Whitehead Torsion, Part IT (Lecture 4)
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In this lecture, we will continue our discussion of the Whitehead torsion of a homotopy equivalence
f: X — Y between finite CW complexes. In the previous lecture, we gave a definition in the special case
where f is cellular. To remove this hypothesis, we need the following:

Proposition 1. Let X and Y be connected finite CW complezes and suppose we are given cellular homotopy
equivalences f,g: X =Y. If f and g are homotopic, then 7(f) = 7(g) € Wh(m X).

Lemma 2. Suppose we are given quasi-isomorphisms [ : (X.,d) = (Yi,d) and g : (Yi,d) = (Z,d) between
finite based complexes with x(X4,d) = x(Ys,d) = x(Z«,d). Then

T(go f) =7(9)7(f)
in K1(R).
Proof. We define a based chain complex (W, d) by the formula
We=Xi1®0Y. @Y1 ® Z

d(z,y,y',2) = (—dz, f(z) +dy + ¢, —dy', g(y') + dz).

Then (W,,d) contains (C(f)«,d) as a based subcomplex with quotient (C(g)«,d), so an Exercise from the
previous lecture gives 7(W,,d) = 7(g)7(f). We now choose a new basis for each W, by replacing each basis
element of y € Y, by (0,y,0,g(y)); this is an upper triangular change of coordinates and therefore does not
affect the torsion 7(W,,d). Now the construction (y',y) — (0,y,v’,9(y)) identifies C(idy ). with a based
subcomplex of W, having quotient C'(—g o f).. Applying the same Exercise again we get

T(We,d) = 7(idy)r(=go f) = 7(g 0 f).
O

Remark 3. Suppose that f : X — Y is the inclusion of X as a subcomplex of Y. Let X\ : C*()}; Z) —
C.(Y;Z) be as above. Then the mapping cone C()), contains the mapping cone C(idc*()ﬂZ\))* as a
based subcomplex, and the quotient is the relative cellular chain complex C, (37, X ;Z). Tt follows that the
Whitehead torsion of f can be computed as (the image in Wh(m X) of the torsion of the acyclic complex
C.(Y,X;Z).

Proof of Proposition 1. Choose a homotopy h : X x [0,1] = Y from f = hg to ¢ = h;. We may assume
without loss of generality that A is cellular. Then the Whitehead torsion 7(h) is well-defined; we will prove
that 7(f) = 7(h) = 7(g). Note that f is given by the composition

X x {0} 5 X x[0,1] B Y.



Then 7(f) = 7(h)7(7) in Wh(m X) (Lemma 2). It will therefore suffice to show that 7(i) vanishes. Using
Remark 3, we can identify 7(¢) with the torsion of the relative cellular chain complex

C.(X x [0,1], X x {0}; Z),
which vanishes (we saw this in the previous lecture). O

If f: X = Y is any homotopy equivalence between connected finite CW complexes, we define 7(f) =
7(fo) where fo is a cellular map which is homotopic to f. By virtue of Proposition 1, this definition is
independent of the choice of fj.

Proposition 4. Let f: X — Y and g : Y — Z be homotopy equivalences between connected finite CW
complezes, all having fundamental group G. Then m(gf) = 7(g9)7(f) in Wh(G).

Proof. This follows immediately from Lemma 2. O

Corollary 5. Let f : X — Y be a simple homotopy equivalence between finite CW complexes. Then
7(f)=1.

Proof. Using Proposition 4, we can reduce to the case where f is an elementary expansion. In this case,
7(f) is the torsion of the relative cellular chain complex C, (Y, X;Z[G]) which has the form

50— Z[G] H Z[6) > 0.
O

Remark 6. Let X be a finite connected CW complex and set G = m; X. Then every element n € Wh(G)
can be realized as the Whitehead torsion of a homotopy equivalence f : X — Y. To see this, choose any
matrix M € GL,(Z[G]). Fix an integer k > 2 and let X’ be the CW complex obtained from X by attaching
n copies of S* at some base point z € X, so we have an evident retraction r : X’ — X. Applying the
relative Hurewicz theorem to the map of universal covers X’ — X, we obtain a canonical isomorphism
The1(X, X') ~ Z[G]". Consequently, the matrix M provides the data for attaching n copies of DF*! to X’
in such a way that that the retraction r extends over the resulting CW complex Y. The inclusion X < Y is
an isomorphism on fundemental groups, and the relative chain complex of the inclusion of universal covers
is given by
~~HO%Z[G]”%Z[G]”%O%W .

Since M is invertible, we conclude that the inclusion f : X — Y is a homotopy equivalence and that
7(f) € Wh(G) is represented by the matrix M*! (depending on the parity of k)

The Whitehead groups Wh(G) are generally nonzero:

Example 7. Let G be an abelian group. Then the determinant homomorphism K;(Z[G]) — Z[G]*, which
induces a surjective map

Wh(G) — (Z[G])/{+g}geq-

The group on the right generally does not vanish. For example, if G = Z/5Z, then Z[G] ~ Z[t]/(t> — 1)
contains a unit 1 —¢? — ¢3 (with inverse 1 — ¢ — t*) which is not of the form 4t°.

Combined with Remark 6, this supplies a negative answer to the question raised in the previous lec-
ture: there exist homotopy equivalences between finite CW complexes with nonvanishing torsion, and such
homotopy equivalences cannot be simple. However, it turns out that the Whitehead torsion is the only
obstruction:

Theorem 8 (Whitehead). Let f : X — Y be a homotopy equivalence between connected finite CW complezes
with 7(f) =1 € Wh(G), where G = m X. Then f is a simple homotopy equivalence.



Example 9. One can show that the determinant map K;(Z) — Z* = {£1} is an isomorphism, so that the
Whitehead group Wh(G) vanishes when G is the trivial group. Theorem 8 then implies that any homotopy
equivalence between simply connected finite CW complexes is a simple homotopy equivalence.

Example 10. A nontrivial theorem of Bass, Heller, and Swan asserts that the Whitehead group Wh(Z?) is
trivial for each integer d. Together with the s-cobordism theorem, this implies that every h-cobordism from
a torus T to another manifold M is isomorphic to a product T¢ x [0, 1].

For use in the proof of Theorem 8, we include the following example of a simple homotopy equivalence:

Example 11. Let X be a finite CW complex, and suppose we are given a pair of maps
fog: 8"t xnt

Let Y and Z be the CW complexes obtained from X by attaching n-cells along f and g, respectively. Then
Y and Z are simple homotopy equivalent. To see this, choose a homotopy h : S"~1 x [0,1] — X", and let
W be the cell complex obtained from Y IIx Z by attaching an (n + 1)-cell along the induced map

D" Mgn-15 40y (S™" % [0,1]) Hgn-15 1y D" — Y IIx Z.
Then the inclusions Y — W <= Z are both elementary expansions.

Let us conclude this lecture by sketching a proof of Theorem 8. Let f : X — Y be a homotopy
equivalence of finite CW complexes such that 7(f) = 1; we wish to show that f is a simple homotopy
equivalence. Without loss of generality we may assume f is cellular. Replacing Y by the mapping cylinder
M(f), we can assume that f is the inclusion of a subcomplex.

Fix a cell e of minimal possible dimension which belongs to Y but not to X; we will regard this cell
as the image of a map ¢ from a hemisphere S™ into Y which carries the equator S*~! C S™ into X"~ L.
Since the inclusion f is a homotopy equivalence, the map ¢ is homotopic to a map from the disk into X
via a homotopy which is fixed on S™"~!; we may regard this homotopy as defining a map g : D" — Y
carrying S into X. Let us identify D"*! with the lower hemisphere St of an (n + 1)-sphere S™t1, and
let Y’ denote the elementary expansion of Y given by Y I gn+1 D™2; we will denote the interior of D"12 by
e CY'.

Let X’ be the subcomplex of Y’ given by the union of X and the upper hemisphere SQH. Then X' is
an elementary expansion of X. The cells of Y’ that do not belong to X’ are almost exactly the same as the
cells of Y that do not belong to X: the only exception is that Y’ has a new cell ¢’ of dimension n + 2, and
that the cell e C Y now belongs to X’. Replacing the inclusion X < Y by X’ < Y’ we have “traded up”
an n-cell for an (n + 2)-cell. Repeating this process finitely many times, we can reduce to the case where
Y is obtained from X by adding only cells of dimension n and n + 1 for some n > 2. Let us denote the
cells of dimension n by ey, ..., e, and the cells of dimension (n+ 1) by €, ..., el (note that the number of
(n + 1)-cells is necessarily equal to the number of n-cells, since f is a homotopy equivalence).

Let Yy be the subcomplex of Y obtained from X by attaching only the n-cells. We have a long exact
sequence

i1 (Y, X) = w1 (Y, Yo) 2 7, (Yo, X) = ma (Y, X).

Since the inclusion X < Y is a homotopy equivalence, the groups m, (Y, X) and m,4+1(Y, X) are trivial, so
that M is an isomorphism. Using the relative Hurewicz theorem, we see that ,, (Yy, X) ~ H,, (Yo, X; Z[G]) is
a free module Z[G]™. Moreover, it almost has a canonical basis: each of the cells e; determines a generator
of 7, (Yo, X) which is ambiguous up to a sign (due to orientation issues) and to the action of G (due to base
point issues). Similarly, the cells e} determine a basis for m,41(Y,Yy) ~ Z[G]™ which is ambiguous up to
the action of =G. Then M can be regarded as an element of GL,,(Z[G]), and the image of M in Wh(G) is
given by 7(f)*! (where the sign depends on the parity of n). Since 7(f) = 1, it is possible to choose bases
as above so that M belongs to the commutator subgroup of GL,,(Z[G]).



Let € X be a base point. Let Y denote the elementary expansion
YT = ((Y Uy DY) Iy DY

obtained from Y by attaching m copies of the disk D"*! at the base point of X; here we regard Y+
as obtained from Y by adding m cells of dimension n (the boundaries of the new disks) and m cells of
dimension (n + 1) (the interiors of the new disks). Replacing Y by Y has the effect of replacing m by 2m
and M by the matrix

e[ W 0],

0 id
Since M belongs to the commutator subgroup of GL,,(Z[G]), the matrix M+ can be written as a product

of matrices of the form
id X id 0
0 id| ]y id

(see Remark 12 below). Replacing Y by Y, m by 2m, and M by M ™, we may reduce to the case where M
has the form
M, - M,

where each M; is either upper-triangular or lower-triangular.

To complete the proof, it will suffice to show that for a homotopy equivalence f : X — Y with associated
matrix M as above and any matrix U which is either upper (or lower) triangular, we can find another
homotopy equivalence f’ : X — Y’ with associated matrix MU for which the induced homotopy equivalence
Y ~ Y’ is simple. To see this, consider the filtration

YoCYiC--CY,=Y

where Y; = YpUej U- - -Ue,. Using Example 11, we see that the simple homotopy type of Y; is unchanged if we
modify the attaching map 0 e, — Yy by an arbitrary homotopy within Y;_1; by means of such modifications
we can multiply M by any upper-triangular matrix that we like.

Remark 12 (Whitehead’s Lemma). Let R be any ring, and let H C GLo(R) be the subgroup generated by

matrices of the form
1 z 1 0
01|y 1]

For every invertible element g € R, the calculation

1 g 1 0 1 g | 0 g
0 1 || —g¢g 1 0 1| | -¢gt o0
0 g
shows that [ 1 } € H.
—g 0
If g and h are invertible elements of R, we have
ghg~'h™1 0 B 0 g 0 At 0 (hg) ! 0 1
0 1 - —g 1 0 —h 0 —hg 1 -1 0
€ H.

Replacing R by the ring of n-by-n matrices over R, we see that any element of the commutator subgroup
of GL,(R) can be written (in GLa,(R)) as a product of matrices of the form

id X 4 [id o
0 id | ™ |y id |



