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In this lecture, we will continue our discussion of the Whitehead torsion of a homotopy equivalence
f : X → Y between finite CW complexes. In the previous lecture, we gave a definition in the special case
where f is cellular. To remove this hypothesis, we need the following:

Proposition 1. Let X and Y be connected finite CW complexes and suppose we are given cellular homotopy
equivalences f, g : X → Y . If f and g are homotopic, then τ(f) = τ(g) ∈Wh(π1X).

Lemma 2. Suppose we are given quasi-isomorphisms f : (X∗, d)→ (Y∗, d) and g : (Y∗, d)→ (Z∗, d) between
finite based complexes with χ(X∗, d) = χ(Y∗, d) = χ(Z∗, d). Then

τ(g ◦ f) = τ(g)τ(f)

in K̃1(R).

Proof. We define a based chain complex (W∗, d) by the formula

W∗ = X∗−1 ⊕ Y∗ ⊕ Y∗−1 ⊕ Z∗

d(x, y, y′, z) = (−dx, f(x) + dy + y′,−dy′, g(y′) + dz).

Then (W∗, d) contains (C(f)∗, d) as a based subcomplex with quotient (C(g)∗, d), so an Exercise from the
previous lecture gives τ(W∗, d) = τ(g)τ(f). We now choose a new basis for each W∗ by replacing each basis
element of y ∈ Y∗ by (0, y, 0, g(y)); this is an upper triangular change of coordinates and therefore does not
affect the torsion τ(W∗, d). Now the construction (y′, y) 7→ (0, y, y′, g(y)) identifies C(idY )∗ with a based
subcomplex of W∗ having quotient C(−g ◦ f)∗. Applying the same Exercise again we get

τ(W∗, d) = τ(idY )τ(−g ◦ f) = τ(g ◦ f).

Remark 3. Suppose that f : X → Y is the inclusion of X as a subcomplex of Y . Let λ : C∗(X̃;Z) →
C∗(Ỹ ;Z) be as above. Then the mapping cone C(λ)∗ contains the mapping cone C(idC∗(X̃;|Z|))∗ as a

based subcomplex, and the quotient is the relative cellular chain complex C∗(Ỹ , X̃;Z). It follows that the
Whitehead torsion of f can be computed as (the image in Wh(π1X) of the torsion of the acyclic complex

C∗(Ỹ , X̃;Z).

Proof of Proposition 1. Choose a homotopy h : X × [0, 1] → Y from f = h0 to g = h1. We may assume
without loss of generality that h is cellular. Then the Whitehead torsion τ(h) is well-defined; we will prove
that τ(f) = τ(h) = τ(g). Note that f is given by the composition

X × {0} i
↪→ X × [0, 1]

h→ Y.
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Then τ(f) = τ(h)τ(i) in Wh(π1X) (Lemma 2). It will therefore suffice to show that τ(i) vanishes. Using
Remark 3, we can identify τ(i) with the torsion of the relative cellular chain complex

C∗(X̃ × [0, 1], X̃ × {0};Z),

which vanishes (we saw this in the previous lecture).

If f : X → Y is any homotopy equivalence between connected finite CW complexes, we define τ(f) =
τ(f0) where f0 is a cellular map which is homotopic to f . By virtue of Proposition 1, this definition is
independent of the choice of f0.

Proposition 4. Let f : X → Y and g : Y → Z be homotopy equivalences between connected finite CW
complexes, all having fundamental group G. Then τ(gf) = τ(g)τ(f) in Wh(G).

Proof. This follows immediately from Lemma 2.

Corollary 5. Let f : X → Y be a simple homotopy equivalence between finite CW complexes. Then
τ(f) = 1.

Proof. Using Proposition 4, we can reduce to the case where f is an elementary expansion. In this case,
τ(f) is the torsion of the relative cellular chain complex C∗(Ỹ , X̃;Z[G]) which has the form

· · · → 0→ Z[G]
±g→ Z[G]→ 0.

Remark 6. Let X be a finite connected CW complex and set G = π1X. Then every element η ∈ Wh(G)
can be realized as the Whitehead torsion of a homotopy equivalence f : X → Y . To see this, choose any
matrix M ∈ GLn(Z[G]). Fix an integer k ≥ 2 and let X ′ be the CW complex obtained from X by attaching
n copies of Sk at some base point x ∈ X, so we have an evident retraction r : X ′ → X. Applying the
relative Hurewicz theorem to the map of universal covers X̃ ′ → X̃, we obtain a canonical isomorphism
πk+1(X,X ′) ' Z[G]n. Consequently, the matrix M provides the data for attaching n copies of Dk+1 to X ′

in such a way that that the retraction r extends over the resulting CW complex Y . The inclusion X ↪→ Y is
an isomorphism on fundemental groups, and the relative chain complex of the inclusion of universal covers
is given by

· · · → 0→ Z[G]n
M→ Z[G]n → 0→ · · · .

Since M is invertible, we conclude that the inclusion f : X → Y is a homotopy equivalence and that
τ(f) ∈Wh(G) is represented by the matrix M±1 (depending on the parity of k)

The Whitehead groups Wh(G) are generally nonzero:

Example 7. Let G be an abelian group. Then the determinant homomorphism K1(Z[G])→ Z[G]×, which
induces a surjective map

Wh(G)→ (Z[G]×)/{±g}g∈G.

The group on the right generally does not vanish. For example, if G = Z/5Z, then Z[G] ' Z[t]/(t5 − 1)
contains a unit 1− t2 − t3 (with inverse 1− t− t4) which is not of the form ±ti.

Combined with Remark 6, this supplies a negative answer to the question raised in the previous lec-
ture: there exist homotopy equivalences between finite CW complexes with nonvanishing torsion, and such
homotopy equivalences cannot be simple. However, it turns out that the Whitehead torsion is the only
obstruction:

Theorem 8 (Whitehead). Let f : X → Y be a homotopy equivalence between connected finite CW complexes
with τ(f) = 1 ∈Wh(G), where G = π1X. Then f is a simple homotopy equivalence.
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Example 9. One can show that the determinant map K1(Z)→ Z× = {±1} is an isomorphism, so that the
Whitehead group Wh(G) vanishes when G is the trivial group. Theorem 8 then implies that any homotopy
equivalence between simply connected finite CW complexes is a simple homotopy equivalence.

Example 10. A nontrivial theorem of Bass, Heller, and Swan asserts that the Whitehead group Wh(Zd) is
trivial for each integer d. Together with the s-cobordism theorem, this implies that every h-cobordism from
a torus T d to another manifold M is isomorphic to a product T d × [0, 1].

For use in the proof of Theorem 8, we include the following example of a simple homotopy equivalence:

Example 11. Let X be a finite CW complex, and suppose we are given a pair of maps

f, g : Sn−1 → Xn−1.

Let Y and Z be the CW complexes obtained from X by attaching n-cells along f and g, respectively. Then
Y and Z are simple homotopy equivalent. To see this, choose a homotopy h : Sn−1 × [0, 1] → Xn, and let
W be the cell complex obtained from Y qX Z by attaching an (n+ 1)-cell along the induced map

Dn qSn−1×{0} (Sn−1 × [0, 1])qSn−1×{1} D
n → Y qX Z.

Then the inclusions Y ↪→W ←↩ Z are both elementary expansions.

Let us conclude this lecture by sketching a proof of Theorem 8. Let f : X → Y be a homotopy
equivalence of finite CW complexes such that τ(f) = 1; we wish to show that f is a simple homotopy
equivalence. Without loss of generality we may assume f is cellular. Replacing Y by the mapping cylinder
M(f), we can assume that f is the inclusion of a subcomplex.

Fix a cell e of minimal possible dimension which belongs to Y but not to X; we will regard this cell
as the image of a map g from a hemisphere Sn

− into Y which carries the equator Sn−1 ⊆ Sn
− into Xn−1.

Since the inclusion f is a homotopy equivalence, the map g is homotopic to a map from the disk into X
via a homotopy which is fixed on Sn−1; we may regard this homotopy as defining a map g : Dn+1 → Y
carrying Sn

+ into X. Let us identify Dn+1 with the lower hemisphere Sn+1
− of an (n + 1)-sphere Sn+1, and

let Y ′ denote the elementary expansion of Y given by Y qSn+1
−

Dn+2; we will denote the interior of Dn+2 by

e′ ⊆ Y ′.
Let X ′ be the subcomplex of Y ′ given by the union of X and the upper hemisphere Sn+1

+ . Then X ′ is
an elementary expansion of X. The cells of Y ′ that do not belong to X ′ are almost exactly the same as the
cells of Y that do not belong to X: the only exception is that Y ′ has a new cell e′ of dimension n+ 2, and
that the cell e ⊆ Y now belongs to X ′. Replacing the inclusion X ↪→ Y by X ′ ↪→ Y ′, we have “traded up”
an n-cell for an (n + 2)-cell. Repeating this process finitely many times, we can reduce to the case where
Y is obtained from X by adding only cells of dimension n and n + 1 for some n ≥ 2. Let us denote the
cells of dimension n by e1, . . . , em and the cells of dimension (n+ 1) by e′1, . . . , e

′
m (note that the number of

(n+ 1)-cells is necessarily equal to the number of n-cells, since f is a homotopy equivalence).
Let Y0 be the subcomplex of Y obtained from X by attaching only the n-cells. We have a long exact

sequence

πn+1(Y,X)→ πn+1(Y, Y0)
M→ πn(Y0, X)→ πn(Y,X).

Since the inclusion X ↪→ Y is a homotopy equivalence, the groups πn(Y,X) and πn+1(Y,X) are trivial, so
that M is an isomorphism. Using the relative Hurewicz theorem, we see that πn(Y0, X) ' Hn(Y0, X;Z[G]) is
a free module Z[G]m. Moreover, it almost has a canonical basis: each of the cells ei determines a generator
of πn(Y0, X) which is ambiguous up to a sign (due to orientation issues) and to the action of G (due to base
point issues). Similarly, the cells e′i determine a basis for πn+1(Y, Y0) ' Z[G]m which is ambiguous up to
the action of ±G. Then M can be regarded as an element of GLm(Z[G]), and the image of M in Wh(G) is
given by τ(f)±1 (where the sign depends on the parity of n). Since τ(f) = 1, it is possible to choose bases
as above so that M belongs to the commutator subgroup of GLm(Z[G]).
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Let x ∈ X be a base point. Let Y + denote the elementary expansion

Y + = ((Y q{x} Dn+1)q{x} Dn+1)q · · ·

obtained from Y by attaching m copies of the disk Dn+1 at the base point of X; here we regard Y +

as obtained from Y by adding m cells of dimension n (the boundaries of the new disks) and m cells of
dimension (n+ 1) (the interiors of the new disks). Replacing Y by Y + has the effect of replacing m by 2m
and M by the matrix

M+ =

[
M 0
0 id

]
.

Since M belongs to the commutator subgroup of GLm(Z[G]), the matrix M+ can be written as a product
of matrices of the form [

id X
0 id

]
or

[
id 0
Y id

]
(see Remark 12 below). Replacing Y by Y +, m by 2m, and M by M+, we may reduce to the case where M
has the form

M1 · · ·Mk

where each Mi is either upper-triangular or lower-triangular.
To complete the proof, it will suffice to show that for a homotopy equivalence f : X → Y with associated

matrix M as above and any matrix U which is either upper (or lower) triangular, we can find another
homotopy equivalence f ′ : X → Y ′ with associated matrix MU for which the induced homotopy equivalence
Y ' Y ′ is simple. To see this, consider the filtration

Y0 ⊆ Y1 ⊆ · · · ⊆ Ym = Y

where Yi = Y0∪e′1∪· · ·∪e′i. Using Example 11, we see that the simple homotopy type of Yi is unchanged if we
modify the attaching map ∂ e′i → Y0 by an arbitrary homotopy within Yi−1; by means of such modifications
we can multiply M by any upper-triangular matrix that we like.

Remark 12 (Whitehead’s Lemma). Let R be any ring, and let H ⊆ GL2(R) be the subgroup generated by
matrices of the form [

1 x
0 1

]
or

[
1 0
y 1

]
.

For every invertible element g ∈ R, the calculation[
1 g
0 1

] [
1 0
−g−1 1

] [
1 g
0 1

]
=

[
0 g
−g−1 0

]

shows that

[
0 g
−g−1 0

]
∈ H.

If g and h are invertible elements of R, we have[
ghg−1h−1 0

0 1

]
=

[
0 g
−g−1 0

] [
0 h−1

−h 0

] [
0 (hg)−1

−hg 1

] [
0 1
−1 0

]
∈ H.

Replacing R by the ring of n-by-n matrices over R, we see that any element of the commutator subgroup
of GLn(R) can be written (in GL2n(R)) as a product of matrices of the form[

id X
0 id

]
and

[
id 0
Y id

]
.
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