Sheaves on the Ran Space (Lecture 19)

March 26, 2014

Let k be an algebraically closed field and let ℓ be a prime number which is invertible in k. In the previous lecture, we defined for every quasi-projective k-scheme Y an ∞ -category $\text{Shv}_{\ell}(Y)$ of ℓ -adic sheaves on Y. Our goal in this lecture is to study on some infinite-dimensional algebro-geometric objects, like the Ran space of an algebraic curve X over k.

Definition 1. For every nonempty finite set T, let us consider the ∞ -category $\operatorname{Shv}_{\ell}(X^T)$. Every surjection of finite sets $T \to T'$, let $\delta_{T/T'} : X^{T'} \to X^T$ denote the associated diagonal map. We can regard the construction

$$T \mapsto \operatorname{Shv}_{\ell}(X^T)$$

as a covariant functor of T in two different ways:

- (a) To each surjection of nonempty finite sets $T \to T'$, we can assign the usual pullback functor $\delta^*_{T/T'}$: Shv_{ℓ}(X^T) \to Shv_{ℓ}($X^{T'}$) (that is, the left adjoint to the pushforward functor $\delta_{T/T'*}$).
- (b) To each surjection of nonempty finite sets $T \to T'$, we can assign the exceptional inverse image functor $\delta^!_{T/T'}$: $\operatorname{Shv}_{\ell}(X^T) \to \operatorname{Shv}_{\ell}(X^{T'})$ (that is, the right adjoint to the pushforward functor $\delta_{T/T'*}$).

We let $\operatorname{Shv}_{\ell}^*(\operatorname{Ran}(X))$ and $\operatorname{Shv}_{\ell}^!(\operatorname{Ran}(X))$ denote the inverse limits $\varprojlim_{T\in\operatorname{Fin}^s}\operatorname{Shv}_{\ell}(X^T)$, where the transition maps are given by (a) and (b) respectively. We will refer to the ∞ -categories $\operatorname{Shv}_{\ell}^*(\operatorname{Ran}(X))$ and $\operatorname{Shv}_{\ell}^!(\operatorname{Ran}(X))$ as the ∞ -categories of *-sheaves and !-sheaves on $\operatorname{Ran}(X)$, respectively.

For the remainder of this course, we will focus on the ∞ -category $\operatorname{Shv}_{\ell}^!(\operatorname{Ran}(X))$. By definition, an object $\mathcal{F} \in \operatorname{Shv}_{\ell}^!(\operatorname{Ran}(X))$ can be described as a family of objects $\{\mathcal{F}^{(T)} \in \operatorname{Shv}_{\ell}(X^T)\}_{T \in \operatorname{Fin}^s}$ together with equivalences $\alpha_{T/T'} : \mathcal{F}^{(T')} \simeq \delta_{T/T'}^! \mathcal{F}^{(T)}$ associated to surjections $T \to T'$, which are compatible with composition up to coherent homotopy. Each $\alpha_{T/T'}$ can be identified with a map $\beta_{T/T'} : \delta_{T/T'*} \mathcal{F}^{(T')} \to \mathcal{F}^{(T)}$, which need not be equivalences. This motivates the following:

Definition 2. A lax !-sheaf on Ran(X) is a collection of objects $\{\mathcal{F}^{(T)} \in \text{Shv}_{\ell}(X^T)\}_{T \in \text{Fin}^s}$ together with maps $\beta_{T/T'} : \delta_{T/T'*} \mathcal{F}^{(T')} \to \mathcal{F}^{(T)}$ associated to surjections $T \to T'$, which are compatible with composition up to coherent homotopy. The collection of lax !-sheaves on Ran(X) can be organized into an ∞ -category, which we will denote by $\text{Shv}_{\ell}^{\text{lax}}(\text{Ran}(X))$. This ∞ -category contains $\text{Shv}_{\ell}^{\ell}(\text{Ran}(X))$ as a full subcategory.

Example 3. For every projective k-scheme Y, let $\pi_Y : Y \to \operatorname{Spec} k$ denote the projection map. We let ω_Y denote $\pi_Y^! \mathbf{Z}_\ell$ (where we identify \mathbf{Z}_ℓ with the constant presheaf on $\operatorname{Spec} k$ taking the value \mathbf{Z}_ℓ). We will refer to ω_Y as the *dualizing complex* of Y. By construction, we have a canonical equivalence

$$C_*(Y; \mathbf{Z}_{\ell}) \simeq C^*(Y; \mathbf{Z}_{\ell})^{\vee} = \operatorname{Map}(\pi_{Y*} \underline{\mathbf{Z}}_{\ell_Y}, \mathbf{Z}_{\ell}) \simeq \operatorname{Map}(\underline{\mathbf{Z}}_{\ell_Y}, \omega_Y) = \omega_Y(Y).$$

For every proper map $f: Y \to Z$, we have a canonical equivalence $\omega_Y \simeq f^! \omega_Z$ (by functoriality). It follows that the family of sheaves $\{\omega_{X^T}\}_{T \in \text{Fin}^s}$ can be regarded as a !-sheaf on Ran(X), which we will denote by $\omega_{\text{Ran}(X)}$.

Construction 4. Let $f: Y \to Z$ be a map of quasi-projective k-schemes. Given a pair of objects $\mathcal{F} \in \text{Shv}_{\ell}(Y)$ and $\mathcal{G} \in \text{Shv}_{\ell}(Z)$, any map $u: f_* \mathcal{F} \to \mathcal{G}$ induces a map on global sections

$$\mathfrak{F}(Y) = (f_* \mathfrak{F})(Z) \to \mathfrak{G}(Z).$$

Now suppose that $\mathcal{F} = \{\mathcal{F}^{(T)}\}_{T \in \text{Fin}^{\text{s}}}$ is a lax !-sheaf on the Ran space. Then we can regard $T \mapsto \mathcal{F}^{(T)}(X^T)$ as a contravariant functor of T. We define $\int_{\text{Ran}(X)} \mathcal{F}$ to be the direct limit $\varinjlim_{T \in \text{Fin}^{\text{s}}} \mathcal{F}^{(T)}(X^T) \in \text{Mod}_{\mathbf{Z}_{\ell}}$. We will refer the (co)homology groups of this chain complex as the *compactly supported cohomology of* \mathcal{F} , or as the *chiral homology of* \mathcal{F} .

Example 5. The chiral homology of $\omega_{\operatorname{Ran}(X)}$ is given by

$$\int_{\operatorname{Ran}(X)} \omega_{\operatorname{Ran}(X)} = \varinjlim_{T'} \omega_{X^T}(X^T) = \varinjlim_{T'} C_*(X^T; \mathbf{Z}_\ell).$$

The acyclicity of the Ran space supplies a canonical equivalence $\int_{\operatorname{Ran}(X)} \omega_{\operatorname{Ran}(X)} \simeq \mathbf{Z}_{\ell}$.

Our next goal is to produce some examples of !-sheaves on the Ran space Ran(X).

Notation 6. Let Y be a proper k-scheme, and let $f: U \to Y$ be an arbitrary map. We let $[U]_Y \in \text{Shv}_{\ell}(Y)$ denote the direct image $f_*f^*\omega_Y$.

Example 7. If $Y = \operatorname{Spec} k$, then $\omega_Y \simeq \mathbf{Z}_{\ell}$, and for each map $f : U \to Y$ we have $[U]_Y = f_* \underline{\mathbf{Z}}_{\ell_U} \simeq C^*(U; \mathbf{Z}_{\ell})$ (under the equivalence $\operatorname{Shv}_{\ell}(Y) \simeq \operatorname{Mod}_{\mathbf{Z}_{\ell}}$).

In the general case, the construction $U \mapsto [U/Y]$ is contravariantly functorial in U. We can therefore extend it to prestacks as follows:

Construction 8. Let $\pi : \mathcal{C} \to \operatorname{Ring}_k$ be a prestack equipped with a map $f : \mathcal{C} \to Y$. For each object $C \in \mathcal{C}, \pi(C)$ is a commutative k-algebra equipped with a map of k-schemes $f_C : \operatorname{Spec} \pi(C) \to Y$, so that the sheaf $[\operatorname{Spec} \pi(C)]_Y \in \operatorname{Shv}_{\ell}(Y)$ is well-defined and is covariant in C. We let $[\mathcal{C}]_Y$ denote the limit $\lim_{C \in \mathcal{C}} [\operatorname{Spec} \pi(C)]_Y$.

Example 9. Let $Y = \operatorname{Spec} k$. For every prestack \mathcal{C} , we can identify $[\mathcal{C}]_Y$ with the cochain complex $C^*(\mathcal{C}; \mathbf{Z}_\ell)$.

For fixed Y, the sheaf $[\mathcal{C}]_Y$ depends contravariantly on \mathcal{C} . Let us now discuss its behavior as a functor of Y. Suppose we are given a proper morphism $g: Y' \to Y$. For every map $f: U \to Y$, we can form a pullback diagram

$$\begin{array}{c} U' \xrightarrow{g_U} & U \\ \downarrow^{f'} & \downarrow^f \\ Y' \xrightarrow{g} & Y. \end{array}$$

The proper base change theorem supplies a canonical equivalence

$$g_{U*}f'^*\omega_{Y'}\simeq f^*g_*\omega_{Y'}.$$

The equivalence $\omega_{Y'} \simeq g! \omega_Y$ is adjoint to a map $g_* \omega_{Y'} \to \omega_Y$. Composing with this map and applying the functor f_* , we obtain a map

$$g_*[U']_{Y'} = g_*f'_*f'^*\omega_{Y'}$$

$$\simeq f_*g_{U*}f'^*\omega_{Y'}$$

$$\simeq f_*f^*g_*\omega_{Y'}$$

$$\to f_*f^*\omega_Y$$

$$= [U]_Y.$$

More generally, if \mathcal{C} is a prestack over Y and $\mathcal{C}' = Y' \times_Y \mathcal{C}$, then (by passing to the inverse limit) the above construction supplies a canonical map $g_*[\mathcal{C}']_{Y'} \to [\mathcal{C}]_Y$, which we can identify with a map $[\mathcal{C}']_{Y'} \to g^![\mathcal{C}]_Y$.

Remark 10. In the above situation, if the map $U \to Y$ is smooth, then the induced map $[U']_{Y'} \to g^![U]_Y$ is an equivalence; this is a consequence of the smooth base change theorem for étale cohomology. In this case, for each point $y \in Y(k)$, if i_y : Spec $k \to Y$ denotes the closed immersion determined by y, then we can identify $i_y^![U]_Y$ with the cochain complex $C^*(U_y; \mathbf{Z}_\ell)$. In other words, $[U]_Y$ is a sheaf on Y whose costalks compute the cohomology of the map $U \to Y$.