Some Loose Ends (Lecture 12)

September 29, 2014

Earlier in this course, we stated the following result:

Theorem 1. Let X and Y be finite polyhedra and let f: X — Y be a homotopy equivalence. The following
conditions are equivalent:

(1) The map f is a simple homotopy equivalence.

(2) There exists a concordance q : E — [0,1] from X to'Y such that the induced homotopy equivalence
X ~ ¢ Y0} = ¢ {1} =Y is homotopic to f.

The implication (2) = (1) was proved in Lecture 6. We are now almost in a position to prove the
converse. Let us begin by introducing a bit of (nonstandard) terminology.

Definition 2. Let X be a polyhedron and let D™ be the standard n-disk (regarded as a finite polyhedron).
Given a PL embedding e : D™ < X, the mapping cylinder M(e) = X Hpn (D™ x [0, 1]) has the structure of
a polyhedron and is equipped with a cell-like PL map 7 : M(e) — X.

We will say that a PL map of finite polyhedra Y — X is a polyhedral elementary contraction if it has
the form 7 : M(e) — X for some PL embedding e : D™ — X, and a polyhedral elementary expansion if
it is isomorphic to the canonical inclusion X — M(e) for some PL embedding e : D™ — X. We say that
f is a polyhedral simple homotopy equivalence if it is homotopic to a composition of polyhedral elementary
expansions and polyhedral elementary contractions.

Claim 3. Let f : X — Y be a map of finite polyhedra. Then f is a simple homotopy equivalence if and only
if it is a polyhedral simple homotopy equivalence.

To prove Claim 3, it suffices to show that f is a polyhedral simple homotopy equivalence if and only
if it has vanishing Whitehead torsion 7(f) € Wh(m X) (in the case where X is connected). This can be
established by carrying out the argument sketched in Lecture 4 entirely in the setting of polyhedra.

Assuming Claim 3, we can prove the implication (1) = (2) of Theorem 1. For this, it suffices to show
that any polyhedral elementary contraction f : X — Y is a homotopy equivalence which arises from a
concordance between X and Y. This is a special case of the following:

Proposition 4. Let X and Y be finite polyhedra and let f : X — Y be a cell-like PL map. Then there
exists a concordance q : E — [0,1] from X toY such that the induced homotopy equivalence X ~ q~1{0} —
q Y1} =Y is homotopic to f.

Proof. Choose triangulations of X and Y that are compatible with f, so that f induces a Cartesian fibration
q: X(X) — X(Y). Since f is cell-like, the fibers of ¢ are weakly contractible. We complete the proof by
setting £ = N(2(Y) I, £(X)) (which we proved to be a concordance in Lecture 10). O

Remark 5. In the second part of this course, we will give an alternative approach Theorem 1, which does
not require revisiting Lecture 4 in the polyhedral setting.



In Lectures 10 and 11, we constructed a weak homotopy equivalence p : N(8et¥*)°P — M, where Sety®
is the category whose objects are finite nonsingular simplicial sets and whose morphisms are cell-like maps.
We next show that the condition of nonsingularity is not essential.

Definition 6. Let f: X — Y be a map of finite simplicial sets (not necessarily nonsingular). We will say
that f is cell-like if the induced map of topological spaces |X| — |Y] is cell-like (which is equivalent to the
assertion that the fibers of |f| are contractible).

We let Set@ denote the category whose objects are finite simplicial sets and whose morphisms are cell-like
maps.

Remark 7. Suppose we are given a pullback diagram of finite simplicial sets

X —=X
b
y 2.y,

Then the associated diagram of geometric realizations is also a pullback diagram. It follows that f’ is cell-like
if f is; the converse holds if g is surjective.

Definition 8. Let X be a finite simplicial set. A desingularization of X is a finite nonsingular simplicial
set Y equipped with a cell-like map 7 : ¥ — X. We let D(X) denote the category whose objects are
desingularizations 7 : Y — X, and whose morphisms are commutative diagrams of cell-like maps

N

X.

Yl

We will prove the following:
Proposition 9. For every finite simplicial set X, the category D(X) is weakly contractible.
Corollary 10. The inclusion functor Set’ < Set@ induces a homotopy equivalence | N(8et’s)| < | N(Setd ).
Proof. Combine Proposition 8 with Quillen’s Theorem A. O
Proposition 8 is an easy consequence of the following special case:
Lemma 11. Let X be a finite simplicial set. Then there exists a desingularization of X.

Proof of Proposition 8. Fix a desingularization 7 : Yy — X. We define a functor T': D(X) — D(X) by the
formula T(Y) = Y x x Yp; note that T'(Y) is nonsingular since it is contained in the nonsingular simplicial set
Y xY), and Remark 6 implies that 7'(Y") is again a desingularization of X. The evident maps Y < T(Y) = Y;
show that the identity map id : |[N(D)| — |N(D)| is homotopic to the constant map taking the value Yy. O

Proof of Lemma 10. We proceed by induction on the number of nondegenerate simplices of X. If X is
empty, there is nothing to prove; otherwise, we can write X as a pushout X' IIg on A™. The inductive
hypothesis the implies that there exists a desingularization Y’ — X’. Set K = Y’ x x»  A™; note that K is
nonsingular since it is contained in the product Y’ x 9 A™. Choose an embedding K — C(K), where C(K)
is nonsingular and weakly contractible (for example, we can take C'(K) to be the join K xA°). The diagonal
map K — A" x C(K) is then an embedding so that the mapping cylinder

M =K x A' Ly, 1y A" x C(K)



is nonsingular. We have a commutative diagram of simplicial sets

Y’ x C(K) K M
R
) o A" A",

Note that the upper horizontal maps are injective so that the pushout Y = (Y’ x C(K))IIx M is a nonsingular
simplicial set. We claim that the canonical map 7 : ¥ — X is cell-like. To prove this, choose any point
x € | X|; we claim that the inverse image 7~ *{z} C |Y| is contractible. If z does not belong to | X’|, then we
have 7= 1{x} ~ v~ 1{x}, which is contractible, since 7 is the composition of cell-like maps

M — A" x C(K) — A™
If 2 belongs to |X'|, let Z C | @ A"| be the inverse image of x; then 7~ 1{z} is given by the pushout
a Yzl gy 12
The map « is a composition of cell-like maps
V' xC(K)—=Y — X',

so that a~'{x} is contractible. It will therefore suffice to show that the inclusion 37127 — 4717 is a
homotopy equivalence. This is clear, since y~'Z is homeomorphic to the mapping cylinder of 37'Z —
Z x C(K) which is a homotopy equivalence since j is cell-like. O

Since M is a Kan complex, it follows from Corollary 9 that the map p : N(8et¥)°? — M admits an
extension p : N(8et% )P — M. It is not obvious how to construct such an extension explicitly because there
there is no functorial way to endow the geometric realization |X| with the structure of a polyhedron for an
arbitrary finite simplicial set X. However, if we do not insist on working with polyhedra, then this problem
goes away:

Definition 12. Let Q = HnZO[O’ 1] be the Hilbert cube (or any other “sufficiently large” contractible space).

We define a simplicial set M" as follows: the n-simplices of M T are subsets E C A™ x Q with the following
properties:

e As a topological space, E is a compact absolute neighborhood retract.
e The projection £ — A™ is a fibration.

Any choice of embedding R™ < @ determines a map of simplicial sets M < M™; roughly speaking, this
map is given by “forgetting” PL structures.

Example 13. Suppose we are given maps of topological spaces
Xo+— X1+ X,
The mapping simplex of the sequence {X;} is defined to be the iterated pushout
Xolx, (X1 x AN x,unt (X2 x A2)IT--- T (X, x A™).
We will denote this mapping simplex by M (Xg < - - + X,,). There is an evident map
T M(Xg+ -+ X,) = A™

If each X; is a compact ANR, one can show that M (Xy + -+« X,,) is a compact ANR. If, in addition,
each of the maps X; — X;_; is cell-like, then the map 7 is a fibration: this follows from the main result of
Lecture 8.



Construction 14. Suppose we are given an n-simplex o of N(Set4), given by a sequence of cell-like maps
Xo— X1+ X,

Choosing an embedding of each |X;| into Q, we can regard the mapping simplex M (| Xg| -+ + | X,|) as
a subset of A” x Q which defines an n-simplex of M. This determines for us a map of simplicial sets

o N(8etd)oP — M.
The maps p and p’ are closely related:
Proposition 15. The diagram of simplicial sets

N(Setw)or £ M

|

N(Setsl)op L v+
commutes up to homotopy.

Remark 16. In the final portion of this course, if we get there, we will show that the inclusion M < M
is a homotopy equivalence (so that the diagram of Proposition 14 consists of homotopy equivalences).

Let us sketch the proof of Proposition 14. Suppose we are given an n-simplex o of N(8et¥)°P, given by
a sequence of cell-like maps
Xo(—Xl(—"-<—Xn

of nonsingular simplicial sets. We will abuse notation by identifying ¢ with its image in N(Setg)of’ and p(o)
with its image in M. We wish to relate p(c) to p'(c). Both can be identified with spaces which are fibered
over the topological n-simplex A™, given by the geometric realizations of certain finite simplicial sets: in the
former case, we use the simplicial set

Y =NE(Xo) IE(X) IT--- T X(X,)),
and in the latter case we use the mapping simplex
Z=MXo+ X;+ Xo+ - X,)

(given by carrying out the construction of Example 12 in the category of simplicial sets rather than the
category of topological spaces). Let W denote the simplicial set

M(Sd(Xp) < Sd(X7) « Sd(X2) « - -+ + Sd(X,,)).

Amalgamating the maps Sd(X;) — X;, we obtain a map W — Z. There is also a canonical map W — Y,
given by amalgamating maps

SA(X;) x Al = N(2(X;) x {0,...1}) B N(E(X) I - - £(X.)),

where 6; is given by natural map of posets carrying 3(X;) x {j} to £(X;) for 0 < j <.
Claim 17. In the situation above, the maps Y < W — Z are cell-like.

Proof. The fact that the map W — Z is cell-like follows from the fact that each of the maps Sd(X;) — X;
is cell-like. To prove that the map W — Y is cell-like, we must show that for each point y € |Y| the fiber
F = [W]| xy| {y} is cell-like. Without loss of generality we may assume that the image of y in A™ does not



belong to A"~1 (otherwise, we can simply truncate our sequence of simplicial sets {X;} ). In this case, the
space I is also the fiber of the map

0, : N(2(X,) x [n]) = N(2(Xo) II - - - I £(X,.)).

Since the underlying map of posets is a Cartesian fibration, it suffices to check that the fibers of 6,, are
weakly contractible: this follows from the fact that each of the maps X(X,,) — X(X;) has weakly contractible
fibers. O

Consider now the 2-sided mapping cylinder
Y My oy (W x AY) Iy g1y Z

This is a simplicial set whose geometric realization is equipped with a canonical map to A" x Al; using
Claim 16 and the results of Lecture 8, one can show that this map is a fibration. Choosing an embedding
into the big contractible space @, we obtain a map A™ x A’ — M™ which is a homotopy from p(c) to o' (o).
It is easy to see that these homotopies can be chosen to be compatible as o varies and therefore supply a
proof of Proposition 14.



