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Let f : X → Y be a map of finite nonsingular simplicial sets. In the previous lecture, we showed that
the induced map |f | : |X| → |Y | is a fibration if and only if it satisfies the following combinatorial path
lifting condition: for every simplex σ0 ∈ Σ(X) with image τ0 = f(σ0) in Σ(Y ) and every simplex τ ∈ Σ(Y )
containing τ0, the partially ordered set {σ ∈ Σ(X) : f(σ) = τ and σ0 = σ ∩ f−1τ0} is weakly contractible.
Our first objective in this lecture is to apply this criterion in the special case where f arises from a map of
partially ordered sets.

Proposition 1. Let f : P → Q be a map of finite partially ordered sets. Assume that f is a Cartesian
fibration. The following conditions are equivalent:

(1) The induced map |N(P )| → |N(Q)| is a fibration.

(2) For every q′ ≤ q in Q, the induced map of fibers Pq → Pq′ is left cofinal.

Proof. Let Chain(P ) = Σ(N(P )) denote the partially ordered set of nonempty chains in P , and similarly for
Q. Fix a simplex σ0 ∈ Chain(P ) having image τ0 ∈ Chain(Q). For each chain τ in Chain(Q) containing τ0,
let

Sτ = {σ ∈ Chain(P )|f(σ) = τ and σ ∩ f−1τ0 = σ0}.
The criterion of the previous lecture shows that (1) holds if and only if each of the partially ordered sets Sτ
is weakly contractible.

Assume first that (1) is satisfied. Let q′ < q in Q; we wish to show that the map Pq → Pq′ is left cofinal.
For this, pick p′ ∈ Pq′ ; we need to show that T = {p ∈ Pq : p′ ≤ p} is weakly contractible. Taking σ0 = {p′},
τ0 = {q′}, and τ = {q′, q}, we see that the set Sτ above can be identified with Chain(T ). Condition (1)
implies that Sτ is weakly contractible, so that T is likewise weakly contractible (since N(Sτ ) ' Sd N(T )).

We now prove that (2)⇒ (1). Choose σ0 ∈ Chain(P ) and τ ∈ Chain(Q) as above; we wish to show that
Sτ is weakly contractible. If τ = τ0, then there is nothing to prove. Otherwise, choose an element q which
belongs to τ − τ0 and set τ ′ = τ − {q}. Note that if we are given a simplex τ ′ ∈ Chain(Q) with τ0 ⊆ τ ′ ⊆ τ ,
then the construction σ 7→ σ ∩ f−1τ ′ determines a Cartesian fibration Sτ → Sτ ′ . Proceeding inductively, we
may assume that Sτ ′ is weakly contractible; it then suffices to show that the fibers of the map Sτ → Sτ ′ are
weakly contractible. Replacing τ0 by τ ′ we may reduce to the case where τ is obtained from τ0 by adding a
single element q.

Then τ corresponds to a chain

{q−m < . . . < q−1 < q < q1 < · · · < qn}

where either m or n could be zero (but not both), and σ0 corresponds to a chain {p0 < . . . < pk} lying over
{q−m < . . . < q−1 < q1 < · · · < qn}. Let p− be the largest element of σ0 which lies over q−1 (if m 6= 0)
and let p+ be the largest element of σ0 which lies over q1 (if n 6= 0). Unwinding the definitions, we see that
N(Sτ ) can be identified with the subdivision of the nerve of the poset

{p ∈ Pq : p ≤ p+} if m = 0

{p ∈ Pq : p− ≤ p} if n = 0

{p ∈ Pq : p− ≤ p ≤ p+} if m,n 6= 0.
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Since f is a Cartesian fibration, the partially ordered sets of the first and third type have largest elements.
It will therefore suffice to consider the case where n = 0. Let α : Pq → Pq−1 be the map induced by the
inequality q−1 < q. Then the poset in question can be identified with {p ∈ Pq : α(p) ≥ p−}, which is weakly
contractible by virtue of our assumption that α is left cofinal.

Remark 2. It follows from Proposition 1 that if f : X → Y is a cell-like PL map of polyhedra, then X
and Y are concordant (set Q = {0 < 1} and apply Proposition 1 to the posets of simplices for compatible
triangulations of X and Y ). This almost proves that concordance of polyhedra is equivalent to simple
homotopy equivalence (it would supply a complete proof if we had worked in the category of polyhedra
at the outset, and considered only elementary expansions and elementary contractions in piecewise linear
setting).

Let us now put Proposition 1 to work.

Definition 3. Let Ccof denote the category whose objects are finite partially ordered sets and whose mor-
phisms are left cofinal maps of partially ordered sets.

Consider the simplicial set N(Cop
cof). By definition, an n-simplex σ of N(Cop

cof) is a diagram of left cofinal
maps

P0 ← P1 ← P2 ← · · · ← Pn

of finite partially ordered sets. In this case, the disjoint union P (σ) =
⋃

0≤i≤n Pi can be regarded as a
partially ordered set equipped with a Cartesian fibration P (σ) → [n] which satisfies the hypotheses of
Proposition 1. It follows that the induced map |N(P (σ))| → |N([n])| ' ∆n is a piecewise linear fibration.

Let Ñ(Cop
cof) be the simplicial set whose n-simplices consist of n-simplices σ of N(Cop

cof) together with a

PL embedding |N(P (σ))| ↪→ R∞. There is an evident projection map φ : Ñ(Cop
cof) → N(Cop

cof) given by
forgetting the embeddings into R∞, which is easily seen to be a trivial Kan fibration. We also have a map

ψ : ˜N(Cop
cof))→M which is given by forgetting the diagram

P0 ← P1 ← · · · ← Pn

and remembering only the image of the map |P (σ)| → ∆n×R∞. Composing ψ with a section of φ and using
the canonical isomorphism M 'Mop, we obtain a map of simplicial sets N(Ccof)→M which is well-defined
up to homotopy.

Variant 4. Let Setns
∆ denote the category whose objects are finite nonsingular simplicial sets and whose

morphisms are cell-like maps. The construction X 7→ Σ(X) determines a functor Setns
∆ → Ccof . Composing

with the construction of Definition 3, we obtain a map of simplicial sets N(Setns
∆ )→M.

Variant 5. Let Ccell denote the subcategory of Ccof whose objects are finite partially ordered sets and whose
morphisms are Cartesian fibrations with weakly contractible fibers (note that any such map is left cofinal).
Then the functor

Setns
∆ → Ccof

X 7→ Σ(X)

factors through Ccell.

We can now state the first main theorem of this course:

Theorem 6. The maps of simplicial sets

N(Setns
∆ )

α→ N(Ccell)
β→ N(Ccof)

γ→M

are all weak homotopy equivalences.
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Theorem 6 supplies several different “purely combinatorial” definitions of simple homotopy theory.
We begin by discussing the easy parts of Theorem 6.

Proposition 7. The map α : N(Setns
∆ )→ N(Ccell) is a weak homotopy equivalence.

Proof. In the previous lecture, we saw that a Cartesian fibration P → Q with weakly contractible fibers
induces a cell-lie map N(P ) → N(Q). Consequently, the construction P 7→ N(P ) can be regarded as a
functor from Ccell to Setns

∆ . This functor defines a map of simplicial sets α′ : N(Setns
∆ ) → N(Ccell). We will

show that α′ is homotopy inverse to α.
Consider first the composition α′ ◦ α, which is given by taking the nerve of the subdivision functor

Sd : Setns
∆ → Setns

∆ . For any nonsingular simplicial set X, there is a canonical map Sd(X) → X, which
carries a nondegenerate n-simplex of Sd(X) given by a chain

σ0 ⊆ · · · ⊆ σn

to the n-simplex of X given by the composite map

∆n f→ σn → X,

where f carries the ith vertex of ∆n to the last vertex of σi. We claim that this map is cell-like (so that it
determines a homotopy from α′ ◦ α to the identity). Invoking the criterion of the previous lecture, we are
reduced to showing that the map of posets Σ(Sd(X)) → Σ(X) has weakly contractible fibers. Unwinding
the definitions, we see that the inverse image of a simplex σ ∈ Σ(X) can be identified with the partially
ordered set S of chains

~τ = {τ0 ⊂ σ1 ⊂ · · · ⊂ τn}

in Σ(X) which have the property that σ ⊆ τn and the vertices of σ are precisely those vertices of τn which
occur as the final vertex of some τi.

Let d be the dimension of σ and for 0 ≤ i ≤ d let σi ⊆ σ be the facet spanned by the first (i+ 1)-vertices
of σ. Let Si ⊆ S be the subset consisting of those chains ~τ which satisfy τj = σj for j ≤ i, and let S′i ⊆ Si
be the further subset consisting of those chains ~τ where σi+1 ⊆ τi+1; by convention, we let S′−1 = S. Note
that each Si is a deformation retract of S′i−1 (by the construction ~τ 7→ ~τ ∪ {σi}) and that each S′i is a
deformation retract of Si (by the construction ~τ 7→ {τj : j ≤ i or σi+1 ⊆ τj}. It follows that S is weakly
homotopy equivalent to Sd and therefore weakly contractible (since Sd has a smallest element given by the
chain {σ0 ⊂ σ1 ⊂ · · · ⊂ σd}.

Let us now consider the other composition α ◦ α′, which is induced by the functor Ccell → Ccell given
by P 7→ Chain(P ). We claim that this induces a map N(Ccell) → N(Ccell) which is homotopic to the
identity. To see this, we assign to each finite partially ordered set P another finite partially ordered set
T (P ) = {(p, σ) ∈ P ×Chain(P ) : (∀p′ ∈ σ)p ≤ p′}. It is not difficult to see that T determines a functor from
Ccell to itself and that the projection maps

P ← T (P )→ Chain(P )

are Cartesian fibrations with weakly contractible fibers (those fibers are posets of the form {q ∈ P : q ≤ p}
and Chain({q ∈ P : q ≥ p}) for some p ∈ P , respectively).

Proposition 8. The map β : N(Ccell)→ N(Ccof) is a weak homotopy equivalence.

The proof of Proposition 8 is a bit more involved. First, we recall that the subdivision Sd(X) can be
defined for an arbitrary simplicial set by setting

Sd(X) = lim−→
∆n→X

Sd(∆n)

(this definition agrees with our earlier definition Sd(X) = N(Σ(X)) in the case where X is nonsingular). For
any X, there is a canonical map ρX : Sd(X)→ X which is given by the colimit of the maps Sd(∆n)→ ∆n
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which assign to each facet of ∆n its final vertex. We saw in the proof of Proposition 7 that this map is
a weak homotopy equivalence (in fact, even cell-like) when X is nonsingular. It follows formally (working
simplex-by-simplex) that ρX is always a weak homotopy equivalence.

We now define a map δ : Sd(N(Cop
cof)) → N(Cop

cell). To give such a map, we must associate to every
n-simplex e : ∆n → N(Cop

cof) a map Sd(∆n)→ N(Cop
cell), which we can identify with a functor v : Σ(∆n)op →

Ccell. The simplex e is given by a diagram

P0 ← P1 ← P2 ← · · · ← Pn

of finite partially ordered sets and left cofinal maps. Let P =
⋃
Pi be equipped with the partial ordering

described in Definition 3. Given a pair of chains σ, σ′ ∈ Chain(P ), we will write σ ≤ σ′ if p ≤ p′ for every
p ∈ σ and p′ ∈ σ′ (of course, it suffices to check this when p is the largest element of σ and p′ is the least
element of σ′).

Let τ be an m-dimensional facet of ∆n, corresponding to a set

{i0 < · · · < im} ⊆ {0 < 1 < · · · < n}.

We define v : Σ(∆n)op → Ccell by the formula

v(τ) = {(σ0, . . . , σm) ∈ Chain(Pi0)× · · · × Chain(Pim)|σ0 ≤ σ1 ≤ · · · ≤ σm.}

It is easy to see that every inclusion of facets τ ′ ⊆ τ induces a Cartesian fibration v(τ)→ v(τ ′), and we saw
in Proposition 1 that such maps have weakly contractible fibers. This completes the construction of the map
δ.

We claim that δ supplies a homotopy inverse to β. More precisely, we claim that the composite maps

Sd(N(Cop
cell))

Sd(β)→ Sd(N(Cop
cof))

δ→ N(Cop
cell)

and

Sd(N(Cop
cof))

δ→ N(Cop
cell)

β→ N(Cop
cof)

are homotopic to the natural maps

ρN(Cop
cell)

: Sd(N(Cop
cell))→ N(Cop

cell)

ρN(Cop
cof )

: Sd(N(Cop
cof))→ N(Cop

cof).

To prove the second of these statements, we will construct a homotopy

h : Sd(N(Cop
cof)×∆1)→ N(Cop

cof).

To define h, we need to supply for each n-simplex e : ∆n → Sd(N(Cop
cell) a functor v : Σ(∆n ×∆1)op → Ccell.

Let us regard e as given by a diagram
P0 ← · · · ← Pn

of left cofinal maps, and let P =
⋃
Pi be defined as above. For p ∈ P and σ ∈ Chain(p), we will write p ≤ σ

if p ≤ q for each q ∈ σ. For p ∈ Pi and q ∈ Pj , we will write p← q if i ≤ j and p is the image of q under the
map Pj → Pi (note that this implies that p ≤ q).

Let τ be a simplex of ∆n ×∆1, which we can identify with a chain

{(i1, 0) < · · · < (im, 0) < (j1, 1) < · · · < (jm′ , 1)} ⊆ [n]× [1].

We then define

v(τ) = {(p1, . . . , pm, σ1, . . . , σ
′
m) ∈ Pi1×· · ·×Pim×Chain(Pj1)×· · ·×Chain(Pjm′ )|p1 ← p2 ← · · · ← pm ≤ σ1 ≤ · · · ≤ σm′}.
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Every inclusion τ ′ ⊆ τ induces a map of partially ordered sets θ : v(τ)→ v(τ ′). We claim that each of these
maps is left cofinal. To prove this, we may assume without loss of generality that τ ′ is obtained from τ by
omitting a single vertex. If this vertex has the form (ia, 0) for a < m, then θ is an isomorphism and there is
nothing to prove. If the vertex has the form (jb, 1), then θ is a Cartesian fibration whose fibers are of the
type analyzed in the proof of Proposition 1, and therefore weakly contractible. it therefore suffices to treat
the case where τ ′ is obtained from τ by omitting the vertex (im, 0) (in which case we must have m > 0).
If m = 1, then θ is a Cartesian fibration whose fibers have the form {p ∈ Pim : p ≤ p′} for some p′ ∈ Pim ,
and is therefore a weak homotopy equivalence. Let us therefore assume that m > 1. Fix an element of v(τ ′)
given by a sequence (p1, . . . , pm−1, σ1, . . . , σm); we wish to show that the partially ordered set

S = {(p′1, . . . , p′m, σ′1, . . . , σ′m) ∈ v(τ)|pm−1 ≤ p′m−1 and σj ⊆ σ′j}

Let S′ be the subset of S consisting of those tuples where σ′j = σj for all j. The inclusion S′ ↪→ S admits
a right adjoint and is therefore a weak homotopy equivalence. It will therefore suffice to show that S′ is
weakly contractible. Unwinding the definitions, we see that S′ either has the form

{p′m ∈ Pim : pm−1 ≤ p′m ≤ σ′1} or {p′m ∈ Pim : pm−1 ≤ p′m}

depending on whether or not m′ = 0. In the former case, S′ has a largest element; in the latter, it is weakly
contractible by virtue of the left cofinality of Pim → Pim−1 .

The above analysis shows that the homotopy h is a well-defined map of simplicial sets. It follows from
unwinding the definitions that the restriction of h to Sd(N(Cop

cof)×{0}) is given by ρN(Cop
cof )

and the restriction

of h to Sd(N(Cop
cof)× {0}) agrees with β ◦ δ.

To construct the other homotopy, it suffices to observe that if the maps

P0 ← P1 ← · · · ← Pn

are Cartesian fibrations with contractible fibers, then each of the maps v(τ)→ v(τ ′) has the same property
(arguing as above, this reduces easily to the case where τ ′ is obtained from τ by omitting the vertex (im, 0)
and where m > 1, in which case the desired result can be deduced from the assumption that the map
Pim → Pim−1 is a Cartesian fibration). Consequently, the restriction of h to Sd(N(Cop

cell) × ∆1) factors
through N(Cop

cell), and determines a homotopy from ρN(Cop
cell)

to δ ◦ Sd(β).
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