Spaces of Rational Maps (Lecture 16)

March 12, 2014

Throughout this lecture, we let k denote an algebraically closed field, ℓ a prime number which is invertible in k, and X an algebraic curve over k. Our goal is to prove the following:
Theorem 1. Let G be a smooth affine group scheme over X whose generic fiber is semisimple and simply connected, let R be a finitely generated k-algebra and let \mathcal{P} be a G-bundle on X_{R}. Then the projection map $\operatorname{Sect}(\mathcal{P}) \rightarrow \operatorname{Spec} R$ induces an isomorphism on ℓ-adic homology.

Recall that if \mathcal{P} admits a generic trivialization, then the homology of $\operatorname{Sect}(\mathcal{P})$ is the same as the homology of $\operatorname{Sect}\left(\mathcal{P}_{\text {triv }}\right)$, where $\mathcal{P}_{\text {triv }}$ denotes the trivial G-bundle on X_{R}. Over the last several lectures, we proved that any G-bundle \mathcal{P} admits a generic trivialization after passing to some fppf covering of $\operatorname{Spec} R$. It will therefore suffice to prove Theorem 1 in the special case where $\mathcal{P}=\mathcal{P}_{\text {triv }}$ is a trivial G-bundle. In this case, \mathcal{P} is the pullback of a G-bundle defined on the curve X itself. We may therefore reduce to the special case where $R=k$.

Let us now assume for simplicity that the group scheme G is generically split. In this case, we can choose a reductive algebraic group G^{\prime} over k and a finite subset $S \subseteq X(k)$ such that $G \times{ }_{X}(X-S)$ and $G^{\prime} \times(X-S)$ are isomorphic (as group schemes over $(X-D)$. Let \mathcal{P} and \mathcal{P}^{\prime} denote the trivial G and G^{\prime}-bundles over X, respectively. Then we have an equivalence of prestacks

$$
\operatorname{Sect}_{\supseteq S}^{u}(\mathcal{P}) \simeq \operatorname{Sect} \underset{\cong S}{u}\left(\mathcal{P}^{\prime}\right) .
$$

Arguing as in Lecture 12, we obtain isomorphisms

$$
\begin{aligned}
\mathrm{H}_{*}\left(\operatorname{Sect}(\mathcal{P}) ; \mathbf{Z}_{\ell}\right) & \simeq \mathrm{H}_{*}\left(\operatorname{Sect}^{u}(\mathcal{P}) ; \mathbf{Z}_{\ell}\right) \\
& \simeq \mathrm{H}_{*}\left(\operatorname{Sect}_{\supseteq S}^{u}(\mathcal{P}) ; \mathbf{Z}_{\ell}\right) \\
& \simeq \mathrm{H}_{*}\left(\operatorname{Sect}_{\supseteq S}^{u}\left(\mathcal{P}^{\prime}\right) ; \mathbf{Z}_{\ell}\right) \\
& \simeq \mathrm{H}_{*}\left(\operatorname{Sect}^{u}\left(\mathcal{P}^{\prime}\right) ; \mathbf{Z}_{\ell}\right) \\
& \simeq \mathrm{H}_{*}\left(\operatorname{Sect}\left(\mathcal{P}^{\prime}\right) ; \mathbf{Z}_{\ell}\right) .
\end{aligned}
$$

We may therefore replace (G, \mathcal{P}) by $\left(G^{\prime} \times X, \mathcal{P}^{\prime}\right)$. Changing notation, we are reduced to proving the following:
Theorem 2. Let G be a simply connected semisimple algebraic group over k and let \mathcal{P} denote the trivial G bundle on X. Then $\operatorname{Sect}(\mathcal{P})$ is acyclic: that is, the projection map $\operatorname{Sect}(\mathcal{P}) \rightarrow \operatorname{Spec} k$ induces an isomorphism on ℓ-adic homology.

In the setting of Theorem 2, we can think of $\operatorname{Sect}(\mathcal{P})$ as parametrizing maps rational from X into G. In the proof, it will be useful to consider, more generally, rational maps from X into other quasi-projective k-schemes.

Definition 3. Let Y be a quasi-projective k-scheme. We define a category $\operatorname{Map}_{\text {rat }}^{+}(X, Y)$ as follows:

- The objects of Map $_{\text {rat }}^{+}(X, Y)$ are triples (R, S, γ), where R is a finitely generated k-algebra, S is a finite subset of $X(R)$, and $\gamma: X_{R}-|S| \rightarrow Y$ is a map of k-schemes.
- A morphism from (R, S, γ) to $\left(R^{\prime}, S^{\prime}, \gamma^{\prime}\right)$ consists of a k-algebra homomorphism $\phi: R \rightarrow R^{\prime}$ carrying S to a subset of S^{\prime}, for which the γ^{\prime} is given by the composition

$$
X_{R^{\prime}}-\left|S^{\prime}\right| \rightarrow X_{R}-|S| \xrightarrow{\gamma} Y .
$$

The construction $(R, S, \gamma) \mapsto R$ determines a forgetful functor $\operatorname{Map}_{\text {rat }}^{+}(X, Y) \rightarrow \operatorname{Ring}_{k}$, which exhibits $\operatorname{Map}_{\text {rat }}^{+}(X, Y)$ as a prestack.

The construction $(R, S, \gamma) \mapsto(R, S)$ determines a map of prestacks $\operatorname{Map}_{\text {rat }}^{+}(X, Y)$. We let $\operatorname{Map}_{\text {rat }}(X, Y)$ and $\operatorname{Map}_{\text {rat }}^{u}(X, Y)$ denote the fiber products

$$
\operatorname{Map}_{\text {rat }}^{+}(X, Y) \times_{\operatorname{Ran}^{+}(X)} \operatorname{Ran}(X) \quad \operatorname{Map}_{\text {rat }}^{+}(X, Y) \times \times_{\operatorname{Ran}^{+}(X)} \operatorname{Ran}^{u}(X) .
$$

Note that when $Y=G$, the prestack $\operatorname{Map}_{\text {rat }}(X, Y)$ can be identified with $\operatorname{Sect}(\mathcal{P})$ where \mathcal{P} is the trivial G-bundle on X.

Variant 4. Let $U \subseteq Y$ be an open subset. We let $\operatorname{Map}_{\text {rat }}^{+}(X, U \subseteq Y)$ denote the full subcategory of $\mathrm{Map}_{\mathrm{rat}}^{+}(X, Y)$ spanned by those objects (R, S, γ) for which the open set $\gamma^{-1}(U) \subseteq X_{R}$ is full. We let $\operatorname{Map}_{\text {rat }}(X, U \subseteq Y)$ and $\operatorname{Map}_{\text {rat }}^{u}(X, U \subseteq Y)$ denote the inverse images of $\operatorname{Map}_{\mathrm{rat}}^{+}(X, U \subseteq Y)$ in $\operatorname{Map}_{\text {rat }}(X, Y)$ and $\operatorname{Map}_{\mathrm{rat}}^{u}(X, Y)$, respectively.

Exercise 5. In the situation of Variant 4, the projection maps $\operatorname{Map}_{\text {rat }}(X, U \subseteq Y) \rightarrow \operatorname{Map}_{\text {rat }}^{u}(X, U \subseteq Y) \rightarrow$ $\operatorname{Map}_{\mathrm{rat}}^{+}(X, U \subseteq Y)$ are a universal homology equivalences. Consequently, the prestacks $\operatorname{Map}_{\mathrm{rat}}(X, U \subseteq Y)$, $\operatorname{Map}_{\text {rat }}^{u}(X, U \subseteq Y)$ and $\operatorname{Map}_{\text {rat }}^{+}(X, U \subseteq Y)$ are interchangeable for purposes of computing homology.

Proposition 6. Let Y be a quasi-projective k-scheme and let $U \subseteq Y$ be an open set. Then the inclusion map

$$
\operatorname{Map}_{\mathrm{rat}}^{+}(X, U) \hookrightarrow \operatorname{Map}_{\mathrm{rat}}^{+}(X, U \subseteq Y)
$$

is a universal homology equivalence.
Proof. Fix an object (R, S, γ) of $\operatorname{Map}_{\text {rat }}^{+}(X, U \subseteq Y)$, and set

$$
\mathcal{C}=\operatorname{Map}_{\text {rat }}^{+}(X, U) \times_{\text {Map }_{\text {rat }}^{+}(X, U \subseteq Y)} \operatorname{Map}_{\text {rat }}^{+}(X, U \subseteq Y)_{(R, S, \gamma) /} .
$$

We wish to show that the projection map $\mathcal{C} \rightarrow \operatorname{Spec} R$ induces an isomorphism on homology. Let $K=X_{R}-$ $\gamma^{-1}(U)$. Unwinding the definitions, we can identify \mathcal{C} with the full subcategory of $\operatorname{Ran}^{+}(X) \times{ }_{\text {Spec } k} \operatorname{Spec} R$ spanned by those pairs $\left(A, S^{\prime}\right)$, where A is a finitely generated R-algebra and $S^{\prime} \subseteq X(A)$ is a finite subset which contains the image of S and has the property that $\left|S^{\prime}\right| \subseteq X_{A}$ contains the inverse image of K.

The assertion that the map $\mathcal{C} \rightarrow \operatorname{Spec} R$ induces an isomorphism on homology can be tested locally on $\operatorname{Spec} R$ (with respect to the fppf topology). We may therefore suppose that there exists a finite subset $T \subseteq X(R)$ containing S such that $K \subseteq|T|$. For each finitely generated R-algebra A, let T_{A} denote the image of T in $X(A)$. Let $\alpha: \mathcal{C} \hookrightarrow \operatorname{Ran}^{+}(X) \times_{\text {Spec } k} \operatorname{Spec} R$ denote the inclusion map, and let β : $\operatorname{Ran}^{+}(X) \times_{\text {Spec } k} \operatorname{Spec} R \rightarrow \mathcal{C}$ denote the morphism of prestacks given by $\left(A, S^{\prime}\right) \mapsto\left(A, S^{\prime} \cup T_{A}\right)$. Then there exist natural transformations (in the 2-category of prestacks)

$$
\text { id } \rightarrow \alpha \circ \beta \quad \text { id } \rightarrow \beta \circ \alpha,
$$

so that α and β induce (mutually inverse) isomorphisms on homology. We are therefore reduced to proving that the projection map $\operatorname{Ran}^{+}(X) \times_{\text {Spec } k} \operatorname{Spec} R \rightarrow \operatorname{Spec} R$ induces an isomorphism on homology. This follows from the Künneth formula, since $\operatorname{Ran}^{+}(X)$ is acyclic.

Let Y be a quasi-projective k-scheme and let $U \subseteq Y$ be an open subset. Then $\operatorname{Map}_{\text {rat }}^{u}(X, U \subseteq Y)$ is a prestack in sets: it corresponds to the functor $F_{U, Y}: \operatorname{Ring}_{k} \rightarrow$ Set which assigns to each finitely generated k-algebra R the set of pairs (S, γ) where $S \subseteq X(R)$ is a nonempty finite set and $\gamma: X_{R}-|S| \rightarrow Y$ is a map of k-schemes such that $\gamma^{-1}(U)$ is full.

Suppose that we are given a pair of open sets $U, V \subseteq Y$. We then have a commutative diagram of inclusions of set-valued functors

This diagram is a pullback square, but is not quite a pushout square: given a subset $S \subseteq X(R)$ and a map $\gamma: X_{R}-|S| \rightarrow Y$ such that $\gamma^{-1}(U \cup V)$ is full, we cannot conclude that either $\gamma^{-1}(U)$ or $\gamma^{-1}(V)$ is full. However, the images of $\gamma^{-1}(U)$ and $\gamma^{-1}(V)$ comprise an open covering of Spec R, so that the inclusion map

$$
F_{U, Y} \amalg_{F_{U \cap V, Y}} F_{V, Y} \hookrightarrow F_{U \cup V, Y}
$$

becomes an isomorphism after sheafification with respect to the Zariski topology. It follows that the associated diagram

is a homotopy pushout diagram of chain complexes. This proves the following:
Proposition 7. Let Y be a quasi-projective k-scheme and let $U, V \subseteq Y$ be open sets. Suppose that the prestacks $\operatorname{Map}_{\text {rat }}^{u}(X, U \cap V \subseteq Y)$, $\operatorname{Map}_{\text {rat }}^{u}(X, U \subseteq Y)$, and $\operatorname{Map}_{\text {rat }}^{u}(X, V \subseteq Y)$ are acyclic. Then $\operatorname{Map}_{\mathrm{rat}}^{u}(X, U \cup V \subseteq Y)$ is also acyclic.

Now let G be a reductive algebraic group over k. Choose a Borel subgroup $B \subseteq G$ and an opposite Borel subgroup $B^{\prime} \subseteq G$, so that $B \cap B^{\prime}=T$ is a maximal torus of G. Let $U \subseteq B$ and $U^{\prime} \subseteq B^{\prime}$ be the unipotent radicals of B and B^{\prime}, respectively. Then the Bruhat decomposition supplies an open immersion

$$
U \times T \times U^{\prime} \hookrightarrow G
$$

whose image is a dense open subset $V \subseteq G$. Since G is quasi-compact, we can write

$$
G=\bigcup_{1 \leq i \leq n} g_{i} V
$$

for some finite collection of k-valued points $g_{1}, \ldots, g_{n} \in G(k)$. We wish to show that Map rat $_{u}^{u}(X, G)$ is acyclic. Applying Proposition 7 repeatedly, we see that it will suffice to show that $\operatorname{Map}_{\mathrm{rat}}^{u}\left(X, \bigcap_{i \in I} g_{i} V \subseteq G\right)$ is acyclic for each nonempty subset $I \subseteq\{1,2, \ldots, n\}$. Note that $V_{I}=\bigcap_{i \in I} g_{i} V$ is isomorphic as a k-scheme to an open subset of V, so that we can choose an open embedding $V_{I} \hookrightarrow \mathbf{A}^{d}$ where $d=\operatorname{dim}(G)$. Using Proposition 6, we see that the inclusion maps

$$
\operatorname{Map}_{\mathrm{rat}}^{u}\left(X, V_{I} \subseteq G\right) \hookleftarrow \operatorname{Map}_{\mathrm{rat}}^{u}\left(X, V_{I}\right) \hookrightarrow \operatorname{Map}_{\mathrm{rat}}^{u}\left(X, V_{I} \subseteq \mathbf{A}^{d}\right)
$$

induce isomorphisms on homology. We may therefore deduce Theorem 1 immediately from the following:
Theorem 8. Let $U \subseteq \mathbf{A}^{d}$ be a nonempty open subset. Then the prestack $\operatorname{Map}_{\mathrm{rat}}\left(X, U \subseteq \mathbf{A}^{d}\right)$ is acyclic.
We will prove Theorem 8 in the next lecture.

References

[1] Gaitsgory, D. Contracibility of the space of rational maps.

