Fibrations of Polyhedra (Lecture 8)

September 20, 2014

In the previous lecture, we introduced a simplicial set \mathcal{M} which parametrizes fibrations in the piecewiselinear category. To analyze \mathcal{M}, we consider the following:

Question 1. Let $q: E \rightarrow B$ be a piecewise-linear map of finite polyhedra. When is q a fibration?
To address this question, let us choose compatible triangulations τ_{E} and τ_{B} of E and B respectively, with vertex sets V_{E} and V_{B}. Then q maps each simplex of τ_{E} linearly onto a simplex of τ_{B}.

For each vertex $b \in V_{B}$, we let $E_{b}=q^{-1}\{b\}$ denote the fiber over b, so that τ_{E} induces a triangulation of E_{b}. More generally, suppose that σ is an n-simplex of τ_{B} with vertices $\left\{b_{0}, \ldots, b_{n}\right\}$. For every simplex $\bar{\sigma} \in \tau_{E}$ with $q(\bar{\sigma})=\sigma$, let

$$
\bar{\sigma}_{i}=\bar{\sigma} \cap E_{b_{i}}
$$

Let $E_{\sigma} \subseteq E_{b_{0}} \times \cdots \times E_{b_{n}}$ denote the union

$$
\bigcup \bar{\sigma}_{0} \times \cdots \times \bar{\sigma}_{n}
$$

where the union is taken over all simplices $\bar{\sigma}$ of τ_{E} with $q(\bar{\sigma})=\sigma$. Note that for every such $\bar{\sigma}$, there is a canonical map

$$
f_{\sigma}: \bar{\sigma}_{0} \times \cdots \times \bar{\sigma}_{n} \times \Delta^{n} \rightarrow \bar{\sigma} \subseteq E
$$

given by

$$
\left(x_{0}, \ldots, x_{n}, t_{0}, \ldots, t_{n}\right) \mapsto \sum t_{i} x_{i}
$$

Note that if $\sigma^{\prime} \subseteq \sigma$ in τ_{B}, then there is a canonical projection map $E_{\sigma} \rightarrow E_{\sigma^{\prime}}$ which fits into a commutative diagram

Exercise 2. The preceding maps can be assembled to a homeomorphism of topological spaces

$$
\underset{\sigma^{\prime} \subseteq \sigma}{\lim _{C}} E_{\sigma} \times \sigma^{\prime} \simeq E
$$

In other words, the polyhedron E can be realized as the coend of the contravariant functor $\sigma \mapsto E_{\sigma}$ (from the partially ordered set τ_{B} to topological spaces) against the covariant functor $\sigma \mapsto \sigma$ (from τ_{B} to topological spaces).

Alternatively, this result can be interpreted as saying that the polyhedron E is the homotopy colimit of the functor $\sigma \mapsto E_{\sigma}$.

Warning 3. The homeomorphism

$$
\underset{\sigma^{\prime} \subseteq \sigma}{\lim } E_{\sigma} \times \sigma^{\prime} \simeq E
$$

is generally not piecewise-linear (in fact, the colimit on the right hand side generally does not exist in the category of polyhedra). This is visible in the definition of the maps f_{σ} : the construction $\left(x_{0}, \ldots, x_{n}, t_{0}, \ldots, t_{n}\right) \mapsto$ $\sum t_{i} x_{i}$ is quadratic, not linear.
Remark 4. It follows from Exercise 2 that for every point $b \in B$, the fiber $E_{b}=q^{-1}\{b\}$ is homeomorphic to E_{σ} where σ is the unique simplex of τ_{B} whose interior contains b.

It follows from Exercise 2 that E can be recovered (as a topological space) from the triangulation τ_{B} and the contravariant functor $\sigma \mapsto E_{\sigma}$. We can therefore address Question 1 as follows:

Theorem 5. Let $q: E \rightarrow B$ be as above. Then q is a fibration if and only if, for every inclusion $\sigma^{\prime} \subseteq \sigma$ in τ_{B}, the induced map $E_{\sigma} \rightarrow E_{\sigma^{\prime}}$ is a cell-like map.

The "only if" direction we have already proven: for each of the maps $\rho: E_{\sigma} \rightarrow E_{\sigma^{\prime}}$, the mapping cylinder $M(\rho)$ can be realized as the fiber product $[0,1] \times{ }_{B} E$ (where the path $[0,1] \rightarrow B$ is any straight line joining a point in the interior of σ to a point in the interior of σ^{\prime}), so that if q is a fibration then $M(\rho) \rightarrow[0,1]$ is also a fibration and therefore ρ is cell-like. Our goal in this lecture is to prove the converse, following the argument given in [1].

Remark 6. In the previous lecture, we asserted without proof that a map of finite polyhedra $q: E \rightarrow B$ is a fibration if and only if it is a fibration over each simplex of a triangulation τ_{B} of B. This follows immediately from Theorem 5 (since we can always pass to a refinement of τ_{B} for which there is a compatible triangulation of E).

The other direction Theorem 5 is an immediate consequence of the following slightly more general statement:

Theorem 7. Let B be a finite polyhedron with a triangulation τ_{B}. Suppose we are given a contravariant functor $\sigma \mapsto E_{\sigma}$ from τ_{B} to topological spaces. Assume that each E_{σ} is a compact ANR (for example, a finite polyhedron) and that each inclusion $\sigma^{\prime} \subseteq \sigma$ induces a cell-like map $E_{\sigma} \rightarrow E_{\sigma^{\prime}}$. Then the canonical map

$$
\text { hocolim }_{\sigma \in \tau_{B}} E_{\sigma}=\underset{\sigma^{\prime} \subseteq}{\lim _{\mathrm{C}}} E_{\sigma} \times \sigma^{\prime} \rightarrow B
$$

is a fibration.
Our proof will proceed by induction on the dimension of the polyhedron B. Recall that the condition that q be a fibration can be tested locally on B. Consequently, it will suffice to show that every point $b \in B$ has an open neighborhood U for which the induced map $E \times{ }_{B} U \rightarrow U$ is a fibration. Passing to a subdivision of τ_{B}, we can arrange that b is a vertex of B.

Recall that the closed star C of b is the union of those simplices of τ_{B} which contain the vertex b, and the link L of b is the union of those simplices of τ_{B} which are contained in C but do not contain b. Then C can be identified with the cone $(L \times[0,1]) \amalg_{L \times\{1\}} *$, and the open star $C-L \simeq(L \times(0,1]) \amalg_{L \times\{1\}} *$ is an open neighborhood of b.

For each simplex σ of L, let $\sigma^{+} \subseteq C$ denote the simplex spanned by σ and b, and set $E^{\prime}=\operatorname{hocolim}_{\sigma \subseteq L} E_{\sigma^{+}}$. Since the link L has dimension smaller than the dimension of B, it follows from the inductive hypothesis that the canonical map $E^{\prime} \rightarrow L$ is a fibration. Moreover, the maps $E_{\sigma^{+}} \rightarrow E_{b}$ assemble to give a cell-like map $E^{\prime} \rightarrow \operatorname{hocolim}_{\sigma \subseteq L} E_{b}=L \times E_{b}$ of spaces fibered over L. Unwinding the definitions, we see that the fiber product $(C-L) \times{ }_{B} E$ is homeomorphic to

$$
\left(E^{\prime} \times(0,1]\right) \amalg_{E^{\prime} \times\{1\}} E_{b}
$$

It will therefore suffice to prove the following:

Proposition 8. Let L be a finite polyhedron. Suppose we are given compact ANRs X and Y and a cell-like map $X \rightarrow Y \times L$ which induces a fibration $X \rightarrow L$. Then the induced map

$$
(X \times[0,1]) \amalg_{X \times\{1\}} Y \rightarrow(L \times[0,1]) \amalg_{L \times\{1\}}\{*\}=C(L)
$$

is also a fibration.
The main ingredient we will need is the following lemma, which we will prove at the end of this lecture:
Lemma 9. In the situation of Proposition 8, let $F:(X \times[0,1]) \amalg_{X \times\{1\}} Y \rightarrow Y \times C(L)$ be the canonical map. Then there exists a map $G: Y \times C(L) \rightarrow(X \times[0,1]) \amalg_{X \times\{1\}} Y$ and a homotopy H from the identity to $G \circ F$ which preserves fibers over $C(L)$ and is the identity on Y.

Set $Z=(X \times[0,1]) \amalg_{X \times\{1\}} Y$. Proposition 8 asserts that every lifting problem of the form

has a solution. In this case, \bar{p}_{0} determines a point $x \in Z$. There are two cases to consider.
Case (1) We have $p(0)=*$, so that x belongs to the fiber $\phi^{-1}\{*\}=Y$. In this case, we can define \bar{p} by the formula $\bar{p}(t)=G(x, p(t))$.
Case (2) We have $p(0) \neq *$. In this case, there is a real number $0<\theta \leq 1$ such that p carries the interval $[0, \theta]$ into the open set $C(L)-\{*\}$. We know ϕ restricts to a fibration $X \times[0,1) \rightarrow C(L)-\{*\}$, so that $\left.p\right|_{[0, \theta]}$ can be lifted to a path $\bar{p}^{\prime}:[0, \theta] \rightarrow X \times[0,1) \subseteq Z$. We can then define \bar{p} by the formula

$$
\bar{p}(t)= \begin{cases}H\left(\bar{p}^{\prime}(t), \frac{t}{\theta}\right) & \text { if } t \leq \theta \\ G(\bar{p}(\theta), p(t)) & \text { if } t \geq \theta\end{cases}
$$

Let us now consider the case of a general parameter space A. We may assume without loss of generality that A is a metric space (in fact, it suffices to treat the universal case where $A=Z \times{ }_{C(L)} C(L)^{[0,1]}$, which is metrizable). Let $A_{1}=\{a \in A: p(a, 0)=*\}$ and let $A_{2}=A-A_{1}$. We would like to construct the map \bar{p} by applying the preceding recipes separately to A_{1} and A_{2}. The main difference is that we will not regard θ as a constant, but instead as a continuous function $\theta: A_{2} \rightarrow(0,1]$. We will arrange that θ has the following property:
(a) We have $p(a, t) \neq *$ for $a \in A_{2}$ and $t \leq \theta(a)$.

Assume that θ satisfies (a) and define $B_{\theta}=\left\{(a, t) \in A_{2} \times[0,1]: t \leq \theta(a)\right\}$. Using the fact that the map $X \times[0,1) \rightarrow C(L)-\{*\}$ is a fibration), we can extend \bar{p}_{0} to a partially defined homotopy $\bar{p}_{\theta}^{\prime}: B_{\theta} \subseteq Z$ extending $\left.\bar{p}_{0}\right|_{A_{2}}$ and lying over $\left.p\right|_{B_{\theta}}$. We can then define maps

$$
\phi_{1}: A_{1} \times[0,1] \rightarrow Z \quad \phi_{2}: A_{2} \times[0,1] \rightarrow Z
$$

by the formulae

$$
\begin{gathered}
\phi_{1}(a, t)=G\left(\bar{p}_{0}(a), p(t)\right) \\
\phi_{2}(a, t)= \begin{cases}H\left(\bar{p}_{\theta}^{\prime}(a, t), \frac{t}{\theta(a)}\right) & \text { if } t \leq \theta(a) \\
G\left(\bar{p}_{\theta}^{\prime}(a, t), p(a, t)\right) & \text { if } t \geq \theta(a)\end{cases}
\end{gathered}
$$

Let $\bar{p}: A \times[0,1] \rightarrow Z$ be the map given on $A_{i} \times[0,1]$ by ϕ_{i}. To complete the proof, it will suffice to show that θ and $\bar{p}_{\theta}^{\prime}$ can be chosen so that \bar{p} is continuous.

Let us now assume:
(b) The map θ extends to a continuous map $\bar{\theta}: A \rightarrow[0,1]$ with $\left.\bar{\theta}\right|_{A_{1}}=0$.

Remark 10. To choose the map $\bar{\theta}$, let us equip the product $A \times[0,1]$ with the taxi-cab metric, and set $K=p^{-1}\{*\} \subseteq A \times[0,1]$. We can then define $\bar{\theta}$ by the formula

$$
\bar{\theta}(a)=\min \left\{1, \frac{1}{2} d((a, 0), K)\right\}
$$

Let $\bar{B}_{\theta}^{\leq}=\{(a, t) \in A \times[0,1]: t \leq \bar{\theta}(a)\}$, let $\bar{B}_{\theta}^{\geq}=\{(a, t) \in A \times[0,1]: t \geq \bar{\theta}(a)\}$. Assume that $\bar{p} \mid \bar{B}_{\theta}^{\leq}$is continuous. Then the map $h: A \rightarrow Z$ given by $h(a)=\bar{p}(a, \bar{\theta}(a))$ is continuous. The restriction of \bar{p} to \bar{B}_{θ}^{\geq} is given by

$$
\bar{p}(a, t)=G(h(a), p(a, t))
$$

and is therefore continuous. It follows that \bar{p} is continuous, as desired. We are therefore reduced to proving that we can choose $\bar{\theta}$ so that $\bar{p} \mid \bar{B}_{\theta}^{\leq}$is continuous.

Note the map $(a, t) \mapsto(a, \bar{\theta}(a) t)$ determines a proper surjection $\pi: A \times[0,1] \rightarrow \bar{B}_{\theta}^{\leq}$. Consequently, it will suffice to show that $\bar{p} \circ \pi: A \times[0,1] \rightarrow Z$ is continuous. Let $r: A \times[0,1] \rightarrow Z$ be the map given by

$$
r(a, t)= \begin{cases}\bar{p}_{0}(a) & \text { if } a \in A_{1} \\ \bar{p}^{\prime}(a, t \theta(a)) & \text { if } a \in A_{2}\end{cases}
$$

Then $(\bar{p} \circ \pi)(a, t)=H\left(r_{\theta}(a, t), t\right)$. It will therefore suffice to show that we can arrange that r is continuous. To prove this, let us choose a metric d_{Z} on the space Z and define $K^{\prime}=\left\{(a, t) \in B_{\theta}: d_{Z}\left(\bar{p}_{\theta}^{\prime}(a, t), \bar{p}_{0}(a)\right) \geq \theta(a)\right\}$. Let $\theta^{\prime}: A_{2} \rightarrow[0,1]$ be defined by the formula

$$
\theta^{\prime}(a)=\min \left\{\theta(t), d\left((a, 0), K^{\prime}\right)\right\}
$$

Then $\theta^{\prime} \leq \theta$, so θ^{\prime} also extends to a continuous map $\bar{\theta}^{\prime}: A \rightarrow[0,1]$ satisfying $\left.\bar{\theta}^{\prime}\right|_{A_{1}}=0$. Replacing θ by θ^{\prime} and $\bar{p}_{\theta}^{\prime}$ with $\left.\bar{p}_{\theta}^{\prime}\right|_{B_{\theta^{\prime}}}$, we can assume that the function r satisfies $d_{Z}(r(a, t), r(a, 0)) \leq \theta(a)$ for $a \in A_{2}$. It follows that if we are given a sequence of points $\left(a_{i}, t_{i}\right)$ in $A_{2} \times[0,1]$ which approach a limit (a, t) in $A_{1} \times[0,1]$, then we have

$$
\lim r\left(a_{i}, t_{i}\right)=\lim r\left(a_{i}, 0\right)=r(a, 0)=r(a, t)
$$

so that r is continuous as desired.
It remains to prove Lemma 9. The proof will require some careful estimates. From this point forward, we will fix a metric d on Y. We will employ the following abuse of notation: given any space Y^{\prime} with a map $\pi: Y^{\prime} \rightarrow Y$ and any pair of points $a, b \in Y^{\prime}$, we set $d(a, b)=d(\pi(a), \pi(b))$ (note that this is generally not a metric on Y^{\prime}; for example, points belonging to the same fiber of π have distance zero from one another). The cases of interest to are $Y^{\prime}=Y \times L$ and $Y^{\prime}=X$.

Given a map $Y^{\prime} \rightarrow Y$ is as above, we will say that a path $p:[0,1] \rightarrow Y^{\prime}$ is ϵ-small if, for every pair $s, t \in[0,1]$, the distance $d(p(s), p(t))$ is less than ϵ. More generally, given a topological space S and a homotopy $h: S \times[0,1] \rightarrow Y^{\prime}$, we will say that h is ϵ-small if the paths $\left.h\right|_{\{s\} \times[0,1]}$ are ϵ-small for each $s \in S$.

Let $f: X \rightarrow Y \times L$ denote the projection map. The main technical ingredient we will need is the following:

Proposition 11. For each $\epsilon>0$, there exists a map $g_{\epsilon}: Y \times L \rightarrow X$ and an ϵ-small homotopy h_{ϵ} : $X \times[0,1] \rightarrow X$ from id_{X} to $g_{\epsilon} \circ f$, where g_{ϵ} and h_{ϵ} are compatible with projection to L.

Let us assume Proposition 11 for the moment and show that it leads to a proof of Lemma 9 .
Remark 12. In the situation of Proposition 11, it follows from the existence of the homotopy h_{ϵ} that we have $d\left(y,\left(f \circ g_{\epsilon}\right)(y)\right)<\epsilon$ for each $y \in Y \times L$. In other words, the maps g_{ϵ} are approximately sections to f.

Remark 13. We have assumed that Y is a compact ANR, so there exists an embedding of Y into a Banach space B and a retraction $r: U \rightarrow Y$, where U is an open neighborhood of Y in B. Fix a real number $\epsilon>0$. For sufficiently small δ, any pair of points $y, y^{\prime} \in Y$ with $d\left(y, y^{\prime}\right)<\delta$ have the property that the interval joining y to y^{\prime} in B belongs entirely to U, so that the construction

$$
\begin{gathered}
p_{y, y^{\prime}}:[0,1] \rightarrow Y \\
p_{y, y^{\prime}}(t)=r\left((1-t) y+t y^{\prime}\right)
\end{gathered}
$$

determines a continuous path from y to y^{\prime} in Y. The path $p_{y, y^{\prime}}$ depends continuously on y and y^{\prime}. It follows that the function $\left(y, y^{\prime}\right) \mapsto \sup \left\{d\left(p_{y, y^{\prime}}(s), p_{y, y^{\prime}}(t)\right)\right\}$ is also a continuous function, which vanishes when $y=y^{\prime}$. Shrinking δ if necessary, we may assume that $\delta<\epsilon$ and that if $d\left(y, y^{\prime}\right)<\delta$ then the path $p_{y, y^{\prime}}$ is ϵ-small. In this case, we will say that δ is small compared to ϵ and write $\delta \ll \epsilon$.

Remark 14. Suppose that $\delta \ll \epsilon$. It follows from Remark 12 that for each $y \in Y \times L$, there is an ϵ small path joining y to $\left(f \circ g_{\delta}\right)(y)$, which depends continuously on y. These paths can be assembled to a $k_{\delta, \epsilon}: Y \times L \times[0,1] \rightarrow Y \times L$. which is compatible with the projection to L. In particular, we see that g_{δ} is a right homotopy inverse to f (it is also a left homotopy inverse, by virtue of the existence of the homotopy h_{ϵ}.

Remark 15. Suppose that $2 \delta \ll \epsilon$. For every point $x \in X$, the constructions

$$
t \mapsto F\left(h_{\delta}(x, t)\right) \quad t \mapsto k_{\delta, \epsilon}(f(x), t)
$$

determine δ-small paths from $f(x)$ to $\left(f \circ g_{\delta} \circ f\right)(x)$. Using the triangle inequality, we see that the distance between these paths is at most 2δ. It follows that there is an ϵ-small homotopy

$$
v_{\delta, \epsilon}: X \times[0,1] \times[0,1] \rightarrow Y \times L
$$

from $F \circ h_{\delta}$ to $k_{\delta, \epsilon} \circ\left(F \times \operatorname{id}_{[0,1]}\right)$.
We are now ready to construct the map G appearing in the statement of Lemma 9. Choose a sequence of positive real numbers $\epsilon_{0}, \epsilon_{1}, \ldots$ with $\epsilon_{0} \leq 1$ and $2 \epsilon_{n+1} \ll \epsilon_{n}$ (from which it follows that $\epsilon_{n} \leq \frac{1}{2^{n}}$ for all n). We define a continuous map $G^{\circ}: Y \times L \times \mathbb{R}_{\geq 0} \rightarrow X$ by the formula

$$
G^{\circ}(y, t)= \begin{cases}g_{\epsilon_{n}}\left(k_{\epsilon_{n+1}, \epsilon_{n}}(y, 2(t-n))\right) & \text { if } n \leq t \leq n+\frac{1}{2} \\ h_{\epsilon_{n}}\left(g_{\epsilon_{n+1}}(y), 2(n+1-t)\right) & \text { if } n+\frac{1}{2} \leq t \leq n+1\end{cases}
$$

Let us identify $\mathbb{R}_{\geq 0}$ with the half-open interval $[0,1)$, so that the construction

$$
(y, t) \mapsto\left(G^{\circ}(y), t\right)
$$

determines a continuous map $Y \times L \times[0,1) \rightarrow X \times[0,1)$. We claim that map admits a continuous extension $G: Y \times L \times[0,1] \rightarrow Z$ whose restriction to $Y \times L \times\{1\}$ is given by the projection onto the first factor. To prove this, it suffices to show that for every sequence of points $\left(y_{i}, t_{i}\right)$ in $Y \times L \times[0, \infty)$ where the y_{i} converge to some point $y \in Y \times L$ and the t_{i} converge to ∞, the sequence of points $f\left(G^{\circ}\left(y_{i}, t_{i}\right)\right)$ converge to y in $Y \times L$. This is clear: note that if $n \leq t \leq n+\frac{1}{2}$, then

$$
\begin{aligned}
d\left(y, f\left(G^{\circ}(y, t)\right)\right) & \leq d\left(y, k_{\epsilon_{n+1}, \epsilon_{n}}(y, 2(t-n))\right)+d\left(k_{\epsilon_{n+1}, \epsilon_{n}}(y, 2(t-n))\right),\left(f \circ g_{\epsilon_{n}}\right)\left(k_{\epsilon_{n+1}, \epsilon_{n}}(y, 2(t-n))\right) \\
& \leq 2 \epsilon_{n},
\end{aligned}
$$

while for $n+\frac{1}{2} \leq t \leq n+1$ we have

$$
\begin{aligned}
d\left(y, f\left(G^{\circ}(y, t)\right)\right) & \leq d\left(y, f\left(G^{\circ}(y, n+1)\right)\right)+d\left(f\left(G^{\circ}(y, n+1)\right), f\left(G^{\circ}(y, t)\right)\right. \\
& =d\left(y, f g_{\epsilon_{n+1}}(y)\right)+d\left(f\left(G^{\circ}(y, n+1)\right), f\left(G^{\circ}(y, t)\right)\right. \\
& \leq \epsilon_{n+1}+\epsilon_{n}
\end{aligned}
$$

To construct the homotopy H, we begin by considering a map $T: X \times[0, \infty) \rightarrow X$ given by the formula

$$
T(x, t)= \begin{cases}g_{\epsilon_{n}}\left(f\left(h_{\epsilon_{n+1}}(x, 2(t-n))\right)\right) & \text { if } n \leq t \leq n+\frac{1}{2} \\ h_{\epsilon_{n}}\left(g_{\epsilon_{n+1}}(f(x)), 2(n+1-t)\right) & \text { if } n+\frac{1}{2} \leq t \leq n+1\end{cases}
$$

There is a canonical homotopy from the projection map $\pi: X \times[0, \infty) \rightarrow X$ to T, which carries a pair $(x, t) \in X \times[0, \infty)$ to the path

$$
s \mapsto \begin{cases}h_{\epsilon_{n}}\left(h_{\epsilon_{n+1}}(x, 2(t-n) s), s\right) & \text { if } n \leq t \leq n+\frac{1}{2} \\ h_{\epsilon_{n}}\left(h_{\epsilon_{n+1}}(x, s), 2(n+1-t) s\right) & \text { if } n+\frac{1}{2} \leq t \leq n+1\end{cases}
$$

The maps $v_{\epsilon_{n+1}, \epsilon_{n}}$ of Remark 15 can be assembled to a homotopy from T to the map $(x, t) \mapsto G(f(x), t)$. Concatenating these homotopies, we obtain a map

$$
H^{\circ}: X \times[0, \infty) \times[0,1] \rightarrow X \times[0, \infty)
$$

We claim that (after identifying $[0, \infty$) with $[0,1)) H^{\circ}$ extends continuously to a homotopy $H: Z \times[0,1] \rightarrow Z$ from id_{Z} to G which is trivial on the closed subset $Y \subseteq Z$. To prove this, we must show that if $\left\{x_{i}\right\}$ is a sequence of points of X whose images in Y converge to a point y and $\left\{t_{i}\right\}$ is a sequence of positive real numbers which converges to ∞, then the paths $\left.\left(\pi_{Y} \circ f \circ H\right)\right|_{\left\{\left(x_{i}, t_{i}\right)\right\} \times[0,1]}$ converge to the constant path based at the point y, which is a consequence of the following elementary lemma which we leave to the reader:

Lemma 16. Let $\left\{p_{i}:[0,1] \rightarrow Y\right\}_{i \geq 0}$ be a sequence of continuous paths in Y. Assume that:
(a) For each $\epsilon>0$, the paths p_{i} are ϵ-small for almost all i.
(b) The sequence of points $\left\{p_{i}(0)\right\}_{i \geq 0}$ converges to a point $y \in Y$.

Then the paths p_{i} converge to the constant path $[0,1] \rightarrow\{y\} \hookrightarrow Y$.
We now turn to the proof of Proposition 11. In the case where L is a single point, we have the following:
Proposition 17. Let $f: X \rightarrow Y$ be a surjective map of compact ANRs. The following conditions are equivalent:
(1) The map f is cell-like.
(2) For every $\epsilon>0$, there exists a map $g: Y \rightarrow X$ and an ϵ-small homotopy $h: X \times[0,1] \rightarrow X$ from the identity map to $g \circ f$ (recall that all distances are measured with respect to some metric on Y).

Let us assume Proposition 17 for a moment, and see how it leads to a proof of Proposition 11. Choose a metric on L. Given a cell-like map $f: X \rightarrow Y \times L$ and any $\epsilon>0$, Proposition 17 guarantees the existence of a map $g^{\prime}: Y \times L \rightarrow X$ and a homotopy $h^{\prime}: X \times[0,1] \rightarrow X$ from id_{X} to $g^{\prime} \circ f$ such that the homotopy $f \circ h^{\prime}$ is ϵ-small both in Y and in L. We wish to show that we can arrange that g^{\prime} and h^{\prime} commute with the projection to L. We will deduce this from the following:

Lemma 18. Fix $\delta>0$. For each $\epsilon>0$, let $U \subseteq X \times L$ be the open set consisting of those points (x, v) such that the distance from v to the image of x (measured with respect to the metric on L) is $<\epsilon$. For ϵ sufficiently small, there exists a map $r: U \rightarrow X$ satisfying the following conditions:
(1) The map r commutes with the projection to L.
(2) If $x \in X$ and v is its image in L, then $r(x, v)=x$.
(3) For all $(x, v) \in X$, there is an δ-small path from $r(x, v)$ to x.

If ϵ is chosen small enough to satisfy the requirements of Lemma 18, then we can set

$$
g(y)=r\left(g^{\prime}(y), \pi_{L} g^{\prime}(y)\right) \quad h(x, t)=r\left(h^{\prime}(x, t), \pi_{L} h^{\prime}(x, t)\right)
$$

where $\pi_{L}: X \rightarrow L$ is the projection map. It then follows from the triangle inequality that the homotopy h is $(\epsilon+2 \delta)$-small; Proposition 11 then follows choosing δ and ϵ sufficiently small.

Proof of Lemma 18. Since the map $\pi_{L}: X \rightarrow L$ is a fibration, we can choose a path lifting function u : $X \times_{L} L^{[0,1]} \rightarrow X^{[0,1]}$. Let us identify X with its image in $X \times_{L} L^{[0,1]}$ (that is, the set of pairs (x, c) where $c:[0,1] \rightarrow L$ is the constant path based at $\left.\pi_{L}(x)\right)$. Without loss of generality, we can assume that the restriction $\left.u\right|_{X}$ is the diagonal embedding $X \hookrightarrow X^{[0,1]}$.

Applying the discussion of Remark 13 to the space L, we see that if ϵ is sufficiently small, then any two points $v, v^{\prime} \in L$ at distance $<\epsilon$ can be joined by a path $p_{v, v^{\prime}}$ which depends continuously on v and v^{\prime}. We can then define $r: U \rightarrow X$ by the formula

$$
r(x, v)=u\left(x, p_{\pi_{L}(x), v}\right)(1)
$$

It is easy to see that r satisfies conditions (1) and (2), and condition (3) can be ensured by shrinking ϵ if necessary.

Proof of Proposition 17. We first show that $(2) \Rightarrow(1)$ (we don't actually need this implication, but it is a pleasant characterization of the class of cell-like maps). We will show that each fiber X_{y} of f has trivial shape. Since X_{y} is nonempty, it suffices to show that for any CW complex S, any map $f_{0}: X_{y} \rightarrow S$ is nullhomotopic. The map f_{0} extends continuously to a map $f: V \rightarrow S$, where V is some open neighborhood of X_{y} in X. It will therefore suffice to show that the inclusion $X_{y} \hookrightarrow V$ is nullhomotopic. Choose ϵ small enough that $V \subseteq f^{-1} B_{\epsilon}(y)$, where $B_{\epsilon}(y)$ denotes a ball of radius ϵ about Y. Assumption (2) implies that there exists a map $g: Y \rightarrow X$ and an ϵ-small homotopy from id_{X} to $g \circ f$. This restricts to a homotopy from the inclusion map $X_{y} \hookrightarrow V$ to a constant map.

We now consider the interesting direction: the implication (1) \Rightarrow (2). Since Y is compact, we can cover Y by finitely many balls of radius ϵ; let us denote those balls by $\left\{U_{i}\right\}_{i \in I}$. For every nonempty subset $J \subseteq I$, set $U_{J}=\bigcap_{i \in J} U_{i}$. For every chain $J_{0} \subseteq \cdots \subseteq J_{m}$ of nonempty subsets of I, we will construct a map

$$
G_{\vec{J}}: \Delta^{m} \times U_{J_{m}} \rightarrow f^{-1} U_{J_{0}}
$$

and a homotopy

$$
H_{\vec{J}}: \Delta^{m} \times f^{-1} U_{J_{m}} \rightarrow f^{-1} U_{J_{0}}
$$

from the identity to $G_{\vec{J}} \circ f$. Moreover, we will choose these maps to be compatible with one another in the sense that if $\overrightarrow{J^{\prime}}=\left(J_{0}^{\prime} \subseteq \cdots \subseteq J_{m^{\prime}}^{\prime}\right)$ is another chain of nonempty subsets of I which is contained in \vec{J}, then $H_{\vec{J}}$ and $H_{\overrightarrow{J^{\prime}}}$ agree on $\Delta^{m^{\prime}} \times f^{-1} U_{J_{m}}$ (which implies that $G_{\vec{J}}$ and $G_{\vec{J}^{\prime}}$ agree on $\Delta^{m^{\prime}} \times U_{J_{m}}$). The construction proceeds by induction on the size of \vec{J}; at each stage, we are forced to extend a map over the inclusion

$$
i:\left(\partial \Delta^{m} \times M\right) \amalg_{\left(\partial \Delta^{m} \times f^{-1} U_{J_{m}}\right)}\left(\Delta^{m} \times f^{-1} U_{J_{m}}\right) \hookrightarrow \Delta^{m} \times M
$$

where M denotes the mapping cylinder of the projection $f^{-1} U_{J_{m}} \rightarrow U_{J_{m}}$. To show that this extension is possible, it suffices to show that i admits a left inverse. This follows from the fact $f^{-1} U_{J_{m}}$ is a deformation retract of M (since the projection $f^{1} U_{J_{m}} \rightarrow U_{J_{m}}$ is a homotopy equivalence by virtue of our assumption that f is cell-like).

Let P denote the partially ordered set of nonempty subsets of I and let Δ denote the nerve of P. Then Δ is a topological simplex with vertices corresponding to the elements of I, and its presentation as the nerve of P gives a triangulation of Δ (given by barycentric subdivision) with one m-simplex $\sigma_{\vec{J}}$ for every chain $\vec{J}=\left(J_{0} \subseteq \cdots \subseteq J_{m}\right)$ as above.

Choose a partition of unity $\left\{\lambda_{i}\right\}_{i \in I}$ on Y having the property that for each index i, the closure of the support of λ_{i} is contained in the open set U_{i}. We can regard the λ_{i} as defining a continuous map $\lambda: Y \rightarrow \Delta$.

Moreover, for each $y \in Y$ there exists a chain $\vec{J}=\left(J_{0} \subseteq \cdots \subseteq J_{m}\right)$ such that $\lambda(y) \in \sigma_{\vec{J}} \simeq \Delta^{m}$ and $y \in U_{J_{m}}$. We define $G: Y \rightarrow X$ by the formula $G(y)=G_{\vec{J}}(y, \lambda(y))$. Similarly, for $x \in X$ with $f(x)=y$, we set $H(x, t)=H_{\vec{J}}(x, \lambda(y), t)$. It is not difficult to see that G and H are well-defined and have the desired properties.

References

[1] Hatcher, A. Higher Simple Homotopy Theory.

