
Combinatorics II (Lecture 37)

March 3, 2015

We retain the notational conventions of the previous lecture. Our goal is to prove the following result,
which we asserted last time without proof:

Lemma 1. The maps N•(E
◦
•) → N•(D

◦
•) and N•(E•) → N•(D•) are weak homotopy equivalences of bisim-

plicial sets.

Lemma 1 is an immediate consequence of the following stronger assertion:

Lemma 2. For each integer m ≥ 0, the maps Nm(E◦•) → Nm(D◦•) and Nm(E•) → Nm(D•) are weak
homotopy equivalences of simplicial sets.

For the remainder of this lecture, let us fix m ≥ 0. We will prove that the natural map Nm(E•)→ Nm(D•)
is a weak homotopy equivalence. The analogous assertion for the map Nm(E◦•)→ Nm(D◦•) can be proven by
exactly the same argument.

We wish to prove that every homotopy fiber F of the map of topological spaces |Nm(E•)| → |Nm(D•)|
is weakly contractible: that is, that every map from a sphere Sn−1 into F is nullhomotopic. Any such map
can be represented by a commutative diagram of topological spaces σ̂:

Sn−1
f̂ //

��

|Nm(E•)|

��
Dn ĝ // |Nm(D•)|.

To prove that this map is nullhomotopic, it will suffice to show that f̂ and ĝ can be extended to a compatible
pair of maps

F̂ : (Sn−1 × [0, 1])qSn−1×{1} D
n → |Nm(E•)|

Ĝ : Dn × [0, 1]→ |Nm(D•)|.

Note that the simplicial set Nm(D•) is not a Kan complex, so that the homotopy class of f̂ cannot necessarily
be represented by a map of simplicial sets ∂∆n → Nm(D•). However, such a representation always exists
after passing to an iterated subdivision of ∂∆n−1. Applying the same reasoning to ĝ, we may assume without
loss of generality that σ̂ is obtained from a commutative diagram of simplicial sets σ :

A
f //

��

|Nm(E•)|

��
B

g // |Nm(D•)|.

where A and B are finite nonsingular simplicial sets whose geometric realizations are homeomorphic to Sn−1

and Dn, respectively. It will therefore suffice to prove the following:
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Lemma 3. Let m ≥ 0 be a nonnegative integer, let B be a finite nonsingular simplicial set, and let A ⊆ B,
and suppose we are given a commutative diagram σ :

A
f //

��

|Nm(E•)|

��
B

g // |Nm(D•)|.

Then we can extend σ to a commutative diagram

A //

��

A
F //

��

|Nm(E•)|

��
B //// B

G// |Nm(D•)|.

for which there are homeomorphisms
|B| ' |B| × [0, 1]

|A| ' (|A| × [0, 1])qA×{1} (B × {1}),

under which the left horizontal maps correspond to triangulations of the inclusions

|B| × {0} ↪→ |B| × [0, 1]

|A| × {0} ↪→ (|A| × [0, 1])qA×{1} (B × {1}).

Let us begin with the construction of the map G. Unwinding the definitions (using the fact that fibrations
between polyhedra can be tested “simplex-wise”; see Lecture 8), we see that g classifies a diagram of finite
polyhedra

E0 → E1 → · · · → Em → |B|

where each of the maps Ei → Ej is cell-like and each of the maps Ei → |B| is a fibration. Let EAi ⊆ Ei
denote the inverse image of the subcomplex |A| ⊆ |B|. Then the map F determines a strong triangulation
of each EAi , represented by a PL homeomorphism EAi ' |Xi| for some finite nonsingular simplicial set Xi.

Definition 4. Let K be a finite polyhedron equipped with strong triangulations τ and τ ′ (as defined in
the previous lecture), represented by PL homeomorphisms K ' |Z| and K ' |Z ′|. We will say that τ is a
refinement of τ ′ if the following conditions are satisfied:

• For every nondegenerate simplex σ of Z ′, the image of |σ| under the composite map |σ| ⊆ |Z ′| ' K '
|Z| is a subcomplex of |Z|: that is, it can be identified with the geometric realization of a simplicial
subset Zσ ⊆ Z.

• The homeomorphism |Zσ| ' |σ| is linear when restricted to each simplex of Zσ.

Warning 5. The relation of refinement on strong triangulations is transitive but not antireflexive: it is
possible for two strong triangulations τ and τ ′ to refine each other without being equivalent.

We will invoke without proof the following (hopefully plausible) fact from the theory of PL topology:

Proposition 6. In the situation above, there exist strong triangulations of the polyhedra Ei and L = |B|,
represented by PL homeomorphisms Ei ' |Yi| and L ' |B′|, with the following properties:

(a) The diagram E0 → E1 → · · · → Em → L can be obtained as the geometric realization of a diagram of
simplicial sets Y0 → · · · → Ym → B′.
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(b) Let K = |A| ⊆ L. Then the image of K under the homeomorphism L ' |B′| is a subcomplex (that is,
it can be identified with the geometric realization of a simplicial subset A′ ⊆ B′). Moreover, the strong
triangulation of K determined by the PL homeomorphism K ' |A′| refines the strong triangulation
determined by the homeomorphism K ' |A|.

(c) It follows from (b) that for 0 ≤ i ≤ m, the image of EAi in |Yi| can be identified with the geometric
realization of a subcomplex X ′i ⊆ Yi. We require that the strong triangulation determined by the PL
homeomorphism EAi ' |X ′i| refines the strong triangulation determined by the PL homeomorphism
EAi ' |Xi|.

Here B′ is a finite simplicial set whose geometric realization is homeomorphic to |B|. However, B and
B′ need not be isomorphic as simplicial sets. Nevertheless, we have the following:

Proposition 7. Let P be a finite polyhedron equipped with strong triangulations τ and τ ′, represented by PL
homeomorphisms P ' |Y | and P ' |Y ′|. Assume that τ ′ refines τ . Then there exist a strong triangulation
τ of P × [0, 1], represented by a PL homeomorphism β : P × [0, 1] ' |Y |, with the following properties:

(i) The maps
|Y | ' P × {0} ↪→ P × [0, 1] ' |Y |

|Y ′| ' P × {1} ↪→ P × [0, 1] ' |Y |

are induced by inclusions of simplicial sets i : Y ↪→ Y and j : Y ′ ↪→ Y .

(ii) For every nondegenerate simplex σ of Y , the image β(|σ| × [0, 1]) can be identified with the geometric
realization of a simplicial subset Y σ ⊆ Y , and the resulting PL homeomorphism |Y σ| ' |σ| × [0, 1] is
linear on each simplex.

Proof. We proceed by induction on the number of nondegenerate simplices of Y . If Y is empty there is
nothing to prove; otherwise, we may assume that Y is obtained from a simplicial subset Y0 ( Y by adding
a single nondegenerate k-simplex. Let P0 ⊆ P be the image of |Y0|. Since τ ′ refines τ , the homeomorphism
P ' |Y ′| carries 0 to the geometric realization of a simplicial subset Y ′0 ⊆ Y ′. By virtue of our inductive
hypothesis, we may assume that there exists a strong triangulation β0 : P0 × [0, 1] ' |Y 0| satisfying the
analogues of conditions (i) and (ii). We claim that it is possible to extend this to a strong triangulation of
P × [0, 1] satisfying the same conditions. The problem of finding this extension is “local”: that is, we may
assume that Y = ∆k and that Y0 = ∂∆k. Set Z = Y qY0 Y 0 qY ′0 Y

′. Then β0, together with τ and τ ′,

determine a PL homeomorphism β1 : |Z| ' ∂(P × [0, 1]) which is linear on each simplex. Let Y be the cone
on Z. For any point v in the interior of P , there is a unique PL homeomorphism β : |Y ' P × [0, 1] which
extends β1, is linear on each simplex, and carries the cone point of Y to the point (v, 12 ) ∈ P × [0, 1]. It is
easy to see that β has the desired properties.

Remark 8. The proof of Proposition 7 gives an explicit construction of the strong triangulation β : |Y | '
P× [0, 1]. However, the construction requires making some auxiliary choices: namely, for each nondegenerate
simplex σ of Y , we need to choose a point vσ ∈ P belonging to the interior of the image of |σ|.

Let Q be another finite polyhedron equipped with strong triangulations Q ' |Z| and Q ' |Z ′| satisfying
the hypotheses of Proposition 7, and let q : Q → P be a PL map which is induced by maps of simplicial
sets f : Z → Y and f ′ : Z ′ → Y ′. Suppose that, for each nondegenerate simplex σ of Z, we choose a
point uσ ∈ Q belonging to the interior of the image of |σ|. We can then apply the proof of Proposition 7
to obtain a triangulation Q × [0, 1] ' |Z|. If the map q satisfies q(uσ) = vf(σ) for each σ, then the induced

map Q × [0, 1] → P × [0, 1] arises from a map of simplicial sets Z → Y which is compatible with the maps
f and f ′ above. Note that the condition q(uσ) = vf(σ) can always be achieved by choosing the points uσ
appropriately.
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Applying Proposition 7 to the triangulations |B| ' L and |B′| ' L, we obtain a triangulation L× [0, 1] '
|B|. We then have cell-like maps of finite polyhedra

E0 × [0, 1]→ E1 × [0, 1]→ · · · → Em × [0, 1]

which are fibered over |B|. Choosing auxiliary embeddings into |B|×R∞, we may assume that this diagram
is classified by a map G : B → Nm(D•).

By construction, the image of K × [0, 1] under the PL homeomorphism L× [0, 1] ' |B| can be identified
with the geometric realization of a simplicial subset A0 ⊆ B. Let A denote the union of A0 with the image
of the inclusion B′ ↪→ B, so that

|A| ' (K × [0, 1])qK×{1} L.

To complete the proof, it will suffice to show that G|A can be lifted to a map F : A → |Nm(E•)| which
extends the map f . To find this extension, we must find strong triangulations of the fiber products

|A| ×|B| (Ei × [0, 1])

for which the maps
|A| ×|B| (E0 × [0, 1])→ · · · → |A| ×|B| (Em × [0, 1])→ |A|

are simplicial and which restrict to the strong triangulations EAi ' |Xi| determined by f . In fact, we
will choose these strong triangulations so that they are also compatible with the strong triangulations
Ei × {1} ' |Yi| required by Proposition 6. These triangulations are obtained by applying Proposition 7
to obtain strong triangulations of EAi × [0, 1] which are compatible with the given strong triangulations
EAi × {0} ' |Xi| and EAi × {1} ' |X ′i|, iteratively applying Remark 8 to guarantee that the maps

EA0 × [0, 1]→ · · · → EAm → [0, 1]→ |A0|

are compatible with the chosen triangulations.
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