Whitehead Torsion, Part II (Lecture 4)

September 9, 2014

In this lecture, we will continue our discussion of the Whitehead torsion of a homotopy equivalence $f: X \rightarrow Y$ between finite CW complexes. In the previous lecture, we gave a definition in the special case where f is cellular. To remove this hypothesis, we need the following:

Proposition 1. Let X and Y be connected finite $C W$ complexes and suppose we are given cellular homotopy equivalences $f, g: X \rightarrow Y$. If f and g are homotopic, then $\tau(f)=\tau(g) \in \mathrm{Wh}\left(\pi_{1} X\right)$.

Lemma 2. Suppose we are given quasi-isomorphisms $f:\left(X_{*}, d\right) \rightarrow\left(Y_{*}, d\right)$ and $g:\left(Y_{*}, d\right) \rightarrow\left(Z_{*}, d\right)$ between finite based complexes with $\chi\left(X_{*}, d\right)=\chi\left(Y_{*}, d\right)=\chi\left(Z_{*}, d\right)$. Then

$$
\tau(g \circ f)=\tau(g) \tau(f)
$$

in $\widetilde{K}_{1}(R)$.
Proof. We define a based chain complex $\left(W_{*}, d\right)$ by the formula

$$
\begin{gathered}
W_{*}=X_{*-1} \oplus Y_{*} \oplus Y_{*-1} \oplus Z_{*} \\
d\left(x, y, y^{\prime}, z\right)=\left(-d x, f(x)+d y+y^{\prime},-d y^{\prime}, g\left(y^{\prime}\right)+d z\right) .
\end{gathered}
$$

Then $\left(W_{*}, d\right)$ contains $\left(C(f)_{*}, d\right)$ as a based subcomplex with quotient $\left(C(g)_{*}, d\right)$, so an Exercise from the previous lecture gives $\tau\left(W_{*}, d\right)=\tau(g) \tau(f)$. We now choose a new basis for each W_{*} by replacing each basis element of $y \in Y_{*}$ by $(0, y, 0, g(y))$; this is an upper triangular change of coordinates and therefore does not affect the torsion $\tau\left(W_{*}, d\right)$. Now the construction $\left(y^{\prime}, y\right) \mapsto\left(0, y, y^{\prime}, g(y)\right)$ identifies $C\left(\mathrm{id}_{Y}\right)_{*}$ with a based subcomplex of W_{*} having quotient $C(-g \circ f)_{*}$. Applying the same Exercise again we get

$$
\tau\left(W_{*}, d\right)=\tau\left(\operatorname{id}_{Y}\right) \tau(-g \circ f)=\tau(g \circ f) .
$$

Remark 3. Suppose that $f: X \rightarrow Y$ is the inclusion of X as a subcomplex of Y. Let $\lambda: C_{*}(\tilde{X} ; \mathbf{Z}) \rightarrow$ $C_{*}(\widetilde{Y} ; \mathbf{Z})$ be as above. Then the mapping cone $C(\lambda)_{*}$ contains the mapping cone $C\left(\mathrm{id}_{C_{*}(\tilde{X} ;|Z|)}\right)_{*}$ as a based subcomplex, and the quotient is the relative cellular chain complex $C_{*}(\tilde{Y}, \tilde{X} ; \mathbf{Z})$. It follows that the Whitehead torsion of f can be computed as (the image in $\mathrm{Wh}\left(\pi_{1} X\right)$ of the torsion of the acyclic complex $C_{*}(\widetilde{Y}, \widetilde{X} ; \mathbf{Z})$.

Proof of Proposition 1. Choose a homotopy $h: X \times[0,1] \rightarrow Y$ from $f=h_{0}$ to $g=h_{1}$. We may assume without loss of generality that h is cellular. Then the Whitehead torsion $\tau(h)$ is well-defined; we will prove that $\tau(f)=\tau(h)=\tau(g)$. Note that f is given by the composition

$$
X \times\{0\} \stackrel{i}{\hookrightarrow} X \times[0,1] \xrightarrow{h} Y .
$$

Then $\tau(f)=\tau(h) \tau(i)$ in $\mathrm{Wh}\left(\pi_{1} X\right)$ (Lemma 2). It will therefore suffice to show that $\tau(i)$ vanishes. Using Remark 3, we can identify $\tau(i)$ with the torsion of the relative cellular chain complex

$$
C_{*}(\widetilde{X} \times[0,1], \widetilde{X} \times\{0\} ; \mathbf{Z}),
$$

which vanishes (we saw this in the previous lecture).
If $f: X \rightarrow Y$ is any homotopy equivalence between connected finite CW complexes, we define $\tau(f)=$ $\tau\left(f_{0}\right)$ where f_{0} is a cellular map which is homotopic to f. By virtue of Proposition 1 , this definition is independent of the choice of f_{0}.

Proposition 4. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be homotopy equivalences between connected finite $C W$ complexes, all having fundamental group G. Then $\tau(g f)=\tau(g) \tau(f)$ in $\mathrm{Wh}(G)$.

Proof. This follows immediately from Lemma 2.
Corollary 5. Let $f: X \rightarrow Y$ be a simple homotopy equivalence between finite $C W$ complexes. Then $\tau(f)=1$.

Proof. Using Proposition 4, we can reduce to the case where f is an elementary expansion. In this case, $\tau(f)$ is the torsion of the relative cellular chain complex $C_{*}(\widetilde{Y}, \widetilde{X} ; \mathbf{Z}[G])$ which has the form

$$
\cdots \rightarrow 0 \rightarrow \mathbf{Z}[G] \stackrel{ \pm g}{\rightarrow} \mathbf{Z}[G] \rightarrow 0 .
$$

Remark 6. Let X be a finite connected CW complex and set $G=\pi_{1} X$. Then every element $\eta \in \mathrm{Wh}(G)$ can be realized as the Whitehead torsion of a homotopy equivalence $f: X \rightarrow Y$. To see this, choose any matrix $M \in \mathrm{GL}_{n}(\mathbf{Z}[G])$. Fix an integer $k \geq 2$ and let X^{\prime} be the CW complex obtained from X by attaching n copies of S^{k} at some base point $x \in X$, so we have an evident retraction $r: X^{\prime} \rightarrow X$. Applying the relative Hurewicz theorem to the map of universal covers $\widetilde{X}^{\prime} \rightarrow \widetilde{X}$, we obtain a canonical isomorphism $\pi_{k+1}\left(X, X^{\prime}\right) \simeq \mathbf{Z}[G]^{n}$. Consequently, the matrix M provides the data for attaching n copies of D^{k+1} to X^{\prime} in such a way that that the retraction r extends over the resulting CW complex Y. The inclusion $X \hookrightarrow Y$ is an isomorphism on fundemental groups, and the relative chain complex of the inclusion of universal covers is given by

$$
\cdots \rightarrow 0 \rightarrow \mathbf{Z}[G]^{n} \xrightarrow{M} \mathbf{Z}[G]^{n} \rightarrow 0 \rightarrow \cdots
$$

Since M is invertible, we conclude that the inclusion $f: X \rightarrow Y$ is a homotopy equivalence and that $\tau(f) \in \mathrm{Wh}(G)$ is represented by the matrix $M^{ \pm 1}$ (depending on the parity of k)

The Whitehead groups $\mathrm{Wh}(G)$ are generally nonzero:
Example 7. Let G be an abelian group. Then the determinant homomorphism $K_{1}(\mathbf{Z}[G]) \rightarrow \mathbf{Z}[G]^{\times}$, which induces a surjective map

$$
\mathrm{Wh}(G) \rightarrow\left(\mathbf{Z}[G]^{\times}\right) /\{ \pm g\}_{g \in G}
$$

The group on the right generally does not vanish. For example, if $G=\mathbf{Z} / 5 \mathbf{Z}$, then $\mathbf{Z}[G] \simeq \mathbf{Z}[t] /\left(t^{5}-1\right)$ contains a unit $1-t^{2}-t^{3}$ (with inverse $1-t-t^{4}$) which is not of the form $\pm t^{i}$.

Combined with Remark 6, this supplies a negative answer to the question raised in the previous lecture: there exist homotopy equivalences between finite CW complexes with nonvanishing torsion, and such homotopy equivalences cannot be simple. However, it turns out that the Whitehead torsion is the only obstruction:

Theorem 8 (Whitehead). Let $f: X \rightarrow Y$ be a homotopy equivalence between connected finite $C W$ complexes with $\tau(f)=1 \in \mathrm{~Wh}(G)$, where $G=\pi_{1} X$. Then f is a simple homotopy equivalence.

Example 9. One can show that the determinant map $K_{1}(\mathbf{Z}) \rightarrow \mathbf{Z}^{\times}=\{ \pm 1\}$ is an isomorphism, so that the Whitehead group $\mathrm{Wh}(G)$ vanishes when G is the trivial group. Theorem 8 then implies that any homotopy equivalence between simply connected finite CW complexes is a simple homotopy equivalence.
Example 10. A nontrivial theorem of Bass, Heller, and Swan asserts that the Whitehead group $\mathrm{Wh}\left(\mathbf{Z}^{d}\right)$ is trivial for each integer d. Together with the s-cobordism theorem, this implies that every h-cobordism from a torus T^{d} to another manifold M is isomorphic to a product $T^{d} \times[0,1]$.

For use in the proof of Theorem 8, we include the following example of a simple homotopy equivalence:
Example 11. Let X be a finite CW complex, and suppose we are given a pair of maps

$$
f, g: S^{n-1} \rightarrow X^{n-1}
$$

Let Y and Z be the CW complexes obtained from X by attaching n-cells along f and g, respectively. Then Y and Z are simple homotopy equivalent. To see this, choose a homotopy $h: S^{n-1} \times[0,1] \rightarrow X^{n}$, and let W be the cell complex obtained from $Y \amalg_{X} Z$ by attaching an $(n+1)$-cell along the induced map

$$
D^{n} \amalg_{S^{n-1} \times\{0\}}\left(S^{n-1} \times[0,1]\right) \amalg_{S^{n-1} \times\{1\}} D^{n} \rightarrow Y \amalg_{X} Z .
$$

Then the inclusions $Y \hookrightarrow W \hookleftarrow Z$ are both elementary expansions.
Let us conclude this lecture by sketching a proof of Theorem 8. Let $f: X \rightarrow Y$ be a homotopy equivalence of finite CW complexes such that $\tau(f)=1$; we wish to show that f is a simple homotopy equivalence. Without loss of generality we may assume f is cellular. Replacing Y by the mapping cylinder $M(f)$, we can assume that f is the inclusion of a subcomplex.

Fix a cell e of minimal possible dimension which belongs to Y but not to X; we will regard this cell as the image of a map g from a hemisphere S_{-}^{n} into Y which carries the equator $S^{n-1} \subseteq S_{-}^{n}$ into X^{n-1}. Since the inclusion f is a homotopy equivalence, the map g is homotopic to a map from the disk into X via a homotopy which is fixed on S^{n-1}; we may regard this homotopy as defining a map $\bar{g}: D^{n+1} \rightarrow Y$ carrying S_{+}^{n} into X. Let us identify D^{n+1} with the lower hemisphere S_{-}^{n+1} of an $(n+1)$-sphere S^{n+1}, and let Y^{\prime} denote the elementary expansion of Y given by $Y \amalg_{S_{-}^{n+1}} D^{n+2}$; we will denote the interior of D^{n+2} by $e^{\prime} \subseteq Y^{\prime}$.

Let X^{\prime} be the subcomplex of Y^{\prime} given by the union of X and the upper hemisphere S_{+}^{n+1}. Then X^{\prime} is an elementary expansion of X. The cells of Y^{\prime} that do not belong to X^{\prime} are almost exactly the same as the cells of Y that do not belong to X : the only exception is that Y^{\prime} has a new cell e^{\prime} of dimension $n+2$, and that the cell $e \subseteq Y$ now belongs to X^{\prime}. Replacing the inclusion $X \hookrightarrow Y$ by $X^{\prime} \hookrightarrow Y^{\prime}$, we have "traded up" an n-cell for an ($n+2$)-cell. Repeating this process finitely many times, we can reduce to the case where Y is obtained from X by adding only cells of dimension n and $n+1$ for some $n \geq 2$. Let us denote the cells of dimension n by e_{1}, \ldots, e_{m} and the cells of dimension $(n+1)$ by $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ (note that the number of ($n+1$)-cells is necessarily equal to the number of n-cells, since f is a homotopy equivalence).

Let Y_{0} be the subcomplex of Y obtained from X by attaching only the n-cells. We have a long exact sequence

$$
\pi_{n+1}(Y, X) \rightarrow \pi_{n+1}\left(Y, Y_{0}\right) \xrightarrow{M} \pi_{n}\left(Y_{0}, X\right) \rightarrow \pi_{n}(Y, X)
$$

Since the inclusion $X \hookrightarrow Y$ is a homotopy equivalence, the groups $\pi_{n}(Y, X)$ and $\pi_{n+1}(Y, X)$ are trivial, so that M is an isomorphism. Using the relative Hurewicz theorem, we see that $\pi_{n}\left(Y_{0}, X\right) \simeq \mathrm{H}_{n}\left(Y_{0}, X ; \mathbf{Z}[G]\right)$ is a free module $\mathbf{Z}[G]^{m}$. Moreover, it almost has a canonical basis: each of the cells e_{i} determines a generator of $\pi_{n}\left(Y_{0}, X\right)$ which is ambiguous up to a sign (due to orientation issues) and to the action of G (due to base point issues). Similarly, the cells e_{i}^{\prime} determine a basis for $\pi_{n+1}\left(Y, Y_{0}\right) \simeq \mathbf{Z}[G]^{m}$ which is ambiguous up to the action of $\pm G$. Then M can be regarded as an element of $\mathrm{GL}_{m}(\mathbf{Z}[G])$, and the image of M in $\mathrm{Wh}(G)$ is given by $\tau(f)^{ \pm 1}$ (where the sign depends on the parity of n). Since $\tau(f)=1$, it is possible to choose bases as above so that M belongs to the commutator subgroup of $\mathrm{GL}_{m}(\mathbf{Z}[G])$.

Let $x \in X$ be a base point. Let Y^{+}denote the elementary expansion

$$
Y^{+}=\left(\left(Y \amalg_{\{x\}} D^{n+1}\right) \amalg_{\{x\}} D^{n+1}\right) \amalg \cdots
$$

obtained from Y by attaching m copies of the disk D^{n+1} at the base point of X; here we regard Y^{+} as obtained from Y by adding m cells of dimension n (the boundaries of the new disks) and m cells of dimension $(n+1)$ (the interiors of the new disks). Replacing Y by Y^{+}has the effect of replacing m by $2 m$ and M by the matrix

$$
M^{+}=\left[\begin{array}{cc}
M & 0 \\
0 & \text { id }
\end{array}\right] .
$$

Since M belongs to the commutator subgroup of $\mathrm{GL}_{m}(\mathbf{Z}[G])$, the matrix M^{+}can be written as a product of matrices of the form

$$
\left[\begin{array}{cc}
\mathrm{id} & X \\
0 & \mathrm{id}
\end{array}\right] \text { or }\left[\begin{array}{cc}
\mathrm{id} & 0 \\
Y & \mathrm{id}
\end{array}\right]
$$

(see Remark 12 below). Replacing Y by Y^{+}, m by $2 m$, and M by M^{+}, we may reduce to the case where M has the form

$$
M_{1} \cdots M_{k}
$$

where each M_{i} is either upper-triangular or lower-triangular.
To complete the proof, it will suffice to show that for a homotopy equivalence $f: X \rightarrow Y$ with associated matrix M as above and any matrix U which is either upper (or lower) triangular, we can find another homotopy equivalence $f^{\prime}: X \rightarrow Y^{\prime}$ with associated matrix $M U$ for which the induced homotopy equivalence $Y \simeq Y^{\prime}$ is simple. To see this, consider the filtration

$$
Y_{0} \subseteq Y_{1} \subseteq \cdots \subseteq Y_{m}=Y
$$

where $Y_{i}=Y_{0} \cup e_{1}^{\prime} \cup \cdots \cup e_{i}^{\prime}$. Using Example 11, we see that the simple homotopy type of Y_{i} is unchanged if we modify the attaching map $\partial e_{i}^{\prime} \rightarrow Y_{0}$ by an arbitrary homotopy within Y_{i-1}; by means of such modifications we can multiply M by any upper-triangular matrix that we like.

Remark 12 (Whitehead's Lemma). Let R be any ring, and let $H \subseteq \mathrm{GL}_{2}(R)$ be the subgroup generated by matrices of the form

$$
\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{ll}
1 & 0 \\
y & 1
\end{array}\right]
$$

For every invertible element $g \in R$, the calculation

$$
\left[\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-g^{-1} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & g \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & g \\
-g^{-1} & 0
\end{array}\right]
$$

shows that $\left[\begin{array}{cc}0 & g \\ -g^{-1} & 0\end{array}\right] \in H$.
If g and h are invertible elements of R, we have

$$
\begin{aligned}
{\left[\begin{array}{cc}
g h g^{-1} h^{-1} & 0 \\
0 & 1
\end{array}\right] } & =\left[\begin{array}{cc}
0 & g \\
-g^{-1} & 0
\end{array}\right]\left[\begin{array}{cc}
0 & h^{-1} \\
-h & 0
\end{array}\right]\left[\begin{array}{cc}
0 & (h g)^{-1} \\
-h g & 1
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
& \in H
\end{aligned}
$$

Replacing R by the ring of n-by- n matrices over R, we see that any element of the commutator subgroup of $\mathrm{GL}_{n}(R)$ can be written (in $\mathrm{GL}_{2 n}(R)$) as a product of matrices of the form

$$
\left[\begin{array}{cc}
\mathrm{id} & X \\
0 & \mathrm{id}
\end{array}\right] \text { and }\left[\begin{array}{cc}
\mathrm{id} & 0 \\
Y & \mathrm{id}
\end{array}\right] .
$$

