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Let X be a simplicial set. As before, we let CX denote the category whose objects are diagrams

Y

  
X

>>

id // X

where Y is obtained from X by adding finitely many simplices. Let s denote the collection of cell-like maps in
CX , let h denote the collection of weak homotopy equivalences in CX , and let Ch

X denote the full subcategory
of CX spanned by those objects where the map X → Y is a weak homotopy equivalence. Our goal in this
lecture (and the next) is to complete the second part of this course by establishing the following result:

Proposition 1. The diagram

K(Ch
X , s) //

��

K(Ch
X , h)

��
K(CX , s) // K(CX , h)

is a homotopy pullback square.

We will prove Proposition 1 by analyzing the K-theory space K(CX , h) (which we know to be homotopy
equivalent to Ω∞Afree(X)) and eventually showing that it can be identified with the homotopy quotient of
K(CX , s) by the action of K(Ch

X , s).
As a first step, it will be convenient to replace CX by something slightly closer to Ch

X .

Definition 2. For each integer n, let C
(n)
X denote the full subcategory of CX spanned by those objects for

which the map X → Y is n-connected.

Lemma 3. For each integer n, the inclusion C
(n)
X ↪→ CX induces homotopy equivalences

K(C
(n)
X , s)→ K(CX , s) K(C

(n)
X , h)→ K(CX , h).

Proof. We will give the proof of the second assertion; the proof of the first is similar. When n = −1, there
is nothing to prove. Proceeding by induction on n, we are reduced to proving that each of the inclusions

C
(n+1)
X ↪→ C

(n)
X inducse a homotopy equivalence K(C

(n+1)
X , h)→ K(C

(n)
X , h). Let Y be an object of CX , given

by a diagram
Y

r

  
X

>>

id // X.
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Let M(r) = (Y × ∆1) qY×{1} X denote the mapping cylinder of r and let F (Y ) = X qY M(r) denote
the two-sided mapping cylinder of r. The construction Y 7→ F (Y ) induces a functor from CX to itself

which carries C
(n)
X into C

(n+1)
X ; in particular, it carries both C

(n)
X and C

(n+1)
X to themselves. Note that F

preserves cofibrations, pushouts, weak homotopy equivalences, and cell-like maps. It therefore induces maps
on K-theory. Applying the two-out-of-six property to the diagram of spaces

K(C
(n+1)
X , h)→ K(C

(n)
X , h)

F→ K(C
(n+1)
X , h)→ K(C

(n)
X , h),

we are reduced to showing that F induces homotopy equivalences from K(C
(n)
X , h) and K(C

(n+1)
X , h) to

themselves. In fact, we claim that on both K-theory spaces F acts by (−1): this follows by applying the
additivity theorem to the natural cofiber sequence

Y →M(r)→ F (Y ),

since the functor Y 7→ M(r) is related by a cell-like natural transformation to the constrant functor Y 7→
X.

By virtue of Lemma 3, it will suffice to show that the diagram

K(Ch
X , s) //

��

K(Ch
X , h)

��
K(C

(1)
X , s) // K(C

(1)
X , h)

is a homotopy pullback square.

Note that K(C
(1)
X , h) can be obtained as the geometric realization of the simplicial object of Set∆ given

by

[n] 7→ N(hSn C
(1)
X ).

Let us fix n for the moment, and consider the category hSn C
(1)
X : the objects of this category can be identified

with diagrams
X ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yn → X

where all but the last map are 1-connected cofibrations (each adding finitely many simplices) and the
composition is the identity, and the morphisms are levelwise weak homotopy equivalences. Let us denote

such an object simply by ~Y . We would like to analyze hSn C
(1)
X in terms of the subcategory where the

morphisms are levelwise cell-like maps. To this end, let us consider a bisimplicial set N′(hSn C
(1)
X )•,• whose

(p, q)-simplices are diagrams

~Y0,0
//

��

· · · //

��

~Y0,q

��
· · ·

��

// · · · //

��

· · ·

��
~Yp,0 // · · · // ~Yp,q

where the horizontal maps are levelwise weak homotopy equivalences and the vertical maps are levelwise
cell-like.

Lemma 4 (Swallowing Lemma). In the situation above, the canonical map

N(hSn C
(1)
X )• ' N′(hSn C

(1)
X )0,• → N′(hSn C

(1)
X )•,•

is a homotopy equivalence (after geometric realization).
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Proof. It will suffice to show that for each p ≥ 0, the natural map N′(hSn C
(1)
X )0,• → N′(hSn C

(1)
X )p,• is a

weak homotopy equivalence of simplicial sets. Note that the target can be identified with the nerve of the
category E whose objects are diagrams

~Y0 → ~Y1 → · · · → ~Yp

of (levelwise) cell-like maps in hSn C
(1)
X . The diagonal map hSn C

(1)
X ↪→ E admits a left inverse, given by the

construction
~Y0 → ~Y1 → · · · → ~Yp 7→ ~Y0.

This left inverse is also a right homotopy inverse by means of the evident natural map

~Y0
id //

��

~Y0
//

��

· · ·

��

// ~Y0

��
~Y0

// ~Y1
// · · · // ~Yp.

It will be convenient to consider a slightly smaller bisimplicial set. We say that a morphism ~Y → ~Y ′ in

hSn C
(1)
X is a cofibration if the induced map Y ′i qYi

Yi+1 → Y ′i+1 is a monomorphism of simplicial sets for

each i. Let N′′(hC
(1)
X )•• denote the bisimplicial set whose objects are diagrams

~Y0,0
//

��

· · · //

��

~Y0,q

��
· · ·

��

// · · · //

��

· · ·

��
~Yp,0 // · · · // ~Yp,q

where the horizontal maps are cofibrations and levelwise weak homotopy equivalences and the vertical maps
are cell-like.

Lemma 5. The inclusion of bisimplicial sets

N′′(hSn C
(1)
X )•,• ↪→ N′(hSn C

(1)
X )•,•

is a weak homotopy equivalence (after geometric realization).

Proof. It will suffice to show that for each integer p ≥ 0, the inclusion

N′′(hSn C
(1)
X )p,• ↪→ N′(hSn C

(1)
X )p,•

is a weak homotopy equivalence. In other words, if we let E be the category appearing in the proof of Lemma
4 and we let E0 ⊆ E be the subcategory of E whose morphisms are given by diagrams

~Y0
id //

��

~Y1
//

��

· · ·

��

// ~Yp

��
~Y ′0 // ~Y ′1 // · · · // ~Y ′p ,
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where the vertical maps are cofibrations (as well as being weak homotopy equivalences), then we wish to
show that the inclusion E0 ↪→ E is a weak homotopy equivalence. Let us assume for simplicity that p = n = 0

(the proof in the general case is differs only by notation): then E is the subcategory of C
(1)
X whose morphisms

are weak homotopy equivalences, and E0 is the subcategory of C
(1)
X whose morphisms are trivial cofibrations.

We will prove that the inclusion E0 ↪→ E is a weak homotopy equivalence by showing that it is right cofinal.
To this end, fix an object Y ∈ E; we wish to show that the category D = E0×E E/Y is weakly contractible.
Unwinding the definitions, we can identify the objects of D with weak homotopy equivalences f : Y ′ → Y

in C
(1)
X . To prove that D is weakly contractible, it suffices to observe that every such object is connected to

the identity map id : Y → Y by a canonical zig-zag of trivial cofibrations

Y ′ ↪→ (M(f)qX×∆1 X)←↩ Y

where M(f) = (Y ′ ×∆1)qY ′×{1} Y is the mapping cylinder of f .

Let us now reorganize a bit. For each q ≥ 0, let Fq(C
(1)
X ) denote the category whose objects are sequences

of trivial cofibrations
Y0 ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yq

in C
(1)
X . Then we can regard Fq C

(1)
X as a category with cofibrations (defined as above, with the roles of n

and q switched) and weak equivalences (given by the collection s of levelwise cell-like maps). This category

with cofibrations and weak equivalences depends functorially on [q], so we can regard F• C
(1)
X as a simplicial

category with cofibrations and weak equivalences. Unwinding the definitions, we have

K(Fq C
(1)
X ) ' |N(hS• C

(1)
X )•,q|.

Passing to the geometric realization as [q] varies and invoking Lemmas 4 and 5, we obtain a homotopy
equivalence

K(C
(1)
X , h) ' |K(F• C

(1)
X , s)|.

Given a cofibration Y ↪→ Y ′ in CX , let Y ′/Y denote the pushout Y ′ qY X. It is clear that if Y ↪→ Y ′

is a weak homotopy equivalence, then the quotient Y ′/Y is weakly homotopy equivalent to X. If Y ′ and Y

both belong to C
(1)
X , then the converse holds: this follows from the observation that for any local system of

abelian groups A on X, we have an isomorphism

H∗(Y
′, Y ;A |Y ′) ' H∗(Y

′/Y,X;A |Y ′/Y ).

It follows that Fq(C
(1)
X ) admits an alternative description: it can be identified with the category whose objects

are sequences of cofibrations
Y0 ↪→ Y1 ↪→ Y2 ↪→ · · · ↪→ Yq

in C
(1)
X where each quotient Yi/Yi−1 belongs to Ch

X .
There is a natural map

θq : C
(1)
X ×(Ch

X)q → Fq(C
(1)
X ),

given on objects by

(Y, (Z1, . . . , Zq)) 7→ (Y ↪→ Y qX Z1 ↪→ · · · ↪→ Y qX Z1 qX · · · qX Zq)

This induces a map on K-theory spaces

K(C
(1)
X , s)×K(Ch

X , s)
q → K(Fq(C

(1)
X ), s).

Passing to the geometric realization as q varies, we obtain a map

K(C
(1)
X , s)/K(Ch

X , s)
q → |K(F• C

(1)
X , s)| ' K(C

(1)
X , h).
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To prove Proposition 1, it will suffice to show that this map is a homotopy equivalence. In fact, we will prove
something stronger: each of the maps θq induces a homotopy equivalence at the level of K-theory. Note that
θq has a left homotopy inverse ρ, given by the construction

(Y0 ↪→ · · · ↪→ Yq) 7→ (Y0, (Y1/Y0, · · · , Yq/Yq−1)).

The composition θq ◦ ρ is not homotopic to the identity at the level of categories, but induces the identity
map on K-theory spaces (up to homotopy) by virtue of the additivity theorem.
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