
Lecture 9: Sheaves

February 11, 2018

Recall that a category X is a topos if there exists an equivalence X ' Shv(C), where C is a small category
(which can be assumed to admit finite limits) equipped with a Grothendieck topology. In this lecture, we
will describe some of the important categorical properties enjoyed by topoi. Our main goal is to prove the
following:

Theorem 1. Every topos is a pretopos.

The main ingredient we will need in the proof of Theorem 1 is the following:

Theorem 2. Let C be a small category which admits finite limits and is equipped with a Grothendieck
topology. The inclusion functor Shv(C) ↪→ Fun(Cop, S) admits a left adjoint L : Fun(Cop, S) → Shv(C).
Moreover, the functor L preserves finite limits.

For any presheaf F , we will refer to LF as the sheafification of F .
Let us first show that Theorem 2 implies Theorem 1. Let X be a topos, and write X = Shv(C) where C

is a small category (which admits finite limits). We proceed in several steps.

Lemma 3. The category X admits arbitrary inverse limits.

Proof. We first note that the category Set admits arbitrary inverse limits. It follows that the category
Fun(Cop, Set) of presheaves admits arbitrary inverse limits. These are just computed pointwise (by the
formula (lim←−Fα)(C) = lim←−(Fα(C)) for C ∈ C). It follows from this description that if each Fα is a sheaf,
then so is the inverse limit F = lim←−Fα; in this case, F is also a limit of the diagram {Fα} in the category
Shv(C).

Lemma 4. The category X admits arbitrary colimits (that is, direct limits).

Proof. Since the category Set has all colimits, it follows that Fun(Cop, Set) admits arbitrary colimits (which
are again computed pointwise by the formula (lim−→Fα)(C) = lim−→(Fα(C)) for C ∈ C). This construction
generally does not carry sheaves to sheaves. However, we can obtain a sheaf F by applying the sheafification
functor L to lim−→Fα. Note that, for any sheaf G , we have canonical bijections

HomShv(C)(F ,G ) = HomShv(C)(L lim−→Fα,G )

' HomFun(Cop,Set)(lim−→Fα,G )

' lim←−HomFun(Cop,Set)(Fα,G ).

It follows that if each Fα is a sheaf, then L lim−→(Fα) is a colimit of the diagram {Fα} in the category
Shv(C).

Lemma 5. Every equivalence relation in X is effective.
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Proof. Let F be a sheaf and let R ⊆ F ×F be an equivalence relation on F . Then, for every object
C ∈ C, we can view R(C) as an equivalence relation on F (C). Set E (C) = F (C)/R(C). The construction
C 7→ E (C) determines a presheaf of sets on C, given by the coequalier of the two projection maps π, π′ :
R → F in the category Fun(Cop, Set). It follows that the sheafification LE is a coequalizer of π and π′ in
the category Shv(C). To show that R is effective, we must show that the canonical map δ : R → F ×LE F
is an isomorphism. Note that we can identify δ with the canonical map

L(F ×E F )→ LF ×LELF ,

which is an isomorphism because the sheafification functor L preserves finite limits.

Lemma 6. Coproducts in X are disjoint.

Proof. Let F and G be sheaves, and let F qG denote the coproduct of F and G in the category of presheaves
(given by the formula (F qG )(C) = F (C)qG (C)). Then the sheafification L(F qG ) is a coproduct of F
and G in the category of sheaves. We wish to show that the fiber product

F ×L(F qG ) G

is an initial object of Shv(C). Since the functor L preserves finite limits, we can identify this fiber product
with L(F ×F qG G ) = L(∅), where ∅ denotes the initial object of Fun(Cop, Set). We conclude by observing
that L carries the initial presheaf to the initial sheaf.

Lemma 7. Colimits in the category X are universal. That is, for every morphism f : F → G in the category
X and every diagram {G α} in X/G , the canonical map

lim−→
α

(F ×G G α)→ F ×G (lim−→G α)

is an isomorphism (where the colimits are taken in the category of sheaves).

Exercise 8. Check that Lemma 7 holds when X = Set is the category of sets.

Proof of Lemma 7. Let us break with the notation used in the statement of Lemma 7 and instead write
(lim−→G α) and lim−→α

(F ×G G α) for the appropriate colimits formed in the category Fun(Cop, Set) of presheaves.
In this case, everything is computed pointwise, so that Exercise 8 shows that the map

lim−→
α

(F ×G G α)→ F ×G (lim−→G α)

is an isomorphism of presheaves. Applying the sheafification functor L (and using that it commutes with
finite limits), we deduce that the canonical map

L lim−→
α

(F ×G G α) → L(F ×G (lim−→G α))

→ LF ×LGL(lim−→G α)

' F ×GL(lim−→G α).

is an isomorphism, which is the content of Lemma 7.

Lemma 9. Suppose we are given a pullback diagram

F ′ //

f ′

��

F

f

��
G ′ // G

in the category X. If f is an effective epimorphism, then so is f ′.
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Proof. Set R = F ×G F and set R′ = F ′×G ′ F ′. Our assumption that f is an effective epimorphism
guarantees that we have a coequalizer diagram

R // // F // G

Pulling back along the map G ′ → G and applying Lemma 7, we obtain a coequalizer diagram

R′ //// F ′ // G ′

so that f ′ is also an effective epimorphism.

Proof of Theorem 1. Let X ' Shv(C) be a topos. Then X admits finite limits (Lemma 3), equivalence
relations in X are effective (Lemma 5), X admits disjoint coproducts (Lemmas 4 and 6), pullbacks of effective
epimorphisms are effective effective epimorphisms (Lemma 9), and coproducts are preserved by pullback
(Lemma 7). In particular, X is a pretopos.

Exercise 10. Let C be a pretopos and let C0 ⊆ C be a full subcategory. Suppose that that inclusion functor
C0 ↪→ C admits a left adjoint L : C→ C0 which preserves finite limits. Show that C0 is also a pretopos (when
applied to the inclusion Shv(C) ↪→ Fun(Cop, Set), this shows that Theorem 2 implies Theorem 1).

We now turn to the proof of Theorem 2. For the remainder of this lecture, we fix a small category C with
finite limits, which admits a Grothendieck topology. Recall that a functor F : Cop → Set is a sheaf if, for
every covering {Ui → X} in C, the diagram

F (X) // ∏
i∈I F (Ui)

// //
∏
i,j∈I F (Ui ×X Uj)

is an equalizer in the category of sets. In what follows, we will refer to an element s ∈ F (Y ) as a section of
F over Y ; given a morphism Y ′ → Y in C, we denote the image of s in F (Y ′) by s|Y ′ . By definition, the
equalizer

Eq(
∏
i∈I F (Ui)

// //
∏
i,j∈I F (Ui ×X Uj) )

is the set of all tuples {si ∈ F (Ui)}i∈I satisfying si|Ui×XUj
= sj |Ui×XUj

.
Given any tuple of elements {si ∈ F (Ui)}i∈I and a map g : V → X which factors as a composition

V
gi−→ Ui → X, we can form the restriction si|V ∈ F (V ). In general, this will depend on the choice of i and

of the map gi. However, the condition si|Ui×XUj
= sj |Ui×XUj

is exactly what we need in order to guarantee
that the restriction si|V is independent of i. Put another way, we have a canonical bijection

Eq(
∏
i∈I F (Ui)

////
∏
i,j∈I F (Ui ×X Uj) ) ' lim←−

V ∈C(0)

/X

F (V ),

where C
(0)
/X denotes the full subcategory of C/X spanned by those maps V → X which factor through some Ui

(the factorization need not be specified). To exploit this, it will be convenient to introduce some terminology.

Definition 11. Let X be an object of C. A sieve on X is a full subcategory C
(0)
/X ⊆ C/X with the property

that, for each morphism U → V in C/X , if V belongs to C
(0)
/X then U also belongs to C

(0)
/X . We will say that a

sieve C
(0)
/X is covering if it contains a collection of maps {Ui → X} which form a covering of X (with respect

to our chosen Grothendieck topology).

Exercise 12. Let {fi : Ui → X} be a collection of morphisms in C having some common codomain X, and

let C
(0)
/X ⊆ C/X be the full subcategory spanned by those maps g : V → X which factor through some fi.

Show that C
(0)
/X is a sieve on X, which is covering sieve if and only if {fi : Ui → X} is a covering.
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Applying the above discussion, we can reformulate the definition of sheaf as follows:

Definition 13. Let F : Cop → Set be a presheaf. Then F is a sheaf if and only if, for every covering sieve

C
(0)
/X ⊆ C/X , the map F (X)→ lim−→U∈C(0)

/X

F (U) is a bijection.

We are now ready to describe the sheafification procedure explicitly.

Construction 14. Let F : Cop → Set be a presheaf. We define a new presheaf F † : Cop → Set by the
formula

F †(X) = lim−→
C

(0)

/X

lim←−
U∈C(0)

/X

F (U).

Here the colimit is taken over all covering sieves C
(0)
/X on X (which we regard as a partially ordered set under

reverse inclusion).

Note that for any object X ∈ C, the sieve C/X is always a covering. We therefore have a canonical map

αF : F (X) ' lim←−
U∈C/X

F (U)→ lim−→
C

(0)

/X

lim←−
U∈C(0)

/X

F (U) ' F †(X)

(see the proof of Lemma 18 below for a more precise definition of the presheaf F † and of this map). We will
deduce Theorem 2 from the following more precise statements:

Proposition 15. For every presheaf F : Cop → Set, the composite map

F
αF−−→ F †

αF†−−−→ F ††

exhibits F †† as a sheafification of F . In other words, F †† is a sheaf and, for every sheaf G : Cop → Set,
the induced map

HomShv(C)(F
††,G )→ HomFun(Cop,Set)(F ,G )

is bijective.

Proposition 16. The functor F 7→ F † is left exact: that is, it preserves finite limits.

Let us begin with the second statement.

Lemma 17. Let X be an object of C. Then the collection of covering sieves C
(0)
/X ⊆ C/X is closed under

finite intersections.

Proof. Let C
(0)
/X and C

(1)
/X be covering sieves on X. Then C

(0)
/X contains a covering {Ui → X}i∈I and C

(1)
/X

contains a covering {Vj → X}j∈J . Since coverings are closed under pullback, the collection of maps {Ui ×X
Vj → Ui}j∈J is a covering for each i ∈ I. It follows that the collection of composite maps {Ui×X Vj → X} is

a covering of X. We conclude by observing that each of these maps is contained in the sieve C
(0)
/X ∩C

(1)
/X .

Proof of Proposition 16. Fix an object X ∈ C, and regard the construction

F 7→ F †(X) = lim−→
C

(0)

/X

lim←−
U∈C(0)

/X

F (U)

as a functor of the presheaf F . It follows from Lemma 17 that the colimit appearing in this expression
is filtered (it is taken over a directed poset), and therefore commutes with finite limits. Since limits in
Fun(Cop, Set) are computed pointwise, it follows that the construction F 7→ F † commutes with finite
limits.
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Lemma 18. Let F : Cop → Set be a presheaf and let G : Cop → Set be a sheaf. Then composition with
αF : F → F † induces a bijection

HomFun(Cop,Set)(F
†,G )→ HomFun(Cop,Set)(F ,G ).

Proof. We begin by giving a more precise definition of the functor F † and of the natural map α : F → F †.
For this, we need an auxiliary construction:

Notation 19. We define a category Cov(C) as follows:

• The objects of Cov(C) are pairs (X,C
(0)
/X), where X ∈ C is an object and C

(0)
/X ⊆ C/X is a covering sieve.

• Given a pair of objects (X,C
(0)
/X), (Y,C

(0)
/Y ) ∈ Cov(C), a morphism from (X,C

(0)
/X) to (Y,C

(0)
/Y ) is a

morphism u : X → Y in the category C with property that, for every morphism U → X belonging to

the sieve C
(0)
/X , the composite map U → X

u−→ Y belongs to the sieve C
(0)
/Y .

We have evident functors i : C→ Cov(C) and ρ : Cov(C)→ C, given by the formulae

i(X) = (X,C/X) ρ(X,C
(0)
/X) = X

Composition with i and ρ determines pullback functors

i∗ : Fun(Cov(C)op, Set)→ Fun(Cop, Set) ρ∗ : Fun(Cop, Set)→ Fun(Cov(C)op, Set).

The functor i∗ admits a right adjoint i∗ : Fun(Cop, Set)→ Fun(Cov(C)op, Set) (given by right Kan extension
along i), and the functor ρ∗ admits a left adjoint ρ! Fun(Cov(C)op, Set) → Fun(Cop, Set) (given by left Kan
extension along ρ). Concretely, we have

i∗(F )(X,C
(0)
/X) ' lim←−

U∈C(0)

/X

F (U) ρ!(H )(X) = lim−→
C

(0)

/X

H (X,C
(0)
/X),

where the colimit is taken over the collection of all covering sieves on X. The construction F 7→ F † can
now be described more precisely by the formula F † = ρ!i∗F .

Note that, since i is a full faithful embedding, the natural map i∗i∗F → F is an equivalence for every
presheaf F . Consequently, for any pair of presheaves F ,G ∈ Fun(Cop, Set), we have a natural map

HomFun(Cop,Set)(F
†,G ) = HomFun(Cop,Set)(ρ!i∗F ,G )

' HomFun(Cov(C)op,Set)(i∗F , ρ∗ G )
u−→ HomFun(Cop,Set)(i

∗i∗F , i∗ρ∗ G )

' HomFun(Cop,Set)(F ,G ).

These maps depends functorially on G , and are therefore (by Yoneda’s lemma) given by precomposition
with some map of presheaves F → F †; this gives a more precise definition of the map αF appearing in the
statement of Lemma 18. To complete the proof of Lemma 18, we must show that u is a bijection when G is
a sheaf. Note that u can be identified with the canonical map

HomFun(Cov(C)op,Set)(i∗F , ρ∗ G )→ HomFun(Cov(C)op,Set)(i∗F , i∗i
∗ρ∗ G ).

We are therefore reduced to showing that if G is a sheaf, then the unit map ρ∗ G → i∗i
∗ρ∗ G is an equivalence

of presheaves on Cov(C). Unwinding the definitions, we must show that for each object (X,C
(0)
/X), the

canonical map
G (X)→ lim←−

U∈C(0)

/X

G (U)

is a bijection, which is a translation of our hypothesis that G is a sheaf (Definition 13).
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To complete the proof of Proposition 15, we must show that applying the functor F 7→ F † twice converts
any presheaf into a sheaf. This is a consequence of a more precise assertion.

Definition 20. Let F : Cop → Set be a functor. We will say that F is a separated presheaf if, for every
covering {Ui → X}, the natural map F (X) →

∏
F (Ui) is injective. Equivalently, we say that F is a

separated presheaf if the unit map ρ∗F → i∗i
∗ρ∗F is a monomorphism of presheaves on Cov(C).

Notation 21. Given a presheaf F , an object X ∈ C, and a covering sieve C
(0)
/X ⊆ C/X , we let F (X,C

(0)
/X)

denote the value of the functor (i∗F ) on the pair (X,C
(0)
/X), given by the direct limit F (X,C

(0)
/X) =

lim←−U∈C(0)

/X

F (U).

Lemma 22. Let F : Cop → Set be a separated presheaf. Then, for every object X ∈ C and every inclusion

of covering sieves C
(0)
/X ⊆ C

(1)
/X ⊆ C/X , the restriction map F (X,C

(1)
/X)→ F (X,C

(0)
/X) is injective.

Proof. For each object V ∈ C
(1)
/X , let C

(0)
/V denote the sieve on V given by those maps U → V for which the

composite map U → V → X belongs to C
(0)
/U . We then compute

F (X,C
(1)
/X) = lim←−

V ∈C(1)

/X

F (V )

= lim←−
V ∈C(1)

/X

lim←−
U∈C/V

F (U)

↪→ lim←−
V ∈C(1)

/X

lim←−
U∈C(0)

/V

F (U)

' lim←−
U∈C(0)

/X

F (U).

Lemma 23. Let F : Cop → Set be a separated presheaf. Then, for every object X ∈ C and every covering

sieve C
(0)
/X ⊆ C/X , the canonical map F (X,C

(0)
/X)→ F †(X) is injective.

Proof. Apply Lemma 22 (note that a filtered colimit of injections is still an injection).

Lemma 24. Let F : Cop → Set be a separated presheaf. Then F † is a sheaf.

Proof. Let X be an object of C and let C
(1)
/X be a covering sieve on X; we wish to show that the canonical

map

θ : F †(X)→ F †(X,C
(1)
/X)

is bijective. Write F †(X) as a filtered colimit lim−→C
(0)

/X

F (X,C
(0)
/X). Here it suffices to take the colimit over

those covering sieves C
(0)
/X which are contained in C

(1)
/X . Using the notation of Lemma 22, we compute

F (X,C
(0)
/X) = lim←−

V ∈C(1)

/X

F (V,C
(0)
/V ).

We can therefore write θ as a filtered colimit of maps

θ
C

(0)

/X

: lim←−
V ∈C(1)

/X

F (V,C
(0)
/V )→ lim←−

V ∈C(1)

/X

F †(V ),
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where C
(0)
/X ranges over all covering sieves on X which are contained in C

(1)
/X . Lemma 23 guarantees that each

θ
C

(0)

/
X

is a monomorphism, so that θ is a monomorphism.

To complete the proof, we show that for each element s ∈ lim←−V ∈C(1)

/X

F †(V ), we can choose some covering

C
(0)
/X for which s belongs to the image of θ

C
(0)

/X

. For each object V ∈ C
(1)
/X , let sV denote the image of s in

F †(V ). From the definition of F †, we see that there exists a covering sieve C
(2)
/V ⊆ C/V for which sV belongs

to the image of the monomorphism

F (V,C
(2)
/V ) ↪→ F †(V ).

We now complete the proof by taking C
(0)
/X to be the smallest sieve on X which contains each of the composite

maps U → V → X, where U → V belongs to C
(2)
/V and V → X belongs to C

(1)
/X .

Lemma 25. Let F : Cop → Set be any presheaf. Then F † is a separated presheaf.

Proof. We argue as in the proof of Lemma 24. Fix an object X ∈ C and let C
(1)
/X be a covering sieve on X;

we wish to show that the canonical map

θ : F †(X)→ F †(X,C
(1)
/X)

is injective. Write θ as as a filtered colimit of maps

θ
C

(0)

/X

: lim←−
V ∈C(1)

/X

F (V,C
(0)
/V )→ lim←−

V ∈C(1)

/X

F †(V ),

where C
(0)
/X ranges over covering sieves on X that are contained in C

(1)
/X . Suppose we are given a pair of

elements s, t ∈ lim←−V ∈C(1)

/X

F (V,C
(0)
/V ) which have the same image under θ

C
(0)

/X

. For each V ∈ C
(1)
/X , let sV and

tV denote the images of s and t in F (V,C
(0)
/V ). Then sV and tV have the same image in F †(V ). It follows

that we can choose some covering sieve C
(2)
/V ⊆ C

(0)
/V such that sV and tV have the same image in F (V,C

(2)
/V ).

Let C′/X denote the smallest sieve on X which contains all composite maps U → V → X, where U → V

belongs to C
(2)
/V and V → X bellongs to C

(1)
/X . Then C′/X is a covering sieve, and s and t have the same image

in F (X,C′/X), hence also in F †(X).

Proof of Proposition 15. Combine Lemmas 18, 24, and 25.
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