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Let X be a topological space. Then the singular simplicial set Sing•(X) is a Kan complex, and in
particular an ∞-category. If C is another ∞-category, we define a local system on X with values in C to be
a map of simplicial sets

Sing•(X)→ C .

The collection of all local systems onX with values in C can be organized into an∞-category Fun(Sing•(X),C),
which we will denote by CX .

Example 1. If C is an ordinary category, then every local system on X with values in C factors through the
homotopy category of Sing•(X), which is the fundamental groupoid of X. If X is connected and we choose
a base point x ∈ X, then we can identify CX with the category consisting of objects C ∈ C with an action
of the fundamental group π1(X,x).

Variant 2. We will generally use the term “space” to refer either to a topological space or to a Kan complex
(or to an object of some other type which could be used as a model for homotopy theory). In the latter case,
the notion of local system takes a simpler form: it is just a map from X into C.

In what follows, we will confine our attention to the case where C is the∞-category Sp of spectra. In this
case, we will refer to objects of SpX as local systems of spectra on X or spectra parametrized by X. However,
many of the notions we introduce make sense for more general ∞-categories C.

Notation 3. Let X be a space and let L be a local system of spectra on X. Then each point x ∈ X
determines a spectrum Lx, which we will refer to as the value of L at x.

Remark 4. The ∞-category Sp admits small limits and colimits. Consequently, given a local system L of
spectra on a space X, we can take its limit or colimit to obtain a spectrum. We will denote the limit by
C∗(X;L) and the colimit by C∗(X;L). In the special case where the local system L is constant with value
E, these can be identified with the function spectrum EX and the smash product E ∧X+, respectively.

Remark 5 (Functoriality). Let f : X → Y be a map of spaces. Then composition with f determines a
pullback functor f∗ : SpY → SpX . We will sometimes denote the pullback of a local system L ∈ SpX by
L |Y .

It follows from abstract nonsense that the functor f∗ admits both a left adjoint f! and a right adjoint
f∗ (given by left and right Kan extension). If f is a fibration (which we can always arrange), then these
functors are given by the formula

(f! F)y = C∗(Xy;L |Xy
) (f∗ F)y = C∗(Xy;L |Xy

)

where Xy denotes the fiber of f over the point y.

Proposition 6. Let X be a space. Then the∞-category SpX is compactly generated. That is, it is equivalent
to Ind(C), where C ⊆ SpX is the full subcategory spanned by the compact objects.
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Proof. It follows from general nonsense that the inclusion C ↪→ SpX extends to a fully faithful embedding
F : Ind(C) ↪→ SpX , and that F admits a right adjoint G. To show that F is an equivalence of ∞-categories,
it suffices to show that G is conservative. In other words, it will suffice to show that if α : L → L′ is a
morphism of local systems and that G(α) is an equivalence, then α is an equivalence. Pick a point x ∈ X,
and let i : {x} ↪→ X denote the inclusion map. The functor i∗ preserves filtered colimits, so its left adjoint
i! preserves compact objects. If G(α) is an equivalence, we conclude that it induces a homotopy equivalence

Map(i!E,L)→ Map(i!E,L
′)

for every finite spectrum E (viewed as a local system on {x}). It follows that the map Map(E,Lx) →
Map(E,L′x) is a homotopy equivalence for every finite spectrum E, from which we conclude that Lx ' L′x.
Since x is arbitrary, it follows that α is an equivalence.

The proof of Proposition 6 shows something a bit stronger: the ∞-category SpX is generated (under
colimits and desuspensions) by compact objects of the form i!S, where S is the sphere spectrum and i
ranges over the inclusions of all pointsx ∈ X. It follows that the collection of compact objects of SpX is
generated (under finite colimits, desuspensions, and retracts) by objects of the form i!S. Moreover, it suffices
to consider one point x lying in each connected component of X. Consequently, if X is connected, then
SpX is generated by a single compact object i!S, and is therefore equivalent to the ∞-category ModR where
R = End(i!S) is the ring spectrum of endomorphisms of i!S. Note that we can identify R with the spectrum
of maps from S to i∗i!S: that is, with the value of i!S at the point x. Converting i into a fibration and using
Remark 5, we see that R can be identified with the spectrum

C∗(Ω(X);S) ' Σ∞+ Ω(X).

Note that R is connective ring spectrum and that π0R is isomorphic to the group algebra Z[π1X] (specializing
to the case of discrete R-modules, we recover a more familiar fact: the category of local systems of abelian
groups on X is equivalent to the category of Z[π1X]-modules).

Definition 7. Let X be a space and let C ⊆ SpX be the full subcategory spanned by the compact objects.
Then K(C) is a grouplike E∞-space, and is therefore the 0th space of a connective spectrum. We will denote
this spectrum by A(X) and refer to it as the A-theory spectrum of X.

In what follows, we will generally abuse notation and not distinguish between grouplike E∞-spaces and
the corresponding spectra.

Example 8. Let X be a connected space with base point x ∈ X. Then we have A(X) ' K(R), where
R = Σ∞+ ΩX is the ring spectrum described above. Since R is connective, we can identify A(X) with the

group completion of the E∞-space (Modproj
R )' of finitely generated projective R-modules.

Warning 9. Our definition of A(X) is not standard. The usual convention in the literature is to use A(X)
to refer to the group completion of the E∞-space of finitely generated free R-modules. However, we have
seen that it does not make a very big difference: the only thing that changes is the group π0A(X).

Remark 10. Let X be a connected space and let G be its fundamental group. Applying the results of the
previous lecture, we obtain isomorphisms

π0A(X) = K0(Z[G]) π1A(X) = K1(Z[G]) = GL∞(Z[G])ab.

However, the higher homotopy groups of A(X) do not have “classical” names: they depend on the entire
homotopy type of X (rather than just its fundamental group) and on the fact that we are working over the
sphere spectrum (rather than the ring Z of integers).

Example 11. Let X be a simply connected space. Then we have

π0A(X) ' Z π1A(X) ' Z/2Z.
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Let f : X → Y be a map of spaces. Since the pullback functor f∗ preserves filtered colimits, its
left adjoint f! preserves compact objects and therefore induces a map of K-theory spectra A(X) → A(Y ).
Consequently, we can view the construction X 7→ A(X) as a covariant functor from the∞-category of spaces
to the ∞-category of spectra.

Let us now consider some other types of local system:

Example 12. Let S denote the ∞-category of spaces. For every space X, we can identify the ∞-category
SX of local systems on X with the ∞-category S/X of spaces Y with a map Y → X; the identification
associates to each map f : Y → X the local system x 7→ Yx where Yx denotes the homotopy fiber of f over
the point x ∈ X. The proof of Proposition 6 shows that SX is compactly generated. Under the equivalence
SX ' S/X , the compact objects correspond to those maps Y → X where Y is a finitely dominated space
(note that the finiteness condition here is placed on the space Y itself, not on the homotopy fibers of the
map Y → X).

Example 13. Let S∗ denote the∞-category of pointed spaces. Then the identification SX ' S/X of Example

12 induces an identification SX∗ ' SX//X , where SX//X denotes the ∞-category of diagrams

Y

  
X

id //

>>

X

which exhibit X as a retract of Y . The proof of Proposition 6 shows that this ∞-category is generated by
compact objects. Examples of compact objects include any diagram as above where Y can be obtained from
X by attaching finitely many cells. Conversely, any compact object is a retract (in the homotopy category)
of such a relative cell complex.

There are evident maps
SX → SX∗ → SpX ,

given pointwise by “adding a disjoint basepoint” and “taking the suspension spectrum.” These constructions
preserve compact objects (since they are left adjoint to functors which preserve filtered colimits). In partic-
ular, if Y is a finitely dominated space over X, then the construction x 7→ Σ∞+ (Yx) determines a compact

object of SpX , which determines a point of the space Ω∞A(X) which we will denote by [Y ].

Example 14 (Wall Finiteness Obstruction). Suppose that the space X itself is finitely dominated. Then
the above construction determines a point [X] ∈ Ω∞A(X), which is represented by the constant local system
S which takes each point of x to the sphere spectrum S. We let wX ∈ π0A(X) denote the class represented
by this point.

Suppose that X is connected with fundamental group G. We claim that under the isomorphism π0A(X) '
K0(Z[G]) of Remark 10, the class wX is a lifting of the Wall finiteness obstruction wX ∈ K̃0(Z[G]) introduced
in Lecture 2. Recall that to define wX , we chose a finite complex X ′ with a map X ′ → X such that the
relative homology H∗(X,X

′; Z[G]) was a projective module P concentrated in a single degree n, and defined
wX = (−1)n[P ]. Choose a base point x ∈ X and set R = Σ∞+ Ω(X), so that every map of spaces Y → X
determines an R-module spectrum Σ∞+ Yx. We then have a cofiber sequence of R-modules

Σ∞+ X
′
x → Σ∞+ Xx → ΣnP ,

where P is a projective R-module with π0P = P . Since X ′ admits a finite cell decomposition, the R-module
spectrum Σ∞+ X

′
x admits a finite filtration whose successive quotients are suspensions of R and therefore

represents a class in K(R) given by some integer m. We then have

wX = m+ (−1)n[P ]
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in π0A(X) ' K0(R) ' K0(Z[G]).
The abstract version of the Wall finiteness criterion given in Lecture 15 asserts that a finitely dominated

space X is homotopy equivalent to a finite cell complex if and only if wX belongs to the image of the
canonical map K0(Sfin

X//X)→ π0A(X), where Sfin
X//X is the full subcategory of SX//X spanned by the finite

relative cell complexes. It is not hard to see (and we have already invoked above) that the the image of this
map is precisely the subgroup Z ⊆ K0(Z[G]) corresponding to projective Z[G]-modules which are free. We
therefore obtain an alternative proof of the main result of lecture 2: the space X is finitely dominated if and
only if wX vanishes in K0(Z[G]).

Remark 15 (Assembly Maps). Let S denote the∞-category of spaces and let C ⊆ S be the full subcategory
consisting only of the 1-point space ∗. For any functor F : S→ Sp, we can identify the restriction F |C with
a single spectrum F (∗). Let F+ be the left Kan extension of F |C along the inclusion C ↪→ S: this is the
functor given by

F+(X) = lim−→
C→X

F (C)

where C ranges over all objects of C equipped with a f : C → X. By definition, we must have C = ∗ and
we can identify f with a point x ∈ X, so that F+(X) can be identified with the spectrum C∗(X;F (∗)) =
X+ ∧ F (∗).

The universal property of the left Kan extension F+ guarantees that there is a natural transformation
of functors F+ → F , determined uniquely (up to homotopy) by the requirement that it is the identity map
when evaluated at a point. In other words, for any space X we have a canonical map

C∗(X;F (∗))→ F (X).

We will refer to this map as the assembly map associated to F . It is an equivalence if and only if the functor
F commutes with small colimits (in which case F is determined by the spectrum F (∗)).

Specializing Remark 15 to the case where F is the A-theory functor X 7→ A(X), we obtain the A-theory
assembly map

C∗(X;A(∗))→ A(X).

This map is not an equivalence in general, and we will see that its failure to be an equivalence measures the
difference between simple homotopy theory and ordinary homotopy theory.

Definition 16. For every space X, we let Wh(X) denote the cofiber of the assembly map C∗(X;A(∗)) →
A(X). We will refer to Wh(X) as the (piecewise linear) Whitehead spectrum of X.

Remark 17. Let X be a connected space with fundamental group G. Using the isomorphisms π0A(∗) ' Z
and π1A(∗) ' Z/2Z, the Atiyah-Hirzebruch spectral sequence supplies an isomorphism

H0(X;A(∗)) ' H0(X; Z) ' Z

and an exact sequence of low-degree terms

H0(X;π1A(∗))→ H1(X;A(∗))→ H1(X; Z)→ 0.

This sequence is exact on the left and canonically split (we can see this by considering the projection map
from X to a point), so we obtain an isomorphism

H1(X;A(∗)) ' (Z/2Z)⊕Gab.

The cofiber sequence of spectra

C∗(X;A(∗))→ A(X)→Wh(X)
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now supplies a long exact sequence of abelian groups

(Z/2Z)⊕Gab β→ K1(Z[G])→ π1 Wh(X)→ Z
α→ K0(Z[G])→ π0 Wh(X)→ 0.

The map α is split injective (via the ring homomorphism Z[G] → Z which annihilates G, say). We can

therefore identify π0 Wh(X) with the reduced K-group K̃0(Z[G]) and π1 Wh(X) with the cokernel of β,
which is the Whitehead group of X as defined in Lecture 4.

For our applications, it will be convenient to have a geometric understanding of the assembly map: that
is, we would like to understand it not as arising from the general categorical construction of Remark 15, but
instead have an interpretation of the domain C∗(X;A(∗)) as related to some sorts of kind of sheaf theory on
X, just as A(X) is related to local systems on X. We will take this up in the next lecture.
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