Existence of Borel Reductions II (Lecture 15)

March 9, 2014

Throughout this lecture, we let k be an algebraically closed field, X an algebraic curve over k, G a smooth affine group scheme over X, G_{0} the generic fiber of $G, B_{0} \subseteq B$ the scheme-theoretic closure of B_{0} in G. Let \mathcal{P} be a G-bundle on X and let $\pi: \mathcal{P} / B \rightarrow X$ be the projection map. Our goal is to prove the following result which was needed in the previous lecture:

Theorem 1. Let \mathcal{P} be a G-bundle on X. Then there exists a section s of the projection map $\pi: \mathcal{P} / B \rightarrow X$ such that $\mathrm{H}^{1}\left(X ; s^{*} T_{\pi}\right) \simeq 0$.

We will prove Theorem 1 under the assumption that the generic fiber G_{0} is split reductive. The statement also holds under the assumption that G_{0} is semisimple and simply connected, but requires a more complicated argument.

Let G^{\prime} be the unique split reductive algebraic group over k such that there is an isomorphism α : Spec $K_{X} \times{ }_{\text {Spec } k} G^{\prime} \simeq G_{0}$ and let B^{\prime} be a Borel subgroup of G^{\prime}. Since all Borel subgroups of G_{0} are conjugate, we may assume without loss of generality that the isomorphism α carries $\operatorname{Spec} K_{X} \times{ }_{\text {Spec } k} B^{\prime}$ to B_{0}. We may therefore choose a dense open subset $U \subseteq X$ such that α extends to an isomorphism $G^{\prime} \times_{\text {Speck }} U \simeq G \times_{X} U$ carrying $B^{\prime} \times_{\text {Speck }} U$ to $B \times_{X} U$.

In the last lecture, we showed that \mathcal{P} admits a B-reduction, which we can identify with a section s_{0} of the projection map $\pi: \mathcal{P} / B \rightarrow X$. Let \mathcal{Q} denote the associated B-bundle on X, so that \mathcal{Q} is trivial at the generic point of X. Shrinking the open set U, we may assume that $\left.Q\right|_{U}$ is trivial. It follows that α determines an isomorphism

$$
\beta: G^{\prime} / B^{\prime} \times_{\operatorname{Spec} k} U \simeq \mathcal{P} / B \times_{X} U,
$$

which carries the "zero section" of the projection map $G^{\prime} / B^{\prime} \times_{\text {Spec } k} U \rightarrow U$ to the map $\left.s_{0}\right|_{U}$.
We would now like to extend β to a map

$$
\bar{\beta}: G^{\prime} / B^{\prime} \times_{\text {Spec } k} X \rightarrow \mathcal{P} / B .
$$

Unfortunately, such an extension need not exist. However, we can always find such an extension after suitably "blowing-up" the variety $G^{\prime} / B^{\prime} \times_{\text {Spec } k} X$.

Construction 2 (Dilation). Let Y be a quasi-projective k-scheme equipped with a smooth map $f: Y \rightarrow X$, and let $y \in Y(k)$ be a point having image $x \in X(k)$. Let \mathcal{J}_{y} denote the ideal sheaf of y in Y. Let \mathcal{A}_{y} denote the direct limit

$$
\xrightarrow{\lim \mathcal{J}_{y}^{m}} \otimes_{\mathcal{O}_{Y}} f^{*} \mathcal{O}_{X}(m x) .
$$

Then \mathcal{A}_{y} is a quasi-coherent sheaf of algebras on Y, which determines a map of affine schemes $D_{y}(Y) \rightarrow Y$. We will refer to $D_{y}(Y)$ as the dilitation of Y at the point y.

Remark 3. We can describe $D_{y}(Y)$ as the scheme obtained by first blowing up Y at the point y, and then removing the closed subscheme obtained by blowing up $Y \times_{X}\{x\}$ at the point y.

Remark 4. Suppose that Y is smooth over X. Then $D_{y}(Y)$ is also smooth over X. Moreover, if g : $D_{y}(Y) \rightarrow Y$ denotes the projection map, then we have a canonical isomorphism $T_{D_{y}(Y) / X} \simeq g^{*} T_{Y / X}(-x)$.

If $Y=X$, then $D_{y}(Y) \simeq Y$ for any point $y \in Y(k)$. By functoriality, we see that if $s: X \rightarrow Y$ is a section of the projection map $f: Y \rightarrow X$ which passes through the point Y, then s lifts (uniquely!) to a section $\bar{s}: X \rightarrow D_{y}(Y)$ of the projection map $D_{y}(Y) \rightarrow X$.

Suppose that $f_{0}: Y_{0} \rightarrow X$ is a map equipped with a section s_{0}, and that we are given a finite sequence of points $x_{1}, \ldots, x_{m} \in X(k)$ (which need not be distinct). We can then define sequence of X-schemes $f_{i}: Y_{i} \rightarrow X$ and section $s_{i}: X \rightarrow Y_{i}$ by the formula $Y_{i}=D_{s_{i-1}\left(x_{i}\right)}\left(Y_{i-1}\right)$, with s_{i} the unique lift of s_{i-1}. The scheme Y_{m} depends only on the divisor $D=x_{1}+\cdots+x_{m}$ and the section s_{0}. In this case, we will say that Y_{m} is obtained from Y by dilitation along $s_{0}(D)$.

Warning 5. This is an abuse of terminology: the scheme Y_{m} depends not only on the set $s_{0}(D)$, but also on the section s_{0} and the divisor D.

Remark 6. In the situation above, suppose we are given another section $s: X \rightarrow Y_{0}$ of the map f_{0}. If the sections s and s^{\prime} agree on the divisor D, then s can be lifted to a map $\bar{s}: X \rightarrow Y_{m}$.

We will need the following algebro-geometric fact:
Proposition 7. Let $f: Y \rightarrow X$ be a map of integral k-schemes equipped with a section h, let Z be a quasiprojective k-scheme, let $U \subseteq X$ be a dense open set, and suppose that we are given a map $\beta: U \times_{X} Y \rightarrow Z$ such that $\left.\beta \circ h\right|_{U}$ can be extended to a map $X \rightarrow Z$.

Then there exists an effective divisor $D \subseteq X$ supported in $X-U$ such that β factors as a composition

$$
U \times_{X} Y \hookrightarrow M \xrightarrow{\bar{\beta}} Z
$$

where M denotes the scheme obtained from Y by dilitation along $h(D)$.
Let us now apply Proposition 7 to the case where $Y=G^{\prime} / B^{\prime} \times{ }_{\text {Spec } k} X, Z=\mathcal{P} / B, \beta$ is our isomorphism $G^{\prime} / B^{\prime} \times_{\text {Spec } k} U \simeq \mathcal{P} / B \times_{X} U$, and h is the zero section of the projection map $G^{\prime} / B^{\prime} \times_{\text {Spec } k} X \rightarrow X$. It follows that there exists an effective divisor $D \subseteq X$ supported in $X-U$ and a commutative diagram

where M is obtained from $\left(G^{\prime} / B^{\prime}\right) \times_{\text {Spec } k} X$ by dilitation along $h(D)$.
Let h^{\prime} be any section of the projection map $\left(G^{\prime} / B^{\prime}\right) \times_{\text {Spec } k} X$ which agrees with h on the divisor D. Then h^{\prime} lifts (uniquely) to a map $\bar{h}^{\prime}: X \rightarrow M$, so $\bar{\beta} \circ \bar{h}^{\prime}: X \rightarrow \mathcal{P} / B$ determines a B-reduction of \mathcal{P}. Moreover, we have a map of vector bundles

$$
\bar{h}^{\prime *} T_{M / X} \rightarrow\left(\overline{\beta h}^{\prime}\right)^{*} T_{\pi}
$$

on X which is an isomorphism over the open set U, and therefore induces a surjection

$$
\mathrm{H}^{1}\left(X ; \bar{h}^{\prime *} T_{M / X}\right) \rightarrow \mathrm{H}^{1}\left(X ;\left(\overline{\beta h}^{\prime}\right)^{*} T_{\pi}\right) .
$$

Let $\psi:\left(G^{\prime} / B^{\prime}\right) \times_{\text {Spec } k} X \rightarrow X$ denote the projection map, and let T_{ψ} denote the relative tangent bundle of ψ. Applying Remark 4 repeatedly, we obtain an isomorphism $T_{M / X} \simeq T_{\psi}(-D)$, so that

$$
\mathrm{H}^{1}\left(X ; \bar{h}^{*} T_{M / X}\right) \simeq \mathrm{H}^{1}\left(X ;\left(h^{*} T_{\psi}\right)(-D)\right)
$$

Note that h^{\prime} can be identified with a map $g: X \rightarrow G^{\prime} / B^{\prime}$, and $h^{*} T_{\psi}$ with the pullback $g^{*} T_{G^{\prime} / B^{\prime}}$, where $T_{G^{\prime} / B^{\prime}}$ denotes the tangent bundle to the flag variety G^{\prime} / B^{\prime}. To complete the proof of Theorem 1, it will suffice to prove the following:

Theorem 8. Let D be an arbitrary effective divisor in X. Then there exists a map $g: X \rightarrow G^{\prime} / B^{\prime}$ such that $\left.g\right|_{D}$ is constant and the cohomology group $\mathrm{H}^{1}\left(X ; g^{*} T_{\left(G^{\prime} / B^{\prime}\right)}(-D)\right)$ vanishes.

Fix a maximal torus $T^{\prime} \subseteq B^{\prime}$. Let $\Lambda^{*}=\operatorname{Hom}\left(T^{\prime}, \mathbf{G}_{m}\right)$ denote the character lattice of T_{0}, and let $\Lambda_{*}=\operatorname{Hom}\left(\mathbf{G}_{m}, T^{\prime}\right)$ be its cocharacter lattice. Every element $\lambda \in \Lambda^{*}$ determines a group homomorphism $B^{\prime} \rightarrow \mathbf{G}_{m}$, which determines an equivariant line bundle \mathcal{L}_{λ} on the flag variety G^{\prime} / B^{\prime}. If $g: X \rightarrow G^{\prime} / B^{\prime}$ is an arbitrary map, then the function $\lambda \mapsto \operatorname{deg}\left(g^{*} \mathcal{L}_{\Lambda}\right)$ can be regarded as an additive map from $X^{*}\left(T_{0}\right)$ to \mathbf{Z}, which we can identify with an element of $X_{*}\left(T_{0}\right)$. We will refer to element as the degree of g and denote it by $\operatorname{deg}(g)$.

Let Φ_{-}denote the set of negative roots of G^{\prime} with respect to $\left(B^{\prime}, T^{\prime}\right)$: that is, the subset of Λ^{*} consisting of characters which appear as roots of G^{\prime} but not of the Borel subgroup B^{\prime}. Unwinding the definitions, we see that the tangent bundle $T_{G^{\prime} / B^{\prime}}$ admits a filtration whose successive quotients are the line bundles $\left\{\mathcal{L}_{\lambda}\right\}_{\lambda \in \Phi_{-}}$. Consequently, to prove the vanishing of $\mathrm{H}^{1}\left(X ; g^{*} T_{\left(G^{\prime} / B^{\prime}\right)}(-D)\right)$, it will suffice to prove the vanishing of $\mathrm{H}^{1}\left(X ;\left(g^{*} \mathcal{L}_{\lambda}\right)(-D)\right)$ for $\lambda \in \Phi_{-}$. By the Riemann-Roch theorem, this vanishing is automatic provided that $\operatorname{deg}\left(\mathcal{L}_{\lambda}\right)>2 g-2+d$, where g is the genus of the curve X and d is the degree of the divisor D. We are therefore reduced to proving the following:

Theorem 9. Let D be an arbitrary effective divisor in X and let n be a positive integer. Then there exists a map $g: X \rightarrow G^{\prime} / B^{\prime}$ such that $\left.g\right|_{D}$ vanishes, and $\langle\operatorname{deg}(g), \lambda\rangle \geq n$ for $\lambda \in \Phi_{-}$.

Choose any map $X \rightarrow \mathbf{P}^{1}$ which has degree $\geq n$ and is constant on the divisor D. Then any composite map $X \rightarrow \mathbf{P}^{1} \xrightarrow{g_{0}} G^{\prime} / B^{\prime}$ is constant on D and can therefore (after translating by a point of G^{\prime}) be assumed to vanish on D. We are therefore reduced to proving:

Theorem 10. There exists a map $g: \mathbf{P}^{1} \rightarrow G^{\prime} / B^{\prime}$ such that $\operatorname{deg}(g)$ is strictly antidominant: that is, $\langle\operatorname{deg}(g), \lambda\rangle>0$ for $\lambda \in \Phi_{-}$.

Example 11. When $G^{\prime}=\mathrm{SL}_{2}$, Theorem 10 asserts that there exists a map from \mathbf{P}^{1} to itself of positive degree.

Example 12. Let V be the standard representation of SL_{2}. Then $\operatorname{Sym}^{n-1}(V)$ is an n-dimensional representation of SL_{2}, given by a map $\mathrm{SL}_{2} \rightarrow \mathrm{SL}_{n}$. This map carries a Borel subgroup of SL_{2} into a Borel subgroup of $G^{\prime}=\mathrm{SL}_{n}$, and therefore induces a map of flag varieties $g: \mathbf{P}^{1} \rightarrow G^{\prime} / B^{\prime}$. An easy calculation shows that $\langle\operatorname{deg}(g), \lambda\rangle=2$ for each negative simple root λ of G^{\prime}, so that g satisfies the requirements of Theorem 10.

If the field k has characteristic zero, then the argument of Example 12 can be generalized by consider a "principal SL_{2} " in the group G^{\prime}. For a general argument which works in positive characteristic, we refer the reader to [1].

References

[1] Drinfeld, V. and C. Simpson. B-Structures on G-bundles and Local Triviality.

