
Fibrations of Polyhedra (Lecture 8)

September 20, 2014

In the previous lecture, we introduced a simplicial set M which parametrizes fibrations in the piecewise-
linear category. To analyze M, we consider the following:

Question 1. Let q : E → B be a piecewise-linear map of finite polyhedra. When is q a fibration?

To address this question, let us choose compatible triangulations τE and τB of E and B respectively,
with vertex sets VE and VB . Then q maps each simplex of τE linearly onto a simplex of τB .

For each vertex b ∈ VB , we let Eb = q−1{b} denote the fiber over b, so that τE induces a triangulation
of Eb. More generally, suppose that σ is an n-simplex of τB with vertices {b0, . . . , bn}. For every simplex
σ ∈ τE with q(σ) = σ, let

σi = σ ∩ Ebi .

Let Eσ ⊆ Eb0 × · · · × Ebn denote the union ⋃
σ0 × · · · × σn

where the union is taken over all simplices σ of τE with q(σ) = σ. Note that for every such σ, there is a
canonical map

fσ : σ0 × · · · × σn ×∆n → σ ⊆ E

given by

(x0, . . . , xn, t0, . . . , tn) 7→
∑

tixi.

Note that if σ′ ⊆ σ in τB , then there is a canonical projection map Eσ → Eσ′ which fits into a commutative
diagram

Eσ × σ′

yy %%
Eσ′ × σ′

fσ′

&&

Eσ × σ

fσyy
E.

Exercise 2. The preceding maps can be assembled to a homeomorphism of topological spaces

lim−→
σ′⊆σ

Eσ × σ′ ' E.

In other words, the polyhedron E can be realized as the coend of the contravariant functor σ 7→ Eσ (from the
partially ordered set τB to topological spaces) against the covariant functor σ 7→ σ (from τB to topological
spaces).

Alternatively, this result can be interpreted as saying that the polyhedron E is the homotopy colimit of
the functor σ 7→ Eσ.
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Warning 3. The homeomorphism
lim−→
σ′⊆σ

Eσ × σ′ ' E.

is generally not piecewise-linear (in fact, the colimit on the right hand side generally does not exist in the cate-
gory of polyhedra). This is visible in the definition of the maps fσ: the construction (x0, . . . , xn, t0, . . . , tn) 7→∑
tixi is quadratic, not linear.

Remark 4. It follows from Exercise 2 that for every point b ∈ B, the fiber Eb = q−1{b} is homeomorphic
to Eσ where σ is the unique simplex of τB whose interior contains b.

It follows from Exercise 2 that E can be recovered (as a topological space) from the triangulation τB and
the contravariant functor σ 7→ Eσ. We can therefore address Question 1 as follows:

Theorem 5. Let q : E → B be as above. Then q is a fibration if and only if, for every inclusion σ′ ⊆ σ in
τB, the induced map Eσ → Eσ′ is a cell-like map.

The “only if” direction we have already proven: for each of the maps ρ : Eσ → Eσ′ , the mapping cylinder
M(ρ) can be realized as the fiber product [0, 1]×B E (where the path [0, 1]→ B is any straight line joining
a point in the interior of σ to a point in the interior of σ′), so that if q is a fibration then M(ρ) → [0, 1] is
also a fibration and therefore ρ is cell-like. Our goal in this lecture is to prove the converse, following the
argument given in [1].

Remark 6. In the previous lecture, we asserted without proof that a map of finite polyhedra q : E → B is a
fibration if and only if it is a fibration over each simplex of a triangulation τB of B. This follows immediately
from Theorem 5 (since we can always pass to a refinement of τB for which there is a compatible triangulation
of E).

The other direction Theorem 5 is an immediate consequence of the following slightly more general state-
ment:

Theorem 7. Let B be a finite polyhedron with a triangulation τB. Suppose we are given a contravariant
functor σ 7→ Eσ from τB to topological spaces. Assume that each Eσ is a compact ANR (for example, a finite
polyhedron) and that each inclusion σ′ ⊆ σ induces a cell-like map Eσ → Eσ′ . Then the canonical map

hocolimσ∈τB Eσ = lim−→
σ′⊆σ

Eσ × σ′ → B

is a fibration.

Our proof will proceed by induction on the dimension of the polyhedron B. Recall that the condition
that q be a fibration can be tested locally on B. Consequently, it will suffice to show that every point b ∈ B
has an open neighborhood U for which the induced map E×BU → U is a fibration. Passing to a subdivision
of τB , we can arrange that b is a vertex of B.

Recall that the closed star C of b is the union of those simplices of τB which contain the vertex b, and
the link L of b is the union of those simplices of τB which are contained in C but do not contain b. Then C
can be identified with the cone (L× [0, 1]) qL×{1} ∗, and the open star C − L ' (L× (0, 1]) qL×{1} ∗ is an
open neighborhood of b.

For each simplex σ of L, let σ+ ⊆ C denote the simplex spanned by σ and b, and set E′ = hocolimσ⊆LEσ+ .
Since the link L has dimension smaller than the dimension of B, it follows from the inductive hypothesis
that the canonical map E′ → L is a fibration. Moreover, the maps Eσ+ → Eb assemble to give a cell-like
map E′ → hocolimσ⊆LEb = L × Eb of spaces fibered over L. Unwinding the definitions, we see that the
fiber product (C − L)×B E is homeomorphic to

(E′ × (0, 1])qE′×{1} Eb.

It will therefore suffice to prove the following:
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Proposition 8. Let L be a finite polyhedron. Suppose we are given compact ANRs X and Y and a cell-like
map X → Y × L which induces a fibration X → L. Then the induced map

(X × [0, 1])qX×{1} Y → (L× [0, 1])qL×{1} {∗} = C(L)

is also a fibration.

The main ingredient we will need is the following lemma, which we will prove at the end of this lecture:

Lemma 9. In the situation of Proposition 8, let F : (X × [0, 1]) qX×{1} Y → Y × C(L) be the canonical
map. Then there exists a map G : Y × C(L)→ (X × [0, 1]) qX×{1} Y and a homotopy H from the identity
to G ◦ F which preserves fibers over C(L) and is the identity on Y .

Set Z = (X × [0, 1])qX×{1} Y . Proposition 8 asserts that every lifting problem of the form

A× {0}
p0 //

��

Z

φ

��
A× [0, 1]

p //

p

99

C(L)

has a solution. In this case, p0 determines a point x ∈ Z. There are two cases to consider.

Case (1) We have p(0) = ∗, so that x belongs to the fiber φ−1{∗} = Y . In this case, we can define p by the
formula p(t) = G(x, p(t)).

Case (2) We have p(0) 6= ∗. In this case, there is a real number 0 < θ ≤ 1 such that p carries the interval [0, θ]
into the open set C(L) − {∗}. We know φ restricts to a fibration X × [0, 1) → C(L) − {∗}, so that
p|[0,θ] can be lifted to a path p′ : [0, θ]→ X × [0, 1) ⊆ Z. We can then define p by the formula

p(t) =

{
H(p′(t), tθ ) if t ≤ θ
G(p(θ), p(t)) if t ≥ θ.

Let us now consider the case of a general parameter space A. We may assume without loss of generality
that A is a metric space (in fact, it suffices to treat the universal case where A = Z ×C(L) C(L)[0,1], which
is metrizable). Let A1 = {a ∈ A : p(a, 0) = ∗} and let A2 = A− A1. We would like to construct the map p
by applying the preceding recipes separately to A1 and A2. The main difference is that we will not regard θ
as a constant, but instead as a continuous function θ : A2 → (0, 1]. We will arrange that θ has the following
property:

(a) We have p(a, t) 6= ∗ for a ∈ A2 and t ≤ θ(a).

Assume that θ satisfies (a) and define Bθ = {(a, t) ∈ A2 × [0, 1] : t ≤ θ(a)}. Using the fact that the
map X × [0, 1)→ C(L)− {∗} is a fibration), we can extend p0 to a partially defined homotopy p′θ : Bθ ⊆ Z
extending p0|A2 and lying over p|Bθ . We can then define maps

φ1 : A1 × [0, 1]→ Z φ2 : A2 × [0, 1]→ Z

by the formulae
φ1(a, t) = G(p0(a), p(t))

φ2(a, t) =

{
H(p′θ(a, t),

t
θ(a) ) if t ≤ θ(a)

G(p′θ(a, t), p(a, t)) if t ≥ θ(a).

Let p : A × [0, 1] → Z be the map given on Ai × [0, 1] by φi. To complete the proof, it will suffice to show
that θ and p′θ can be chosen so that p is continuous.

Let us now assume:
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(b) The map θ extends to a continuous map θ : A→ [0, 1] with θ|A1
= 0.

Remark 10. To choose the map θ, let us equip the product A × [0, 1] with the taxi-cab metric, and set
K = p−1{∗} ⊆ A× [0, 1]. We can then define θ by the formula

θ(a) = min{1, 1

2
d((a, 0),K)}.

Let B
≤
θ = {(a, t) ∈ A × [0, 1] : t ≤ θ(a)}, let B

≥
θ = {(a, t) ∈ A × [0, 1] : t ≥ θ(a)}. Assume that p|B≤θ is

continuous. Then the map h : A → Z given by h(a) = p(a, θ(a)) is continuous. The restriction of p to B
≥
θ

is given by
p(a, t) = G(h(a), p(a, t)),

and is therefore continuous. It follows that p is continuous, as desired. We are therefore reduced to proving

that we can choose θ so that p|B≤θ is continuous.

Note the map (a, t) 7→ (a, θ(a)t) determines a proper surjection π : A × [0, 1] → B
≤
θ . Consequently, it

will suffice to show that p ◦ π : A× [0, 1]→ Z is continuous. Let r : A× [0, 1]→ Z be the map given by

r(a, t) =

{
p0(a) if a ∈ A1

p′(a, tθ(a)) if a ∈ A2.

Then (p◦π)(a, t) = H(rθ(a, t), t). It will therefore suffice to show that we can arrange that r is continuous. To
prove this, let us choose a metric dZ on the space Z and define K ′ = {(a, t) ∈ Bθ : dZ(p′θ(a, t), p0(a)) ≥ θ(a)}.
Let θ′ : A2 → [0, 1] be defined by the formula

θ′(a) = min{θ(t), d((a, 0),K ′)}.

Then θ′ ≤ θ, so θ′ also extends to a continuous map θ
′

: A→ [0, 1] satisfying θ
′|A1

= 0. Replacing θ by θ′ and
p′θ with p′θ|Bθ′ , we can assume that the function r satisfies dZ(r(a, t), r(a, 0)) ≤ θ(a) for a ∈ A2. It follows
that if we are given a sequence of points (ai, ti) in A2× [0, 1] which approach a limit (a, t) in A1× [0, 1], then
we have

lim r(ai, ti) = lim r(ai, 0) = r(a, 0) = r(a, t),

so that r is continuous as desired.
It remains to prove Lemma 9. The proof will require some careful estimates. From this point forward,

we will fix a metric d on Y . We will employ the following abuse of notation: given any space Y ′ with a map
π : Y ′ → Y and any pair of points a, b ∈ Y ′, we set d(a, b) = d(π(a), π(b)) (note that this is generally not
a metric on Y ′; for example, points belonging to the same fiber of π have distance zero from one another).
The cases of interest to are Y ′ = Y × L and Y ′ = X.

Given a map Y ′ → Y is as above, we will say that a path p : [0, 1] → Y ′ is ε-small if, for every pair
s, t ∈ [0, 1], the distance d(p(s), p(t)) is less than ε. More generally, given a topological space S and a
homotopy h : S × [0, 1]→ Y ′, we will say that h is ε-small if the paths h|{s}×[0,1] are ε-small for each s ∈ S.

Let f : X → Y × L denote the projection map. The main technical ingredient we will need is the
following:

Proposition 11. For each ε > 0, there exists a map gε : Y × L → X and an ε-small homotopy hε :
X × [0, 1]→ X from idX to gε ◦ f , where gε and hε are compatible with projection to L.

Let us assume Proposition 11 for the moment and show that it leads to a proof of Lemma 9.

Remark 12. In the situation of Proposition 11, it follows from the existence of the homotopy hε that we
have d(y, (f ◦ gε)(y)) < ε for each y ∈ Y × L. In other words, the maps gε are approximately sections to f .
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Remark 13. We have assumed that Y is a compact ANR, so there exists an embedding of Y into a Banach
space B and a retraction r : U → Y , where U is an open neighborhood of Y in B. Fix a real number ε > 0.
For sufficiently small δ, any pair of points y, y′ ∈ Y with d(y, y′) < δ have the property that the interval
joining y to y′ in B belongs entirely to U , so that the construction

py,y′ : [0, 1]→ Y

py,y′(t) = r((1− t)y + ty′)

determines a continuous path from y to y′ in Y . The path py,y′ depends continuously on y and y′. It
follows that the function (y, y′) 7→ sup{d(py,y′(s), py,y′(t))} is also a continuous function, which vanishes
when y = y′. Shrinking δ if necessary, we may assume that δ < ε and that if d(y, y′) < δ then the path py,y′

is ε-small. In this case, we will say that δ is small compared to ε and write δ � ε.

Remark 14. Suppose that δ � ε. It follows from Remark 12 that for each y ∈ Y × L, there is an ε-
small path joining y to (f ◦ gδ)(y), which depends continuously on y. These paths can be assembled to a
kδ,ε : Y × L× [0, 1]→ Y × L. which is compatible with the projection to L. In particular, we see that gδ is
a right homotopy inverse to f (it is also a left homotopy inverse, by virtue of the existence of the homotopy
hε.

Remark 15. Suppose that 2δ � ε. For every point x ∈ X, the constructions

t 7→ F (hδ(x, t)) t 7→ kδ,ε(f(x), t)

determine δ-small paths from f(x) to (f ◦ gδ ◦ f)(x). Using the triangle inequality, we see that the distance
between these paths is at most 2δ. It follows that there is an ε-small homotopy

vδ,ε : X × [0, 1]× [0, 1]→ Y × L

from F ◦ hδ to kδ,ε ◦ (F × id[0,1]).

We are now ready to construct the map G appearing in the statement of Lemma 9. Choose a sequence
of positive real numbers ε0, ε1, . . . with ε0 ≤ 1 and 2εn+1 � εn (from which it follows that εn ≤ 1

2n for all n).
We define a continuous map G◦ : Y × L× R≥0 → X by the formula

G◦(y, t) =

{
gεn(kεn+1,εn(y, 2(t− n))) if n ≤ t ≤ n+ 1

2

hεn(gεn+1
(y), 2(n+ 1− t)) if n+ 1

2 ≤ t ≤ n+ 1.
.

Let us identify R≥0 with the half-open interval [0, 1), so that the construction

(y, t) 7→ (G◦(y), t)

determines a continuous map Y ×L× [0, 1)→ X × [0, 1). We claim that map admits a continuous extension
G : Y × L × [0, 1] → Z whose restriction to Y × L × {1} is given by the projection onto the first factor.
To prove this, it suffices to show that for every sequence of points (yi, ti) in Y × L × [0,∞) where the yi
converge to some point y ∈ Y ×L and the ti converge to ∞, the sequence of points f(G◦(yi, ti)) converge to
y in Y × L. This is clear: note that if n ≤ t ≤ n+ 1

2 , then

d(y, f(G◦(y, t))) ≤ d(y, kεn+1,εn(y, 2(t− n))) + d(kεn+1,εn(y, 2(t− n))), (f ◦ gεn)(kεn+1,εn(y, 2(t− n)))

≤ 2εn,

while for n+ 1
2 ≤ t ≤ n+ 1 we have

d(y, f(G◦(y, t))) ≤ d(y, f(G◦(y, n+ 1))) + d(f(G◦(y, n+ 1)), f(G◦(y, t))

= d(y, fgεn+1(y)) + d(f(G◦(y, n+ 1)), f(G◦(y, t))

≤ εn+1 + εn.

5



To construct the homotopy H, we begin by considering a map T : X × [0,∞)→ X given by the formula

T (x, t) =

{
gεn(f(hεn+1

(x, 2(t− n)))) if n ≤ t ≤ n+ 1
2

hεn(gεn+1
(f(x)), 2(n+ 1− t)) if n+ 1

2 ≤ t ≤ n+ 1.

There is a canonical homotopy from the projection map π : X × [0,∞) → X to T , which carries a pair
(x, t) ∈ X × [0,∞) to the path

s 7→

{
hεn(hεn+1

(x, 2(t− n)s), s) if n ≤ t ≤ n+ 1
2

hεn(hεn+1
(x, s), 2(n+ 1− t)s) if n+ 1

2 ≤ t ≤ n+ 1.

The maps vεn+1,εn of Remark 15 can be assembled to a homotopy from T to the map (x, t) 7→ G(f(x), t).
Concatenating these homotopies, we obtain a map

H◦ : X × [0,∞)× [0, 1]→ X × [0,∞).

We claim that (after identifying [0,∞) with [0, 1)) H◦ extends continuously to a homotopy H : Z×[0, 1]→ Z
from idZ to G which is trivial on the closed subset Y ⊆ Z. To prove this, we must show that if {xi} is
a sequence of points of X whose images in Y converge to a point y and {ti} is a sequence of positive real
numbers which converges to∞, then the paths (πY ◦f ◦H)|{(xi,ti)}×[0,1] converge to the constant path based
at the point y, which is a consequence of the following elementary lemma which we leave to the reader:

Lemma 16. Let {pi : [0, 1]→ Y }i≥0 be a sequence of continuous paths in Y . Assume that:

(a) For each ε > 0, the paths pi are ε-small for almost all i.

(b) The sequence of points {pi(0)}i≥0 converges to a point y ∈ Y .

Then the paths pi converge to the constant path [0, 1]→ {y} ↪→ Y .

We now turn to the proof of Proposition 11. In the case where L is a single point, we have the following:

Proposition 17. Let f : X → Y be a surjective map of compact ANRs. The following conditions are
equivalent:

(1) The map f is cell-like.

(2) For every ε > 0, there exists a map g : Y → X and an ε-small homotopy h : X × [0, 1] → X from the
identity map to g ◦ f (recall that all distances are measured with respect to some metric on Y ).

Let us assume Proposition 17 for a moment, and see how it leads to a proof of Proposition 11. Choose a
metric on L. Given a cell-like map f : X → Y × L and any ε > 0, Proposition 17 guarantees the existence
of a map g′ : Y × L → X and a homotopy h′ : X × [0, 1] → X from idX to g′ ◦ f such that the homotopy
f ◦ h′ is ε-small both in Y and in L. We wish to show that we can arrange that g′ and h′ commute with the
projection to L. We will deduce this from the following:

Lemma 18. Fix δ > 0. For each ε > 0, let U ⊆ X × L be the open set consisting of those points (x, v)
such that the distance from v to the image of x (measured with respect to the metric on L) is < ε. For ε
sufficiently small, there exists a map r : U → X satisfying the following conditions:

(1) The map r commutes with the projection to L.

(2) If x ∈ X and v is its image in L, then r(x, v) = x.

(3) For all (x, v) ∈ X, there is an δ-small path from r(x, v) to x.
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If ε is chosen small enough to satisfy the requirements of Lemma 18, then we can set

g(y) = r(g′(y), πLg
′(y)) h(x, t) = r(h′(x, t), πLh

′(x, t))

where πL : X → L is the projection map. It then follows from the triangle inequality that the homotopy h
is (ε+ 2δ)-small; Proposition 11 then follows choosing δ and ε sufficiently small.

Proof of Lemma 18. Since the map πL : X → L is a fibration, we can choose a path lifting function u :
X ×L L[0,1] → X [0,1]. Let us identify X with its image in X ×L L[0,1] (that is, the set of pairs (x, c) where
c : [0, 1] → L is the constant path based at πL(x)). Without loss of generality, we can assume that the
restriction u|X is the diagonal embedding X ↪→ X [0,1].

Applying the discussion of Remark 13 to the space L, we see that if ε is sufficiently small, then any two
points v, v′ ∈ L at distance < ε can be joined by a path pv,v′ which depends continuously on v and v′. We
can then define r : U → X by the formula

r(x, v) = u(x, pπL(x),v)(1).

It is easy to see that r satisfies conditions (1) and (2), and condition (3) can be ensured by shrinking ε if
necessary.

Proof of Proposition 17. We first show that (2) ⇒ (1) (we don’t actually need this implication, but it is a
pleasant characterization of the class of cell-like maps). We will show that each fiber Xy of f has trivial
shape. Since Xy is nonempty, it suffices to show that for any CW complex S, any map f0 : Xy → S is
nullhomotopic. The map f0 extends continuously to a map f : V → S, where V is some open neighborhood
of Xy in X. It will therefore suffice to show that the inclusion Xy ↪→ V is nullhomotopic. Choose ε small
enough that V ⊆ f−1Bε(y), where Bε(y) denotes a ball of radius ε about Y . Assumption (2) implies that
there exists a map g : Y → X and an ε-small homotopy from idX to g ◦ f . This restricts to a homotopy
from the inclusion map Xy ↪→ V to a constant map.

We now consider the interesting direction: the implication (1)⇒ (2). Since Y is compact, we can cover
Y by finitely many balls of radius ε; let us denote those balls by {Ui}i∈I . For every nonempty subset J ⊆ I,
set UJ =

⋂
i∈J Ui. For every chain J0 ⊆ · · · ⊆ Jm of nonempty subsets of I, we will construct a map

G ~J : ∆m × UJm → f−1UJ0

and a homotopy
H ~J : ∆m × f−1UJm → f−1UJ0

from the identity to G ~J ◦ f . Moreover, we will choose these maps to be compatible with one another in the

sense that if ~J ′ = (J ′0 ⊆ · · · ⊆ J ′m′) is another chain of nonempty subsets of I which is contained in ~J , then

H ~J and H ~J′ agree on ∆m′×f−1UJm (which implies that G ~J and G ~J′ agree on ∆m′×UJm). The construction

proceeds by induction on the size of ~J ; at each stage, we are forced to extend a map over the inclusion

i : (∂∆m ×M)q(∂∆m×f−1UJm ) (∆m × f−1UJm) ↪→ ∆m ×M

where M denotes the mapping cylinder of the projection f−1UJm → UJm . To show that this extension is
possible, it suffices to show that i admits a left inverse. This follows from the fact f−1UJm is a deformation
retract of M (since the projection f 1UJm → UJm is a homotopy equivalence by virtue of our assumption
that f is cell-like).

Let P denote the partially ordered set of nonempty subsets of I and let ∆ denote the nerve of P . Then
∆ is a topological simplex with vertices corresponding to the elements of I, and its presentation as the nerve
of P gives a triangulation of ∆ (given by barycentric subdivision) with one m-simplex σ ~J for every chain
~J = (J0 ⊆ · · · ⊆ Jm) as above.

Choose a partition of unity {λi}i∈I on Y having the property that for each index i, the closure of the
support of λi is contained in the open set Ui. We can regard the λi as defining a continuous map λ : Y → ∆.
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Moreover, for each y ∈ Y there exists a chain ~J = (J0 ⊆ · · · ⊆ Jm) such that λ(y) ∈ σ ~J ' ∆m and
y ∈ UJm . We define G : Y → X by the formula G(y) = G ~J(y, λ(y)). Similarly, for x ∈ X with f(x) = y,
we set H(x, t) = H ~J(x, λ(y), t). It is not difficult to see that G and H are well-defined and have the desired
properties.
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