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Earlier in this course, we stated the following result:

Theorem 1. Let X and Y be finite polyhedra and let f : X → Y be a homotopy equivalence. The following
conditions are equivalent:

(1) The map f is a simple homotopy equivalence.

(2) There exists a concordance q : E → [0, 1] from X to Y such that the induced homotopy equivalence
X ' q−1{0} → q−1{1} ' Y is homotopic to f .

The implication (2) ⇒ (1) was proved in Lecture 6. We are now almost in a position to prove the
converse. Let us begin by introducing a bit of (nonstandard) terminology.

Definition 2. Let X be a polyhedron and let Dn be the standard n-disk (regarded as a finite polyhedron).
Given a PL embedding e : Dn ↪→ X, the mapping cylinder M(e) = X qDn (Dn × [0, 1]) has the structure of
a polyhedron and is equipped with a cell-like PL map π : M(e)→ X.

We will say that a PL map of finite polyhedra Y → X is a polyhedral elementary contraction if it has
the form π : M(e) → X for some PL embedding e : Dn ↪→ X, and a polyhedral elementary expansion if
it is isomorphic to the canonical inclusion X ↪→ M(e) for some PL embedding e : Dn ↪→ X. We say that
f is a polyhedral simple homotopy equivalence if it is homotopic to a composition of polyhedral elementary
expansions and polyhedral elementary contractions.

Claim 3. Let f : X → Y be a map of finite polyhedra. Then f is a simple homotopy equivalence if and only
if it is a polyhedral simple homotopy equivalence.

To prove Claim 3, it suffices to show that f is a polyhedral simple homotopy equivalence if and only
if it has vanishing Whitehead torsion τ(f) ∈ Wh(π1X) (in the case where X is connected). This can be
established by carrying out the argument sketched in Lecture 4 entirely in the setting of polyhedra.

Assuming Claim 3, we can prove the implication (1) ⇒ (2) of Theorem 1. For this, it suffices to show
that any polyhedral elementary contraction f : X → Y is a homotopy equivalence which arises from a
concordance between X and Y . This is a special case of the following:

Proposition 4. Let X and Y be finite polyhedra and let f : X → Y be a cell-like PL map. Then there
exists a concordance q : E → [0, 1] from X to Y such that the induced homotopy equivalence X ' q−1{0} →
q−1{1} ' Y is homotopic to f .

Proof. Choose triangulations of X and Y that are compatible with f , so that f induces a Cartesian fibration
q : Σ(X) → Σ(Y ). Since f is cell-like, the fibers of q are weakly contractible. We complete the proof by
setting E = N(Σ(Y )qq Σ(X)) (which we proved to be a concordance in Lecture 10).

Remark 5. In the second part of this course, we will give an alternative approach Theorem 1, which does
not require revisiting Lecture 4 in the polyhedral setting.
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In Lectures 10 and 11, we constructed a weak homotopy equivalence ρ : N(Setns
∆ )op → M, where Setns

∆

is the category whose objects are finite nonsingular simplicial sets and whose morphisms are cell-like maps.
We next show that the condition of nonsingularity is not essential.

Definition 6. Let f : X → Y be a map of finite simplicial sets (not necessarily nonsingular). We will say
that f is cell-like if the induced map of topological spaces |X| → |Y | is cell-like (which is equivalent to the
assertion that the fibers of |f | are contractible).

We let Setcl
∆ denote the category whose objects are finite simplicial sets and whose morphisms are cell-like

maps.

Remark 7. Suppose we are given a pullback diagram of finite simplicial sets

X ′ //

f ′

��

X

f

��
Y ′

g // Y.

Then the associated diagram of geometric realizations is also a pullback diagram. It follows that f ′ is cell-like
if f is; the converse holds if g is surjective.

Definition 8. Let X be a finite simplicial set. A desingularization of X is a finite nonsingular simplicial
set Y equipped with a cell-like map π : Y → X. We let D(X) denote the category whose objects are
desingularizations π : Y → X, and whose morphisms are commutative diagrams of cell-like maps

Y

π

  

// Y ′

π′

}}
X.

We will prove the following:

Proposition 9. For every finite simplicial set X, the category D(X) is weakly contractible.

Corollary 10. The inclusion functor Setns
∆ ↪→ Setcl

∆ induces a homotopy equivalence |N(Setns
∆ )| ↪→ |N(Setcl

∆)|.

Proof. Combine Proposition 8 with Quillen’s Theorem A.

Proposition 8 is an easy consequence of the following special case:

Lemma 11. Let X be a finite simplicial set. Then there exists a desingularization of X.

Proof of Proposition 8. Fix a desingularization π : Y0 → X. We define a functor T : D(X)→ D(X) by the
formula T (Y ) = Y ×X Y0; note that T (Y ) is nonsingular since it is contained in the nonsingular simplicial set
Y ×Y0, and Remark 6 implies that T (Y ) is again a desingularization of X. The evident maps Y ← T (Y )→ Y0

show that the identity map id : |N(D)| → |N(D)| is homotopic to the constant map taking the value Y0.

Proof of Lemma 10. We proceed by induction on the number of nondegenerate simplices of X. If X is
empty, there is nothing to prove; otherwise, we can write X as a pushout X ′ q∂∆n ∆n. The inductive
hypothesis the implies that there exists a desingularization Y ′ → X ′. Set K = Y ′ ×X′ ∂∆n; note that K is
nonsingular since it is contained in the product Y ′ × ∂∆n. Choose an embedding K ↪→ C(K), where C(K)
is nonsingular and weakly contractible (for example, we can take C(K) to be the join K ?∆0). The diagonal
map K → ∆n × C(K) is then an embedding so that the mapping cylinder

M = K ×∆1 qK×{1} ∆n × C(K)
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is nonsingular. We have a commutative diagram of simplicial sets

Y ′ × C(K)

α

��

K

β

��

oo // M

γ

��
X ′ ∂∆noo // ∆n.

Note that the upper horizontal maps are injective so that the pushout Y = (Y ′×C(K))qKM is a nonsingular
simplicial set. We claim that the canonical map π : Y → X is cell-like. To prove this, choose any point
x ∈ |X|; we claim that the inverse image π−1{x} ⊆ |Y | is contractible. If x does not belong to |X ′|, then we
have π−1{x} ' γ−1{x}, which is contractible, since γ is the composition of cell-like maps

M → ∆n × C(K)→ ∆n.

If x belongs to |X ′|, let Z ⊆ | ∂∆n| be the inverse image of x; then π−1{x} is given by the pushout

α−1{x} qβ−1Z γ
−1Z.

The map α is a composition of cell-like maps

Y ′ × C(K)→ Y ′ → X ′,

so that α−1{x} is contractible. It will therefore suffice to show that the inclusion β−1Z ↪→ γ−1Z is a
homotopy equivalence. This is clear, since γ−1Z is homeomorphic to the mapping cylinder of β−1Z →
Z × C(K) which is a homotopy equivalence since β is cell-like.

Since M is a Kan complex, it follows from Corollary 9 that the map ρ : N(Setns
∆ )op → M admits an

extension ρ : N(Setcl
∆)op →M. It is not obvious how to construct such an extension explicitly because there

there is no functorial way to endow the geometric realization |X| with the structure of a polyhedron for an
arbitrary finite simplicial set X. However, if we do not insist on working with polyhedra, then this problem
goes away:

Definition 12. Let Q =
∏
n≥0[0, 1] be the Hilbert cube (or any other “sufficiently large” contractible space).

We define a simplicial set M+ as follows: the n-simplices of M+ are subsets E ⊆ ∆n ×Q with the following
properties:

• As a topological space, E is a compact absolute neighborhood retract.

• The projection E → ∆n is a fibration.

Any choice of embedding R∞ ↪→ Q determines a map of simplicial sets M ↪→M+; roughly speaking, this
map is given by “forgetting” PL structures.

Example 13. Suppose we are given maps of topological spaces

X0 ← X1 ← · · · ← Xn.

The mapping simplex of the sequence {Xi} is defined to be the iterated pushout

X0 qX1 (X1 ×∆1)qX2×∆1 (X2 ×∆2)q · · · q (Xn ×∆n).

We will denote this mapping simplex by M(X0 ← · · · ← Xn). There is an evident map

π : M(X0 ← · · · ← Xn)→ ∆n.

If each Xi is a compact ANR, one can show that M(X0 ← · · · ← Xn) is a compact ANR. If, in addition,
each of the maps Xi → Xi−1 is cell-like, then the map π is a fibration: this follows from the main result of
Lecture 8.
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Construction 14. Suppose we are given an n-simplex σ of N(Setcl
∆), given by a sequence of cell-like maps

X0 ← X1 ← · · · ← Xn.

Choosing an embedding of each |Xi| into Q, we can regard the mapping simplex M(|X0| ← · · · ← |Xn|) as
a subset of ∆n ×Q which defines an n-simplex of M+. This determines for us a map of simplicial sets

ρ′ : N(Setcl
∆)op →M+ .

The maps ρ and ρ′ are closely related:

Proposition 15. The diagram of simplicial sets

N(Setns
∆ )op ρ //

��

M

��
N(Setcl

∆)op ρ′ // M+

commutes up to homotopy.

Remark 16. In the final portion of this course, if we get there, we will show that the inclusion M ↪→ M+

is a homotopy equivalence (so that the diagram of Proposition 14 consists of homotopy equivalences).

Let us sketch the proof of Proposition 14. Suppose we are given an n-simplex σ of N(Setns
∆ )op, given by

a sequence of cell-like maps
X0 ← X1 ← · · · ← Xn

of nonsingular simplicial sets. We will abuse notation by identifying σ with its image in N(Setcl
∆)op and ρ(σ)

with its image in M+. We wish to relate ρ(σ) to ρ′(σ). Both can be identified with spaces which are fibered
over the topological n-simplex ∆n, given by the geometric realizations of certain finite simplicial sets: in the
former case, we use the simplicial set

Y = N(Σ(X0)q Σ(X1)q · · · q Σ(Xn)),

and in the latter case we use the mapping simplex

Z = M(X0 ← X1 ← X2 ← · · · ← Xn)

(given by carrying out the construction of Example 12 in the category of simplicial sets rather than the
category of topological spaces). Let W denote the simplicial set

M(Sd(X0)← Sd(X1)← Sd(X2)← · · · ← Sd(Xn)).

Amalgamating the maps Sd(Xi) → Xi, we obtain a map W → Z. There is also a canonical map W → Y ,
given by amalgamating maps

Sd(Xi)×∆i = N(Σ(Xi)× {0, . . . i})
θi→ N(Σ(X0)q · · ·Σ(Xn)),

where θi is given by natural map of posets carrying Σ(Xi)× {j} to Σ(Xj) for 0 ≤ j ≤ i.

Claim 17. In the situation above, the maps Y ←W → Z are cell-like.

Proof. The fact that the map W → Z is cell-like follows from the fact that each of the maps Sd(Xi) → Xi

is cell-like. To prove that the map W → Y is cell-like, we must show that for each point y ∈ |Y | the fiber
F = |W | ×|Y | {y} is cell-like. Without loss of generality we may assume that the image of y in ∆n does not
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belong to ∆n−1 (otherwise, we can simply truncate our sequence of simplicial sets {Xi} ). In this case, the
space F is also the fiber of the map

θn : N(Σ(Xn)× [n])→ N(Σ(X0)q · · · q Σ(Xn)).

Since the underlying map of posets is a Cartesian fibration, it suffices to check that the fibers of θn are
weakly contractible: this follows from the fact that each of the maps Σ(Xn)→ Σ(Xi) has weakly contractible
fibers.

Consider now the 2-sided mapping cylinder

Y qW×{0} (W ×∆1)qW×{1} Z.

This is a simplicial set whose geometric realization is equipped with a canonical map to ∆n × ∆1; using
Claim 16 and the results of Lecture 8, one can show that this map is a fibration. Choosing an embedding
into the big contractible space Q, we obtain a map ∆n×∆1 →M+ which is a homotopy from ρ(σ) to ρ′(σ).
It is easy to see that these homotopies can be chosen to be compatible as σ varies and therefore supply a
proof of Proposition 14.
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