Lecture 9: Sheaves

February 11, 2018

Recall that a category X is a topos if there exists an equivalence X ~ Shv(€), where € is a small category
(which can be assumed to admit finite limits) equipped with a Grothendieck topology. In this lecture, we
will describe some of the important categorical properties enjoyed by topoi. Our main goal is to prove the
following:

Theorem 1. Fvery topos is a pretopos.
The main ingredient we will need in the proof of Theorem 1 is the following:

Theorem 2. Let C be a small category which admits finite limits and is equipped with a Grothendieck
topology. The inclusion functor Shv(€C) — Fun(C°P,8) admits a left adjoint L : Fun(C’?,8§) — Shv(C).
Moreover, the functor L preserves finite limits.

For any presheaf .7, we will refer to L.% as the sheafification of %.
Let us first show that Theorem 2 implies Theorem 1. Let X be a topos, and write X = Shv(C) where €
is a small category (which admits finite limits). We proceed in several steps.

Lemma 3. The category X admits arbitrary inverse limits.

Proof. We first note that the category Set admits arbitrary inverse limits. It follows that the category
Fun(C°?, 8et) of presheaves admits arbitrary inverse limits. These are just computed pointwise (by the
formula (I&H Fa)(C) = l&n(ﬁ‘a(C’)) for C € C). It follows from this description that if each %, is a sheaf,
then so is the inverse limit .% = @1? «; in this case, .# is also a limit of the diagram {.%,} in the category
Shv(C). O

Lemma 4. The category X admits arbitrary colimits (that is, direct limits).

Proof. Since the category Set has all colimits, it follows that Fun(C°P, Set) admits arbitrary colimits (which
are again computed pointwise by the formula (hﬂ F4)(C) = hﬂ(ﬁ «(C)) for C' € €). This construction
generally does not carry sheaves to sheaves. However, we can obtain a sheaf .# by applying the sheafification
functor L to hglﬁ «- Note that, for any sheaf ¢4, we have canonical bijections

Homgyy(e)(#,¥) = Homgny(e)(Llim .70, 9)
= HomF‘un(@‘)p,Set) (h%nl yay g)
= @HomFun(e"p,Sct)(L@a7g)'

It follows that if each .#, is a sheaf, then L@(ﬂa) is a colimit of the diagram {.%,} in the category
Shv(C). O

Lemma 5. FEvery equivalence relation in X is effective.



Proof. Let % be a sheaf and let Z C % x . be an equivalence relation on .%. Then, for every object
C € C, we can view Z(C) as an equivalence relation on .% (C). Set &(C) = #(C)/ %(C). The construction
C +— &(C) determines a presheaf of sets on C, given by the coequalier of the two projection maps m, 7’ :
X — F in the category Fun(C°?, Set). It follows that the sheafification L & is a coequalizer of 7 and 7’ in
the category Shv(€). To show that Z is effective, we must show that the canonical map § : Z — F X e F
is an isomorphism. Note that we can identify § with the canonical map

L(F xeF)—= LTI xsL.F,
which is an isomorphism because the sheafification functor L preserves finite limits. O

Lemma 6. Coproducts in X are disjoint.

Proof. Let . and ¢ be sheaves, and let # 119 denote the coproduct of . and ¥ in the category of presheaves
(given by the formula (F I1¥)(C) = .Z(C)LL¥(C)). Then the sheafification L(.# I1¥) is a coproduct of .F
and ¢ in the category of sheaves. We wish to show that the fiber product

FXyzus)¥

is an initial object of Shv(€). Since the functor L preserves finite limits, we can identify this fiber product
with L(F Xgug ¥) = L(0), where () denotes the initial object of Fun(C°?, 8et). We conclude by observing
that L carries the initial presheaf to the initial sheaf. O

Lemma 7. Colimits in the category X are universal. That is, for every morphism f : % — & in the category
X and every diagram {9} in X,q, the canonical map

hﬂ(g\xfﬁga)_)gzx%(hggu)

is an isomorphism (where the colimits are taken in the category of sheaves).
Exercise 8. Check that Lemma 7 holds when X = Set is the category of sets.

Proof of Lemma 7. Let us break with the notation used in the statement of Lemma 7 and instead write
(%n 4,) and liga (F x4 9,) for the appropriate colimits formed in the category Fun(€C°?, Set) of presheaves.
In this case, everything is computed pointwise, so that Exercise 8 shows that the map

h_I)Il(y X ga) — 7 Xg(li_r)ngOJ

[e%

is an isomorphism of presheaves. Applying the sheafification functor L (and using that it commutes with
finite limits), we deduce that the canonical map

Lh%m(ﬂ XYy — L(F Xg(li_n>1£4a))
" — LZF Xy, gL(li_II} Y4)
~ ZF XgL(lién%a).
is an isomorphism, which is the content of Lemma 7. O
Lemma 9. Suppose we are given a pullback diagram

!
g‘%j

J ar
r! if
g — =9

in the category X. If f is an effective epimorphism, then so is f'.



Proof. Set # = .F x4.F and set # = F' xq F'. Our assumption that f is an effective epimorphism
guarantees that we have a coequalizer diagram

R —=F ——=Y9

Pulling back along the map ¥’ — ¢ and applying Lemma 7, we obtain a coequalizer diagram

/ g/

R —= F
so that f’ is also an effective epimorphism. O

Proof of Theorem 1. Let X ~ Shv(C) be a topos. Then X admits finite limits (Lemma 3), equivalence
relations in X are effective (Lemma 5), X admits disjoint coproducts (Lemmas 4 and 6), pullbacks of effective
epimorphisms are effective effective epimorphisms (Lemma 9), and coproducts are preserved by pullback
(Lemma 7). In particular, X is a pretopos. O

Exercise 10. Let C be a pretopos and let €y C € be a full subcategory. Suppose that that inclusion functor
Co — C admits a left adjoint L : € — €y which preserves finite limits. Show that € is also a pretopos (when
applied to the inclusion Shv(€) < Fun(C°?, Set), this shows that Theorem 2 implies Theorem 1).

We now turn to the proof of Theorem 2. For the remainder of this lecture, we fix a small category € with
finite limits, which admits a Grothendieck topology. Recall that a functor .# : C°° — Set is a sheaf if, for
every covering {U; — X} in C, the diagram

F(X) ——1lie; Z(U) == 11 jer # Ui xx Uj)

is an equalizer in the category of sets. In what follows, we will refer to an element s € #(Y) as a section of
F over Y; given a morphism Y’ — Y in €, we denote the image of s in #(Y”) by s|y,. By definition, the
equalizer

Eq([Lier #(U:) === 11, je1 (Ui xx Uj) )

is the set of all tuples {s; € 7 (U;) }ier satistying s;|u,x yv; = sjlv,xxv;-

Given any tuple of elements {s; € %#(U;)}icr and a map g : V — X which factors as a composition
V 25 U; — X, we can form the restriction silv € Z (V). In general, this will depend on the choice of ¢ and
of the map g¢;. However, the condition s;|y, x xU; = 8 lU,; x «U; is exactly what we need in order to guarantee
that the restriction s;|y is independent of i. Put another way, we have a canonical bijection

Bo( [Lie, V) ==L, je; Ui xx Uj) ) = lm F(V),

©
vee®

where C(/gz denotes the full subcategory of €,x spanned by those maps V' — X which factor through some U;
(the factorization need not be specified). To exploit this, it will be convenient to introduce some terminology.

Definition 11. Let X be an object of €. A sieve on X is a full subcategory (?5(2 C €,x with the property
that, for each morphism U — V' in €, x, if V belongs to G(/gz then U also belongs to G;g)(. We will say that a
sieve (‘3%2 is covering if it contains a collection of maps {U; — X} which form a covering of X (with respect
to our chosen Grothendieck topology).

Exercise 12. Let {f; : U; — X} be a collection of morphisms in € having some common codomain X, and
let 6(/(2 C €, x be the full subcategory spanned by those maps g : V' — X which factor through some f;.

Show that C(/(;z is a sieve on X, which is covering sieve if and only if {f; : U; — X} is a covering,.



Applying the above discussion, we can reformulate the definition of sheaf as follows:

Definition 13. Let .# : C°? — 8et be a presheaf. Then .Z is a sheaf if and only if, for every covering sieve

0) . L
€,x € €)x, the map F(X) — hgere(/o)z Z(U) is a bijection.

We are now ready to describe the sheafification procedure explicitly.

Construction 14. Let .Z : €°P — Set be a presheaf. We define a new presheaf .Z' : €% — Set by the

formula
FHX) =lim lim F(U).

(0) (0)
el veely

Here the colimit is taken over all covering sieves G%)( on X (which we regard as a partially ordered set under
reverse inclusion).

Note that for any object X € C, the sieve C,x is always a covering. We therefore have a canonical map

az: F(X)~ lm FU)-lm lm FU)=F(X)
Uee,x el veely

(see the proof of Lemma 18 below for a more precise definition of the presheaf # T and of this map). We will
deduce Theorem 2 from the following more precise statements:

Proposition 15. For every presheaf % : C°P — Set, the composite map
7 97, gt 2ot it

exhibits F'1 as a sheafification of F. In other words, F' is a sheaf and, for every sheaf 4 : C°P — Set,
the induced map
Homgpy(e)(F11,9) — Hompyn(eor set) (F,9)
is bijective.
Proposition 16. The functor &% — F1is left exact: that is, it preserves finite limits.

Let us begin with the second statement.

Lemma 17. Let X be an object of C. Then the collection of covering sieves 652 C C/x s closed under

finite intersections.

Proof. Let (3%)( and 652 be covering sieves on X. Then G(/(;z contains a covering {U; — X };cr and (3(/2

contains a covering {V; — X },cs. Since coverings are closed under pullback, the collection of maps {U; x x
V; = Ui}jes is a covering for each i € I. It follows that the collection of composite maps {U; x x V; — X} is

a covering of X. We conclude by observing that each of these maps is contained in the sieve 652 N 651)2 O
Proof of Proposition 16. Fix an object X € €, and regard the construction
# o ZHX) =l lim F(O)
e veey
as a functor of the presheaf .#. It follows from Lemma 17 that the colimit appearing in this expression
is filtered (it is taken over a directed poset), and therefore commutes with finite limits. Since limits in

Fun(C°?, 8et) are computed pointwise, it follows that the construction &% — F T commutes with finite
limits. O



Lemma 18. Let .F : C°° — Set be a presheaf and let 4 : C°P — Set be a sheaf. Then composition with
g F — F induces a bijection

HomFun((‘,’Op,Set)(yTvg) — HomFun(CDP,Set) (ﬂ\vg)
Proof. We begin by giving a more precise definition of the functor .# T and of the natural map o : . F — F f,
For this, we need an auxiliary construction:

Notation 19. We define a category Cov(€) as follows:

e The objects of Cov(C) are pairs (X, G%)(), where X € Cis an object and G(/gz C €/ x is a covering sieve.

e Given a pair of objects (X, C(/gg),(Y, (‘35(;2) € Cov(€), a morphism from (X, (‘,’5(;)() to (Y, @5(2) is a

morphism « : X — Y in the category C with property that, for every morphism U — X belonging to
the sieve G(/g)(, the composite map U — X - Y belongs to the sieve 6501;.

We have evident functors i : € — Cov(C) and p : Cov(€) — €, given by the formulae

i(X)=(X,€x)  p(X.C}) =X

Composition with ¢ and p determines pullback functors
i* : Fun(Cov(@)°P, 8et) — Fun(C?, Set) p" : Fun(€°P, 8et) — Fun(Cov(C)°P, Set).

The functor ¢* admits a right adjoint i, : Fun(€°?, 8et) — Fun(Cov(C€)°P, 8et) (given by right Kan extension
along 7), and the functor p* admits a left adjoint py Fun(Cov(€)°P, 8et) — Fun(C°", Set) (given by left Kan
extension along p). Concretely, we have

) 0 . . 0

W(P)XCR) ~ lim FU) () (X) = lim 2 (X, €)R),

veely e

where the colimit is taken over the collection of all covering sieves on X. The construction % +— # T can

now be described more precisely by the formula Z' = Pri F.

Note that, since ¢ is a full faithful embedding, the natural map i*i, .# — % is an equivalence for every
presheaf .. Consequently, for any pair of presheaves .#,% € Fun(C°?, Set), we have a natural map

HomFun(COP,Set)(ngvg) = HomFun(Gof’,Set) (,D!i* 357%)
HomFun(Cov(G)OP,Set) (7'* ya P* g)

l) HOInFun(@opﬁet)(i*Z‘* ﬁ, i*p* g)

12

= HomF\Jn(G°p7Set) (97 g) :

These maps depends functorially on ¢, and are therefore (by Yoneda’s lemma) given by precomposition
with some map of presheaves % — .7 T; this gives a more precise definition of the map a# appearing in the
statement of Lemma 18. To complete the proof of Lemma 18, we must show that v is a bijection when ¥ is
a sheaf. Note that u can be identified with the canonical map

HomFun(Cov((‘?)OP,Set) (’L* 9) p* g) — HomFun(Cov(C)OP,Set) (’L* 9, Z*l*p* g)

We are therefore reduced to showing that if ¢ is a sheaf, then the unit map p* ¢ — i,i*p* ¢ is an equivalence
of presheaves on Cov(C). Unwinding the definitions, we must show that for each object (X, G(/g)(), the
canonical map
Y9(X)— Jim g(U)
veely

is a bijection, which is a translation of our hypothesis that ¢ is a sheaf (Definition 13). O



n

To complete the proof of Proposition 15, we must show that applying the functor .# — %' twice converts

any presheaf into a sheaf. This is a consequence of a more precise assertion.

Definition 20. Let .7 : C°? — Set be a functor. We will say that .% is a separated presheaf if, for every
covering {U; — X}, the natural map #(X) — [[.#(U;) is injective. Equivalently, we say that .% is a
separated presheaf if the unit map p* .F — i,.i*p* .Z is a monomorphism of presheaves on Cov(C).

Notation 21. Given a presheaf .#, an object X € C, and a covering sieve 65(2 C C/x, we let F (X, (‘3(/%)()

denote the value of the functor (i..%#) on the pair (X, 650)3), given by the direct limit .#(X, 65(;)() =
@Ueeﬁg Z(U).

Lemma 22. Let . : C°° — Set be a separated presheaf. Then, for every object X € € and every inclusion

of covering sieves G(/gz - (3(/1)2 C C/x, the restriction map F (X, 651)){) — 7 (X, 652) 1s injective.

Proof. For each object V &€ @51))(, let 65(8

composite map U — V — X belongs to 65%). We then compute

denote the sieve on V' given by those maps U — V for which the

Z(X,e%) = lim F(V)
veell
= fm FW)
veely Uty
< lim  lim F(0)
veelh veeld
fm .7 (U).

(0)
vee'y

12

O

Lemma 23. Let # : C°° — 8Set be a separated presheaf. Then, for every object X € C and every covering
sieve 652 C €/x, the canonical map 7 (X, (3(/(2) — F1(X) is injective.

Proof. Apply Lemma 22 (note that a filtered colimit of injections is still an injection). O
Lemma 24. Let .7 : C°® — Set be a separated presheaf. Then Flisa sheaf.

Proof. Let X be an object of € and let 651)2 be a covering sieve on X; we wish to show that the canonical
map
1
0:7'(x) - 7(x,ef})
is bijective. Write .Z1(X) as a filtered colimit lim , o) F(X, (?52)(). Here it suffices to take the colimit over
/X

those covering sieves G}% which are contained in (‘352 Using the notation of Lemma 22, we compute

0 . 0
Z(x,ef%) = lim F(V,e).
vee'l
We can therefore write 6 as a filtered colimit of maps

T z (0) li gt
96(/0)2 g(ll) F(V, G/V) — &I(ll) F(V),
veely veely



where G%} ranges over all covering sieves on X which are contained in G;l)z Lemma 23 guarantees that each

0o y 1s a monomorphism, so that ¢ is a monomorphism.
/
To complete the proof, we show that for each element s € limvE e FT (V), we can choose some covering
< /X

650)2 for which s belongs to the image of ). For each object V' € (‘351})(7 let sy denote the image of s in
/X

F ‘L(V). From the definition of .71, we see that there exists a covering sieve 652‘2 C €,y for which sy belongs
to the image of the monomorphism
F(v,eR) = F(V).

We now complete the proof by taking C%)( to be the smallest sieve on X which contains each of the composite
maps U — V — X, where U — V belongs to 852‘; and V — X belongs to 651))( O

Lemma 25. Let .F : C°® — Set be any presheaf. Then F1is a separated presheaf.

Proof. We argue as in the proof of Lemma 24. Fix an object X € € and let (351)2 be a covering sieve on X
we wish to show that the canonical map

0:7'(x) - 7 (x,ef})

is injective. Write 6 as as a filtered colimit of maps

Oy - Jm F(V.E[) = lm F(V),
veely veely

where (35(2 ranges over covering sieves on X that are contained in (351)2 Suppose we are given a pair of

elements s,t € @VGG(& F(V, G(/?}) which have the same image under 96(/2. For each V € (3’51)2, let sy and

ty denote the images of s and ¢ in F(V, (?5(2). Then sy and ¢y have the same image in .Z (V). It follows
that we can choose some covering sieve (3;2‘3 C C’(/(B such that sy and ¢y have the same image in .7 (V, 652‘3)
Let (‘3'/ x denote the smallest sieve on X which contains all composite maps U — V' — X, where U — V
belongs to 852‘2 and V' — X bellongs to G?l)z Then G// x Is a covering sieve, and s and ¢ have the same image
in .7 (X, €)x), hence also in F1(X). O

Proof of Proposition 15. Combine Lemmas 18, 24, and 25. O



