T'} \to X^T$. For any map $\nu' : T' \to X(R)$, we have $|\nu'(T')| \subseteq |(\nu' \circ \alpha)(T)| \subseteq X_R$. Consequently, any *G*-bundle on $|(\nu' \circ \alpha)(T)|$ determines a *G*-bundle on $|\nu'(T')|$. This observation determines a map of prestacks

$$X^{T'} \times_{X^T} \operatorname{Ran}^G(X)^T \to \operatorname{Ran}^G(X)^{T'}.$$

Construction 4. For each nonempty finite set T, we let $\mathcal{B}^{(T)}$ denote the ℓ -adic sheaf on X^T given by the formula

$$\mathcal{B}^{(T)} = [\operatorname{Ran}^G(X)^T]_{X^T}.$$

Note that if $\alpha: T \to T'$ is a surjection of nonempty finite sets, then Remark 3 determines a map of ℓ -adic sheaves

$$\mathcal{B}^{(T')} = [\operatorname{Ran}^G(X)^{T'}]_{X^{T'}}$$

$$\rightarrow [X^{T'} \times_{X^T} \operatorname{Ran}^G(X)^T]_{X^T}$$

$$\rightarrow \delta^!_{T/T'} [\operatorname{Ran}^G(X)^T]_{X^T}$$

$$= \delta^!_{T/T'} \mathcal{B}^{(T)}$$

These maps exhibit $\{\mathcal{B}^{(T)}\}_{T\in \text{Fin}^s}$ as a lax !-sheaf on Ran(X), in the sense of the previous lecture. We will denote this lax !-sheaf by \mathcal{B} .

Remark 5. We will see later that \mathcal{B} is actually a !-sheaf on $\operatorname{Ran}(X)$.

Remark 6. Every *G*-bundle on *X* determines a *G*-bundle on every divisor $D \subseteq X$. This observation determines a map of prestacks

$$\operatorname{Ran}(X) \times_{\operatorname{Spec} k} \operatorname{Bun}_G(X) \to \operatorname{Ran}^G(X).$$

In particular, for every nonempty finite set T, we obtain a map

$$X^T \times_{\operatorname{Spec} k} \operatorname{Bun}_G(X) \to \operatorname{Ran}^G(X)^{(T)}$$

of prestacks over X^T , which induces a map

$$\mathcal{B}^{(T)} = [\operatorname{Ran}^G(X)^{(T)}]_{X^T}$$

$$\to [X^T \times_{\operatorname{Spec} k} \operatorname{Bun}_G(X)]_{X^T}$$

$$\simeq C^*(\operatorname{Bun}_G(X); \mathbf{Z}_\ell) \otimes \omega_{X^T}$$

of ℓ -adic sheaves on X^T . This construction depends functorially on T, and determines a map $\mathcal{B} \to C^*(\operatorname{Bun}_G(X); \mathbf{Z}_\ell) \otimes \omega_{\operatorname{Ran}(X)}$ in the ∞ -category $\operatorname{Shv}_\ell^{\operatorname{lax}}(\operatorname{Ran}(X))$ of the previous lecture.

Remark 7. For any object $M \in Mod_{\mathbf{Z}_{\ell}}$, we have

$$\int M \otimes \omega_{\operatorname{Ran}(X)} \simeq M \otimes_{\mathbf{Z}_{\ell}} \int \omega_{\operatorname{Ran}(X)}$$

$$\simeq M \otimes_{\mathbf{Z}_{\ell}} \varinjlim_{T \in \operatorname{Fin}^{\mathrm{s}}} C^{*}(X^{T}; \omega_{X^{T}})$$

$$\simeq M \otimes_{\mathbf{Z}_{\ell}} \varinjlim_{T \in \operatorname{Fin}^{\mathrm{s}}} C_{*}(X^{T}; \mathbf{Z}_{\ell})$$

$$\simeq M \otimes_{\mathbf{Z}_{\ell}} C_{*}(\operatorname{Ran}(X); \mathbf{Z}_{\ell})$$

$$\simeq M.$$

Consequently, we can view Remark 6 as defining a map

$$\rho: \int \mathcal{B} \to C^*(\operatorname{Bun}_G(X); \mathbf{Z}_\ell)$$

We can now state the second main theorem of this course:

Theorem 8 (Product Formula). Suppose that the fibers of G are connected and that the generic fiber of G is semisimple and simply connected. Then the map

$$\rho: \int \mathcal{B} \to C^*(\operatorname{Bun}_G(X); \mathbf{Z}_\ell)$$

is a quasi-isomorphism.

Remark 9. Let η be a k-valued point of $\operatorname{Ran}(X)$, corresponding to a finite set T and a map $\nu : T \to X(k)$. Then we can define the costalk $\eta^! \mathcal{B}$ by the formula

$$\eta^! \mathcal{B} = \nu^! \mathcal{B}^{(T)}$$

where we abuse notation by identifying ν with a map Spec $k \to X^T$.

Assume for simplicity that ν is injective. Then we have

$$\eta^{!} \mathcal{B} = \nu^{!} \mathcal{B}^{(T)}$$

$$= \nu^{!} [\operatorname{Ran}^{G}(X)^{(T)}]_{X^{T}}$$

$$\simeq C^{*} (\operatorname{Ran}^{G}(X)^{(T)} \times_{X^{T}} \operatorname{Spec} k; \mathbf{Z}_{\ell})$$

$$\simeq C^{*} (\prod_{t \in T} \operatorname{BG}_{\nu(t)}; \mathbf{Z}_{\ell})$$

$$\simeq \prod_{t \in T} C^{*} (\operatorname{BG}_{\nu(t)}; \mathbf{Z}_{\ell}).$$

Note that we have a canonical map

$$\eta^{!} \mathcal{B} = \nu^{!} \mathcal{B}^{(T)} \to C^{*}(X^{T}; \mathcal{B}^{(T)}) \to \int \mathcal{B}.$$

Heuristically, we can think of $\int \mathcal{B}$ as a "continuous colimit" of the costalks $\eta^{!} \mathcal{B}$, where η ranges over $\operatorname{Ran}(X)$. In other words, we can think of $\int \mathcal{B}$ as a "continuous tensor product"

$$\bigotimes_{x \in X} C^*(\mathrm{BG}_x; \mathbf{Z}_\ell).$$

From this point of view, Theorem 8 is a kind of "continuous Künneth formula", which reflects the idea that $\operatorname{Bun}_G(X)$ can be described heuristically as a product $\prod_{x \in X} \operatorname{BG}_x$.