Spaces of Rational Maps (Lecture 16)

March 12, 2014

Throughout this lecture, we let k denote an algebraically closed field, ℓ a prime number which is invertible in k, and X an algebraic curve over k. Our goal is to prove the following:

Theorem 1. Let G be a smooth affine group scheme over X whose generic fiber is semisimple and simply connected, let R be a finitely generated k-algebra and let \mathcal{P} be a G-bundle on X_R . Then the projection map $\text{Sect}(\mathcal{P}) \to \text{Spec } R$ induces an isomorphism on ℓ -adic homology.

Recall that if \mathcal{P} admits a generic trivialization, then the homology of Sect(\mathcal{P}) is the same as the homology of Sect(\mathcal{P}_{triv}), where \mathcal{P}_{triv} denotes the trivial *G*-bundle on X_R . Over the last several lectures, we proved that any *G*-bundle \mathcal{P} admits a generic trivialization after passing to some fppf covering of Spec *R*. It will therefore suffice to prove Theorem 1 in the special case where $\mathcal{P} = \mathcal{P}_{triv}$ is a trivial *G*-bundle. In this case, \mathcal{P} is the pullback of a *G*-bundle defined on the curve *X* itself. We may therefore reduce to the special case where R = k.

Let us now assume for simplicity that the group scheme G is generically split. In this case, we can choose a reductive algebraic group G' over k and a finite subset $S \subseteq X(k)$ such that $G \times_X (X - S)$ and $G' \times (X - S)$ are isomorphic (as group schemes over (X - D)). Let \mathcal{P} and \mathcal{P}' denote the trivial G and G'-bundles over X, respectively. Then we have an equivalence of prestacks

$$\operatorname{Sect}^{u}_{\supset S}(\mathcal{P}) \simeq \operatorname{Sect}^{u}_{\supset S}(\mathcal{P}').$$

Arguing as in Lecture 12, we obtain isomorphisms

$$\begin{aligned} \mathrm{H}_{*}(\mathrm{Sect}(\mathcal{P});\mathbf{Z}_{\ell}) &\simeq &\mathrm{H}_{*}(\mathrm{Sect}^{u}(\mathcal{P});\mathbf{Z}_{\ell}) \\ &\simeq &\mathrm{H}_{*}(\mathrm{Sect}^{u}_{\supseteq S}(\mathcal{P});\mathbf{Z}_{\ell}) \\ &\simeq &\mathrm{H}_{*}(\mathrm{Sect}^{u}_{\supseteq S}(\mathcal{P}');\mathbf{Z}_{\ell}) \\ &\simeq &\mathrm{H}_{*}(\mathrm{Sect}^{u}(\mathcal{P}');\mathbf{Z}_{\ell}) \\ &\simeq &\mathrm{H}_{*}(\mathrm{Sect}^{u}(\mathcal{P}');\mathbf{Z}_{\ell}). \end{aligned}$$

We may therefore replace (G, \mathcal{P}) by $(G' \times X, \mathcal{P}')$. Changing notation, we are reduced to proving the following:

Theorem 2. Let G be a simply connected semisimple algebraic group over k and let \mathcal{P} denote the trivial Gbundle on X. Then Sect(\mathcal{P}) is acyclic: that is, the projection map Sect(\mathcal{P}) \rightarrow Spec k induces an isomorphism on ℓ -adic homology.

In the setting of Theorem 2, we can think of $Sect(\mathcal{P})$ as parametrizing maps rational from X into G. In the proof, it will be useful to consider, more generally, rational maps from X into other quasi-projective k-schemes.

Definition 3. Let Y be a quasi-projective k-scheme. We define a category $\operatorname{Map}_{rat}^+(X,Y)$ as follows:

• The objects of $\operatorname{Map}_{rat}^+(X, Y)$ are triples (R, S, γ) , where R is a finitely generated k-algebra, S is a finite subset of X(R), and $\gamma : X_R - |S| \to Y$ is a map of k-schemes.

• A morphism from (R, S, γ) to (R', S', γ') consists of a k-algebra homomorphism $\phi : R \to R'$ carrying S to a subset of S', for which the γ' is given by the composition

$$X_{R'} - |S'| \to X_R - |S| \stackrel{\gamma}{\to} Y_R$$

The construction $(R, S, \gamma) \mapsto R$ determines a forgetful functor $\operatorname{Map}_{rat}^+(X, Y) \to \operatorname{Ring}_k$, which exhibits $\operatorname{Map}_{rat}^+(X, Y)$ as a prestack.

The construction $(R, S, \gamma) \mapsto (R, S)$ determines a map of prestacks $\operatorname{Map}_{rat}^+(X, Y)$. We let $\operatorname{Map}_{rat}(X, Y)$ and $\operatorname{Map}_{rat}^u(X, Y)$ denote the fiber products

$$\operatorname{Map}_{\operatorname{rat}}^+(X,Y) \times_{\operatorname{Ran}^+(X)} \operatorname{Ran}(X) \qquad \operatorname{Map}_{\operatorname{rat}}^+(X,Y) \times_{\operatorname{Ran}^+(X)} \operatorname{Ran}^u(X).$$

Note that when Y = G, the prestack $\operatorname{Map}_{rat}(X, Y)$ can be identified with $\operatorname{Sect}(\mathcal{P})$ where \mathcal{P} is the trivial *G*-bundle on *X*.

Variant 4. Let $U \subseteq Y$ be an open subset. We let $\operatorname{Map}_{rat}^+(X, U \subseteq Y)$ denote the full subcategory of $\operatorname{Map}_{rat}^+(X,Y)$ spanned by those objects (R,S,γ) for which the open set $\gamma^{-1}(U) \subseteq X_R$ is full. We let $\operatorname{Map}_{rat}(X,U \subseteq Y)$ and $\operatorname{Map}_{rat}^u(X,U \subseteq Y)$ denote the inverse images of $\operatorname{Map}_{rat}^+(X,U \subseteq Y)$ in $\operatorname{Map}_{rat}(X,Y)$ and $\operatorname{Map}_{rat}^u(X,Y)$, respectively.

Exercise 5. In the situation of Variant 4, the projection maps $\operatorname{Map}_{rat}(X, U \subseteq Y) \to \operatorname{Map}_{rat}^u(X, U \subseteq Y) \to \operatorname{Map}_{rat}^+(X, U \subseteq Y)$ are a universal homology equivalences. Consequently, the prestacks $\operatorname{Map}_{rat}(X, U \subseteq Y)$, $\operatorname{Map}_{rat}^u(X, U \subseteq Y)$ and $\operatorname{Map}_{rat}^+(X, U \subseteq Y)$ are interchangeable for purposes of computing homology.

Proposition 6. Let Y be a quasi-projective k-scheme and let $U \subseteq Y$ be an open set. Then the inclusion map

$$\operatorname{Map}_{\operatorname{rat}}^+(X,U) \hookrightarrow \operatorname{Map}_{\operatorname{rat}}^+(X,U \subseteq Y)$$

is a universal homology equivalence.

Proof. Fix an object (R, S, γ) of $\operatorname{Map}_{rat}^+(X, U \subseteq Y)$, and set

$$\mathcal{C} = \operatorname{Map}_{\operatorname{rat}}^+(X, U) \times_{\operatorname{Map}_{\operatorname{rat}}^+(X, U \subseteq Y)} \operatorname{Map}_{\operatorname{rat}}^+(X, U \subseteq Y)_{(R, S, \gamma)/}.$$

We wish to show that the projection map $\mathcal{C} \to \operatorname{Spec} R$ induces an isomorphism on homology. Let $K = X_R - \gamma^{-1}(U)$. Unwinding the definitions, we can identify \mathcal{C} with the full subcategory of $\operatorname{Ran}^+(X) \times_{\operatorname{Spec} k} \operatorname{Spec} R$ spanned by those pairs (A, S'), where A is a finitely generated R-algebra and $S' \subseteq X(A)$ is a finite subset which contains the image of S and has the property that $|S'| \subseteq X_A$ contains the inverse image of K.

The assertion that the map $\mathcal{C} \to \operatorname{Spec} R$ induces an isomorphism on homology can be tested locally on $\operatorname{Spec} R$ (with respect to the fppf topology). We may therefore suppose that there exists a finite subset $T \subseteq X(R)$ containing S such that $K \subseteq |T|$. For each finitely generated R-algebra A, let T_A denote the image of T in X(A). Let $\alpha : \mathcal{C} \to \operatorname{Ran}^+(X) \times_{\operatorname{Spec} k} \operatorname{Spec} R$ denote the inclusion map, and let $\beta :$ $\operatorname{Ran}^+(X) \times_{\operatorname{Spec} k} \operatorname{Spec} R \to \mathcal{C}$ denote the morphism of prestacks given by $(A, S') \mapsto (A, S' \cup T_A)$. Then there exist natural transformations (in the 2-category of prestacks)

$$\operatorname{id} \to \alpha \circ \beta \qquad \operatorname{id} \to \beta \circ \alpha,$$

so that α and β induce (mutually inverse) isomorphisms on homology. We are therefore reduced to proving that the projection map $\operatorname{Ran}^+(X) \times_{\operatorname{Spec} k} \operatorname{Spec} R \to \operatorname{Spec} R$ induces an isomorphism on homology. This follows from the Künneth formula, since $\operatorname{Ran}^+(X)$ is acyclic.

Let Y be a quasi-projective k-scheme and let $U \subseteq Y$ be an open subset. Then $\operatorname{Map}_{rat}^u(X, U \subseteq Y)$ is a prestack in sets: it corresponds to the functor $F_{U,Y}$: $\operatorname{Ring}_k \to \operatorname{Set}$ which assigns to each finitely generated k-algebra R the set of pairs (S, γ) where $S \subseteq X(R)$ is a nonempty finite set and $\gamma : X_R - |S| \to Y$ is a map of k-schemes such that $\gamma^{-1}(U)$ is full.

Suppose that we are given a pair of open sets $U, V \subseteq Y$. We then have a commutative diagram of inclusions of set-valued functors

This diagram is a pullback square, but is not quite a pushout square: given a subset $S \subseteq X(R)$ and a map $\gamma : X_R - |S| \to Y$ such that $\gamma^{-1}(U \cup V)$ is full, we cannot conclude that either $\gamma^{-1}(U)$ or $\gamma^{-1}(V)$ is full. However, the images of $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ comprise an open covering of Spec R, so that the inclusion map

$$F_{U,Y} \amalg_{F_{U \cap V,Y}} F_{V,Y} \hookrightarrow F_{U \cup V,Y}$$

becomes an isomorphism after sheafification with respect to the Zariski topology. It follows that the associated diagram

is a homotopy pushout diagram of chain complexes. This proves the following:

Proposition 7. Let Y be a quasi-projective k-scheme and let $U, V \subseteq Y$ be open sets. Suppose that the prestacks $\operatorname{Map}_{rat}^{u}(X, U \cap V \subseteq Y)$, $\operatorname{Map}_{rat}^{u}(X, U \subseteq Y)$, and $\operatorname{Map}_{rat}^{u}(X, V \subseteq Y)$ are acyclic. Then $\operatorname{Map}_{rat}^{u}(X, U \cup V \subseteq Y)$ is also acyclic.

Now let G be a reductive algebraic group over k. Choose a Borel subgroup $B \subseteq G$ and an opposite Borel subgroup $B' \subseteq G$, so that $B \cap B' = T$ is a maximal torus of G. Let $U \subseteq B$ and $U' \subseteq B'$ be the unipotent radicals of B and B', respectively. Then the Bruhat decomposition supplies an open immersion

$$U \times T \times U' \hookrightarrow G$$

whose image is a dense open subset $V \subseteq G$. Since G is quasi-compact, we can write

$$G = \bigcup_{1 \le i \le n} g_i V$$

for some finite collection of k-valued points $g_1, \ldots, g_n \in G(k)$. We wish to show that $\operatorname{Map}_{rat}^u(X, G)$ is acyclic. Applying Proposition 7 repeatedly, we see that it will suffice to show that $\operatorname{Map}_{rat}^u(X, \bigcap_{i \in I} g_i V \subseteq G)$ is acyclic for each nonempty subset $I \subseteq \{1, 2, \ldots, n\}$. Note that $V_I = \bigcap_{i \in I} g_i V$ is isomorphic as a k-scheme to an open subset of V, so that we can choose an open embedding $V_I \hookrightarrow \mathbf{A}^d$ where $d = \dim(G)$. Using Proposition 6, we see that the inclusion maps

$$\operatorname{Map}_{\operatorname{rat}}^{u}(X, V_{I} \subseteq G) \longleftrightarrow \operatorname{Map}_{\operatorname{rat}}^{u}(X, V_{I}) \hookrightarrow \operatorname{Map}_{\operatorname{rat}}^{u}(X, V_{I} \subseteq \mathbf{A}^{d})$$

induce isomorphisms on homology. We may therefore deduce Theorem 1 immediately from the following:

Theorem 8. Let $U \subseteq \mathbf{A}^d$ be a nonempty open subset. Then the prestack $\operatorname{Map}_{rat}(X, U \subseteq \mathbf{A}^d)$ is acyclic.

We will prove Theorem 8 in the next lecture.

References

[1] Gaitsgory, D. Contracibility of the space of rational maps.