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Let k be an algebraically closed field and let ` be a prime number which is invertible in k. In the previous
lecture, we defined for every quasi-projective k-scheme Y an ∞-category Shv`(Y ) of `-adic sheaves on Y .
Our goal in this lecture is to study on some infinite-dimensional algebro-geometric objects, like the Ran
space of an algebraic curve X over k.

Definition 1. For every nonempty finite set T , let us consider the ∞-category Shv`(X
T ). Every surjection

of finite sets T → T ′, let δT/T ′ : XT ′ → XT denote the associated diagonal map. We can regard the
construction

T 7→ Shv`(X
T )

as a covariant functor of T in two different ways:

(a) To each surjection of nonempty finite sets T → T ′, we can assign the usual pullback functor δ∗T/T ′ :

Shv`(X
T )→ Shv`(X

T ′
) (that is, the left adjoint to the pushforward functor δT/T ′∗).

(b) To each surjection of nonempty finite sets T → T ′, we can assign the exceptional inverse image functor
δ!T/T ′ : Shv`(X

T )→ Shv`(X
T ′

) (that is, the right adjoint to the pushforward functor δT/T ′∗).

We let Shv∗` (Ran(X)) and Shv!
`(Ran(X)) denote the inverse limits lim←−T∈Fins

Shv`(X
T ), where the tran-

sition maps are given by (a) and (b) respectively. We will refer to the ∞-categories Shv∗` (Ran(X)) and
Shv!

`(Ran(X)) as the ∞-categories of ∗-sheaves and !-sheaves on Ran(X), respectively.

For the remainder of this course, we will focus on the∞-category Shv!
`(Ran(X)). By definition, an object

F ∈ Shv!
`(Ran(X)) can be described as a family of objects {F(T ) ∈ Shv`(X

T )}T∈Fins together with equiva-

lences αT/T ′ : F(T ′) ' δ!T/T ′ F
(T ) associated to surjections T → T ′, which are compatible with composition

up to coherent homotopy. Each αT/T ′ can be identified with a map βT/T ′ : δT/T ′∗ F
(T ′) → F(T ), which need

not be equivalences. This motivates the following:

Definition 2. A lax !-sheaf on Ran(X) is a collection of objects {F(T ) ∈ Shv`(X
T )}T∈Fins together with

maps βT/T ′ : δT/T ′∗ F
(T ′) → F(T ) associated to surjections T → T ′, which are compatible with composition

up to coherent homotopy. The collection of lax !-sheaves on Ran(X) can be organized into an ∞-category,
which we will denote by Shvlax

` (Ran(X)). This ∞-category contains Shv!
`(Ran(X)) as a full subcategory.

Example 3. For every projective k-scheme Y , let πY : Y → Spec k denote the projection map. We let ωY

denote π!
Y Z` (where we identify Z` with the constant presheaf on Spec k taking the value Z`). We will refer

to ωY as the dualizing complex of Y . By construction, we have a canonical equivalence

C∗(Y ; Z`) ' C∗(Y ; Z`)
∨ = Map(πY ∗Z`Y

,Z`) ' Map(Z`Y
, ωY ) = ωY (Y ).

For every proper map f : Y → Z, we have a canonical equivalence ωY ' f !ωZ (by functoriality). It
follows that the family of sheaves {ωXT }T∈Fins can be regarded as a !-sheaf on Ran(X), which we will denote
by ωRan(X).
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Construction 4. Let f : Y → Z be a map of quasi-projective k-schemes. Given a pair of objects F ∈
Shv`(Y ) and G ∈ Shv`(Z), any map u : f∗ F → G induces a map on global sections

F(Y ) = (f∗ F)(Z)→ G(Z).

Now suppose that F = {F(T )}T∈Fins is a lax !-sheaf on the Ran space. Then we can regard T 7→ F(T )(XT )

as a contravariant functor of T . We define
∫
Ran(X)

F to be the direct limit lim−→T∈Fins
F(T )(XT ) ∈ ModZ`

.

We will refer the (co)homology groups of this chain complex as the compactly supported cohomology of F, or
as the chiral homology of F.

Example 5. The chiral homology of ωRan(X) is given by∫
Ran(X)

ωRan(X) = lim−→
T

ωXT (XT ) = lim−→
T

C∗(X
T ; Z`).

The acyclicity of the Ran space supplies a canonical equivalence
∫
Ran(X)

ωRan(X) ' Z`.

Our next goal is to produce some examples of !-sheaves on the Ran space Ran(X).

Notation 6. Let Y be a proper k-scheme, and let f : U → Y be an arbitrary map. We let [U ]Y ∈ Shv`(Y )
denote the direct image f∗f

∗ωY .

Example 7. If Y = Spec k, then ωY ' Z`, and for each map f : U → Y we have [U ]Y = f∗Z`U
' C∗(U ; Z`)

(under the equivalence Shv`(Y ) ' ModZ`
).

In the general case, the construction U 7→ [U/Y ] is contravariantly functorial in U . We can therefore
extend it to prestacks as follows:

Construction 8. Let π : C → Ringk be a prestack equipped with a map f : C → Y . For each object
C ∈ C, π(C) is a commutative k-algebra equipped with a map of k-schemes fC : Specπ(C) → Y , so
that the sheaf [Specπ(C)]Y ∈ Shv`(Y ) is well-defined and is covariant in C. We let [C]Y denote the limit
lim←−C∈C[Specπ(C)]Y .

Example 9. Let Y = Spec k. For every prestack C, we can identify [C]Y with the cochain complex C∗(C; Z`).

For fixed Y , the sheaf [C]Y depends contravariantly on C. Let us now discuss its behavior as a functor of
Y . Suppose we are given a proper morphism g : Y ′ → Y . For every map f : U → Y , we can form a pullback
diagram

U ′
gU //

f ′

��

U

f

��
Y ′

g // Y.

The proper base change theorem supplies a canonical equivalence

gU∗f
′∗ωY ′ ' f∗g∗ωY ′ .

The equivalence ωY ′ ' g!ωY is adjoint to a map g∗ωY ′ → ωY . Composing with this map and applying the
functor f∗, we obtain a map

g∗[U
′]Y ′ = g∗f

′
∗f
′∗ωY ′

' f∗gU∗f
′∗ωY ′

' f∗f
∗g∗ωY ′

→ f∗f
∗ωY

= [U ]Y .

More generally, if C is a prestack over Y and C′ = Y ′×Y C, then (by passing to the inverse limit) the above
construction supplies a canonical map g∗[C

′]Y ′ → [C]Y , which we can identify with a map [C′]Y ′ → g![C]Y .
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Remark 10. In the above situation, if the map U → Y is smooth, then the induced map [U ′]Y ′ → g![U ]Y
is an equivalence; this is a consequence of the smooth base change theorem for étale cohomology. In this
case, for each point y ∈ Y (k), if iy : Spec k ↪→ Y denotes the closed immersion determined by y, then we can
identify i!y[U ]Y with the cochain complex C∗(Uy; Z`). In other words, [U ]Y is a sheaf on Y whose costalks
compute the cohomology of the map U → Y .
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