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Throughout this lecture, we let k denote an algebraically closed field, ` a prime number which is invertible
in k, and X an algebraic curve over k. Our goal is to prove the following:

Theorem 1. Let U ⊆ Ad be a nonempty open subset. Then the prestack Maprat(X,U ⊆ Ad) is acyclic (in
other words, the map Maprat(X,U ⊆ Ad)→ Spec k induces an isomorphism on `-adic homology.

Before embarking on the proof of Theorem 1, let us give a rough idea of what is involved. By definition,
Maprat(X,U ⊆ An) is a full subcategory of the prestack Maprat(X,A

n) of rational maps from X into An.
This latter prestack is the nth power of Maprat(X,A

1), which can be roughly described as “rational functions
onX”. As such, it behaves like an infinite-dimensional affine space over Spec k. Consequently, Maprat(X,U ⊆
An) behaves like an open subset of an infinite-dimensional affine space, which is complementary to the
subspace Maprat(X,A

n−U) consisting of rational maps from X into the closed subset An−U ⊆ An. The
idea is that because An−U has dimension smaller than n, the space of rational maps Maprat(X,A

n−U)
behaves as if it has infinite codimension in Maprat(X,A

n), so that its removal does not change the homotopy
type of Maprat(X,A

n).
Let Fins denote the category whose objects are nonempty finite sets and whose morphisms are surjections.

The construction (R,S, µ, γ) 7→ S determines a fibration of categories ψ : Maprat(X,U ⊆ An) → Fins. For
each nonempty finite set S, let Maprat(X,U ⊆ An)S denote the fiber of ψ over S. Then Maprat(X,U ⊆ An)S
is a prestack, whose objects can be identified with triples (R,µ, γ), where R is a finitely generated k-algebra,
µ : S → X(R) is a map of sets, and γ : XR − |S| → An is a map of schemes having the property that γ−1U
intersects each fiber of the projection XR → SpecR. The construction (R,S, γ) 7→ (R,S) determines a map
of prestacks Maprat(X,U ⊆ Y )S → XS . We will prove:

Proposition 2. For every nonempty finite set S, the map Maprat(X,U ⊆ An)S → XS induces an isomor-
phism on homology.

Assuming Proposition 2, we can deduce Theorem 1 from the calculation

C∗(Maprat(X,U ⊆ An);Z`) ' lim−→
S

C∗(Maprat(X,U ⊆ An)S ;Z`)

' lim−→
S

C∗(X
S ;Z`)

' C∗(Ran(X);Z`)

' C∗(Spec k;Z`).

We now turn to the proof of Proposition 2. If Note that if (R,µ : S → X(R)) is an object of Ran(X),
then we can identify the inverse image of (R,µ) in Maprat(X,A

n)S with the set of n-tuples

γ1, . . . , γn ∈ Γ(XR − |µ(S)|,OXR
|XR−|µ(S)|) = lim−→

m≥0
Γ(XR;OXR

(m|µ(S)|))

Here we identify |µ(S)| with the divisor in XR given by the sum of the degree 1 divisors corresponding to
the points {µ(s)}s∈S . We can therefore write Maprat(X,A

n)S as a direct limit lim−→Zm, where an R-valued
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point of Zm consists of a map µ : S → X(R) together with an n-tuple of elements of Γ(XR;OXR
(m|µ(S)|)).

More informally, Zm is the prestack parametrizing maps µ : S → X together with rational maps from X
into An “having poles of order ≤ m along the divisor |µ(S)|”.

Note that if m|S| > 2g − 2, where g is the genus of X, then the Riemann-Roch theorem implies that

H1(X;OX(m|µ(S)|)) ' 0

for any map µ : S → X(k). In this case, we see that Zm can be identified with the total space of a vector
bundle of rank n(1−g+m|S|) over XS ; in particular, it is a smooth k-scheme of dimension |S|+n(1−g+m|S|)
and the projection map

Zm → XS

induces an isomorphism on homology.
We let Z0

m denote the intersection Zm ∩Maprat(X,U ⊆ Am). Then Z0
m can be identified with an open

subscheme of Zm, whose complement is the collection of rational maps (having poles of order at most m
along the image of S) which factor through the closed subset Ad−U ⊆ Ad. We wish to show that the
composite map

lim−→
m

H∗(Z
0
m;Z`)

α→ lim−→
m

H∗(Zm;Z`)
β→ H∗(X

S ;Z`)

is an isomorphism. We saw above that β is an isomorphism. Consequently, it will suffice to show that for
each integer ∗, the map

αm : H∗(Z
0
m;Z`)→ H∗(Zm;Z`)

is an isomorphism for m� 0.
Since Zm and Z0

m are smooth k-schemes of dimension dm = |S| + n(1 − g + m|S|), we have Poincare
duality isomorphisms

H∗(Z
0
m;Z`) ' H2dm−∗

c (Z0
m;Z`) H∗(Zm;Z`) ' H2dm−∗

c (Zm;Z`).

Let Ym = Zm − Z0
m, so that αm fits into a long exact sequence

H2dm−∗−1
c (Ym;Z`)→ H2dm−∗

c (Z0
m;Z`)

αm→ H2dm−∗
c (Zm;Z`)→ H2dm−∗

c (Ym;Z`).

It will therefore suffice to show that the groups H2dm−∗
c (Ym;Z`) and H2dm−∗−1

c (Ym;Z`) vanish for m � 0.
Since these cohomology groups are concentrated in degrees ≤ 2 dim(Ym), we are reduced to proving the
following:

Proposition 3. Fix an integer ∗. Then 2 dim(Ym) < 2dm − ∗ − 1 for m� 0.

Proof. Using Noether normalization, we can choose a linear projection map π : An → An−1 whose restriction
to An−U is finite. Then composition with π induces a map Ym → Maprat(X,A

n−1) with finite fibers, whose
image is contained in the locus Y ′m ⊆ Maprat(X,A

n−1) parametrizing maps which have poles of order at
most m along the image of S. Arguing as above, we see that for m � 0, Y ′m is a smooth S-scheme of
dimension |S|+ (n− 1)(1− g +m|S|). We therefore have

2(dm − dim(Ym)) ≥ 2(dm − dim(Y ′m)) = 2(1− g +m|S|),

which grows arbitrarily large as m→∞.
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