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March 12, 2014

Throughout this lecture, we let k denote an algebraically closed field, ` a prime number which is invertible
in k, and X an algebraic curve over k. Our goal is to prove the following:

Theorem 1. Let G be a smooth affine group scheme over X whose generic fiber is semisimple and simply
connected, let R be a finitely generated k-algebra and let P be a G-bundle on XR. Then the projection map
Sect(P)→ SpecR induces an isomorphism on `-adic homology.

Recall that if P admits a generic trivialization, then the homology of Sect(P) is the same as the homology
of Sect(Ptriv), where Ptriv denotes the trivial G-bundle on XR. Over the last several lectures, we proved
that any G-bundle P admits a generic trivialization after passing to some fppf covering of SpecR. It will
therefore suffice to prove Theorem 1 in the special case where P = Ptriv is a trivial G-bundle. In this case,
P is the pullback of a G-bundle defined on the curve X itself. We may therefore reduce to the special case
where R = k.

Let us now assume for simplicity that the group scheme G is generically split. In this case, we can choose
a reductive algebraic group G′ over k and a finite subset S ⊆ X(k) such that G×X (X−S) and G′× (X−S)
are isomorphic (as group schemes over (X −D). Let P and P′ denote the trivial G and G′-bundles over X,
respectively. Then we have an equivalence of prestacks

Sectu⊇S(P) ' Sectu⊇S(P′).

Arguing as in Lecture 12, we obtain isomorphisms

H∗(Sect(P); Z`) ' H∗(Sectu(P); Z`)

' H∗(Sectu⊇S(P); Z`)

' H∗(Sectu⊇S(P′); Z`)

' H∗(Sectu(P′); Z`)

' H∗(Sect(P′); Z`).

We may therefore replace (G,P) by (G′×X,P′). Changing notation, we are reduced to proving the following:

Theorem 2. Let G be a simply connected semisimple algebraic group over k and let P denote the trivial G-
bundle on X. Then Sect(P) is acyclic: that is, the projection map Sect(P)→ Spec k induces an isomorphism
on `-adic homology.

In the setting of Theorem 2, we can think of Sect(P) as parametrizing maps rational from X into G.
In the proof, it will be useful to consider, more generally, rational maps from X into other quasi-projective
k-schemes.

Definition 3. Let Y be a quasi-projective k-scheme. We define a category Map+
rat(X,Y ) as follows:

• The objects of Map+
rat(X,Y ) are triples (R,S, γ), where R is a finitely generated k-algebra, S is a finite

subset of X(R), and γ : XR − |S| → Y is a map of k-schemes.
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• A morphism from (R,S, γ) to (R′, S′, γ′) consists of a k-algebra homomorphism φ : R → R′ carrying
S to a subset of S′, for which the γ′ is given by the composition

XR′ − |S′| → XR − |S|
γ→ Y.

The construction (R,S, γ) 7→ R determines a forgetful functor Map+
rat(X,Y ) → Ringk, which exhibits

Map+
rat(X,Y ) as a prestack.

The construction (R,S, γ) 7→ (R,S) determines a map of prestacks Map+
rat(X,Y ). We let Maprat(X,Y )

and Mapurat(X,Y ) denote the fiber products

Map+
rat(X,Y )×Ran+(X) Ran(X) Map+

rat(X,Y )×Ran+(X) Ranu(X).

Note that when Y = G, the prestack Maprat(X,Y ) can be identified with Sect(P) where P is the trivial
G-bundle on X.

Variant 4. Let U ⊆ Y be an open subset. We let Map+
rat(X,U ⊆ Y ) denote the full subcategory of

Map+
rat(X,Y ) spanned by those objects (R,S, γ) for which the open set γ−1(U) ⊆ XR is full. We let

Maprat(X,U ⊆ Y ) and Mapurat(X,U ⊆ Y ) denote the inverse images of Map+
rat(X,U ⊆ Y ) in Maprat(X,Y )

and Mapurat(X,Y ), respectively.

Exercise 5. In the situation of Variant 4, the projection maps Maprat(X,U ⊆ Y )→ Mapurat(X,U ⊆ Y )→
Map+

rat(X,U ⊆ Y ) are a universal homology equivalences. Consequently, the prestacks Maprat(X,U ⊆ Y ),
Mapurat(X,U ⊆ Y ) and Map+

rat(X,U ⊆ Y ) are interchangeable for purposes of computing homology.

.

Proposition 6. Let Y be a quasi-projective k-scheme and let U ⊆ Y be an open set. Then the inclusion
map

Map+
rat(X,U) ↪→ Map+

rat(X,U ⊆ Y )

is a universal homology equivalence.

Proof. Fix an object (R,S, γ) of Map+
rat(X,U ⊆ Y ), and set

C = Map+
rat(X,U)×Map+

rat(X,U⊆Y ) Map+
rat(X,U ⊆ Y )(R,S,γ)/.

We wish to show that the projection map C→ SpecR induces an isomorphism on homology. Let K = XR−
γ−1(U). Unwinding the definitions, we can identify C with the full subcategory of Ran+(X)×Spec k SpecR
spanned by those pairs (A,S′), where A is a finitely generated R-algebra and S′ ⊆ X(A) is a finite subset
which contains the image of S and has the property that |S′| ⊆ XA contains the inverse image of K.

The assertion that the map C → SpecR induces an isomorphism on homology can be tested locally
on SpecR (with respect to the fppf topology). We may therefore suppose that there exists a finite subset
T ⊆ X(R) containing S such that K ⊆ |T |. For each finitely generated R-algebra A, let TA denote
the image of T in X(A). Let α : C ↪→ Ran+(X) ×Spec k SpecR denote the inclusion map, and let β :
Ran+(X)×Spec k SpecR→ C denote the morphism of prestacks given by (A,S′) 7→ (A,S′ ∪TA). Then there
exist natural transformations (in the 2-category of prestacks)

id→ α ◦ β id→ β ◦ α,

so that α and β induce (mutually inverse) isomorphisms on homology. We are therefore reduced to proving
that the projection map Ran+(X) ×Spec k SpecR → SpecR induces an isomorphism on homology. This
follows from the Künneth formula, since Ran+(X) is acyclic.
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Let Y be a quasi-projective k-scheme and let U ⊆ Y be an open subset. Then Mapurat(X,U ⊆ Y ) is a
prestack in sets: it corresponds to the functor FU,Y : Ringk → Set which assigns to each finitely generated
k-algebra R the set of pairs (S, γ) where S ⊆ X(R) is a nonempty finite set and γ : XR − |S| → Y is a map
of k-schemes such that γ−1(U) is full.

Suppose that we are given a pair of open sets U, V ⊆ Y . We then have a commutative diagram of
inclusions of set-valued functors

FU∩V,Y //

��

FU,Y

��
FV,Y // FU∪V,Y .

This diagram is a pullback square, but is not quite a pushout square: given a subset S ⊆ X(R) and a map
γ : XR − |S| → Y such that γ−1(U ∪ V ) is full, we cannot conclude that either γ−1(U) or γ−1(V ) is full.
However, the images of γ−1(U) and γ−1(V ) comprise an open covering of SpecR, so that the inclusion map

FU,Y qFU∩V,Y
FV,Y ↪→ FU∪V,Y

becomes an isomorphism after sheafification with respect to the Zariski topology. It follows that the associ-
ated diagram

C∗(Mapurat(X,U ∩ V ⊆ Y ) //

��

Mapurat(X,U ⊆ Y )

��
Mapurat(X,V ⊆ Y ) // Mapurat(X,U ∪ V ⊆ Y )

is a homotopy pushout diagram of chain complexes. This proves the following:

Proposition 7. Let Y be a quasi-projective k-scheme and let U, V ⊆ Y be open sets. Suppose that
the prestacks Mapurat(X,U ∩ V ⊆ Y ), Mapurat(X,U ⊆ Y ), and Mapurat(X,V ⊆ Y ) are acyclic. Then
Mapurat(X,U ∪ V ⊆ Y ) is also acyclic.

Now let G be a reductive algebraic group over k. Choose a Borel subgroup B ⊆ G and an opposite Borel
subgroup B′ ⊆ G, so that B ∩ B′ = T is a maximal torus of G. Let U ⊆ B and U ′ ⊆ B′ be the unipotent
radicals of B and B′, respectively. Then the Bruhat decomposition supplies an open immersion

U × T × U ′ ↪→ G

whose image is a dense open subset V ⊆ G. Since G is quasi-compact, we can write

G =
⋃

1≤i≤n

giV

for some finite collection of k-valued points g1, . . . , gn ∈ G(k). We wish to show that Mapurat(X,G) is acyclic.
Applying Proposition 7 repeatedly, we see that it will suffice to show that Mapurat(X,

⋂
i∈I giV ⊆ G) is acyclic

for each nonempty subset I ⊆ {1, 2, . . . , n}. Note that VI =
⋂
i∈I giV is isomorphic as a k-scheme to an open

subset of V , so that we can choose an open embedding VI ↪→ Ad where d = dim(G). Using Proposition 6,
we see that the inclusion maps

Mapurat(X,VI ⊆ G)←↩ Mapurat(X,VI) ↪→ Mapurat(X,VI ⊆ Ad)

induce isomorphisms on homology. We may therefore deduce Theorem 1 immediately from the following:

Theorem 8. Let U ⊆ Ad be a nonempty open subset. Then the prestack Maprat(X,U ⊆ Ad) is acyclic.

We will prove Theorem 8 in the next lecture.

3



References

[1] Gaitsgory, D. Contracibility of the space of rational maps.

4


