Lecture 9: Sheaves

February 11, 2018

Recall that a category \mathcal{X} is a *topos* if there exists an equivalence $\mathcal{X} \simeq \text{Shv}(\mathcal{C})$, where \mathcal{C} is a small category (which can be assumed to admit finite limits) equipped with a Grothendieck topology. In this lecture, we will describe some of the important categorical properties enjoyed by topoi. Our main goal is to prove the following:

Theorem 1. Every topos is a pretopos.

The main ingredient we will need in the proof of Theorem 1 is the following:

Theorem 2. Let \mathcal{C} be a small category which admits finite limits and is equipped with a Grothendieck topology. The inclusion functor $\operatorname{Shv}(\mathcal{C}) \hookrightarrow \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \mathcal{S})$ admits a left adjoint $L : \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \mathcal{S}) \to \operatorname{Shv}(\mathcal{C})$. Moreover, the functor L preserves finite limits.

For any presheaf \mathscr{F} , we will refer to $L\mathscr{F}$ as the *sheafification of* \mathscr{F} .

Let us first show that Theorem 2 implies Theorem 1. Let \mathcal{X} be a topos, and write $\mathcal{X} = \text{Shv}(\mathcal{C})$ where \mathcal{C} is a small category (which admits finite limits). We proceed in several steps.

Lemma 3. The category \mathfrak{X} admits arbitrary inverse limits.

Proof. We first note that the category Set admits arbitrary inverse limits. It follows that the category Fun(\mathcal{C}^{op} , Set) of presheaves admits arbitrary inverse limits. These are just computed pointwise (by the formula $(\lim_{\alpha \to \infty} \mathscr{F}_{\alpha})(C) = \lim_{\alpha \to \infty} (\mathscr{F}_{\alpha}(C))$ for $C \in \mathcal{C}$). It follows from this description that if each \mathscr{F}_{α} is a sheaf, then so is the inverse limit $\mathscr{F} = \lim_{\alpha \to \infty} \mathscr{F}_{\alpha}$; in this case, \mathscr{F} is also a limit of the diagram $\{\mathscr{F}_{\alpha}\}$ in the category Shv(\mathcal{C}).

Lemma 4. The category \mathfrak{X} admits arbitrary colimits (that is, direct limits).

Proof. Since the category Set has all colimits, it follows that $\operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set})$ admits arbitrary colimits (which are again computed pointwise by the formula $(\varinjlim \mathscr{F}_{\alpha})(C) = \varinjlim (\mathscr{F}_{\alpha}(C))$ for $C \in \mathcal{C}$). This construction generally does not carry sheaves to sheaves. However, we can obtain a sheaf \mathscr{F} by applying the sheafification functor L to $\lim \mathscr{F}_{\alpha}$. Note that, for any sheaf \mathscr{G} , we have canonical bijections

$$\begin{aligned} \operatorname{Hom}_{\operatorname{Shv}(\mathbb{C})}(\mathscr{F},\mathscr{G}) &= \operatorname{Hom}_{\operatorname{Shv}(\mathbb{C})}(L \varinjlim \mathscr{F}_{\alpha}, \mathscr{G}) \\ &\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set})}(\varinjlim \mathscr{F}_{\alpha}, \mathscr{G}) \\ &\simeq \operatorname{lim} \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set})}(\mathscr{F}_{\alpha}, \mathscr{G}). \end{aligned}$$

It follows that if each \mathscr{F}_{α} is a sheaf, then $L \varinjlim (\mathscr{F}_{\alpha})$ is a colimit of the diagram $\{\mathscr{F}_{\alpha}\}$ in the category $Shv(\mathcal{C})$.

Lemma 5. Every equivalence relation in \mathfrak{X} is effective.

Proof. Let \mathscr{F} be a sheaf and let $\mathscr{R} \subseteq \mathscr{F} \times \mathscr{F}$ be an equivalence relation on \mathscr{F} . Then, for every object $C \in \mathbb{C}$, we can view $\mathscr{R}(C)$ as an equivalence relation on $\mathscr{F}(C)$. Set $\mathscr{E}(C) = \mathscr{F}(C)/\mathscr{R}(C)$. The construction $C \mapsto \mathscr{E}(C)$ determines a presheaf of sets on \mathbb{C} , given by the coequalier of the two projection maps $\pi, \pi' : \mathscr{R} \to \mathscr{F}$ in the category Fun(\mathbb{C}^{op} , Set). It follows that the sheafification $L\mathscr{E}$ is a coequalizer of π and π' in the category Shv(\mathbb{C}). To show that \mathscr{R} is effective, we must show that the canonical map $\delta : \mathscr{R} \to \mathscr{F} \times_{L\mathscr{E}} \mathscr{F}$ is an isomorphism. Note that we can identify δ with the canonical map

$$L(\mathscr{F}\times_{\mathscr{E}}\mathscr{F})\to L\mathscr{F}\times_{L\mathscr{E}}L\mathscr{F},$$

which is an isomorphism because the sheafification functor L preserves finite limits.

Lemma 6. Coproducts in \mathcal{X} are disjoint.

Proof. Let \mathscr{F} and \mathscr{G} be sheaves, and let $\mathscr{F} \amalg \mathscr{G}$ denote the coproduct of \mathscr{F} and \mathscr{G} in the category of presheaves (given by the formula $(\mathscr{F} \amalg \mathscr{G})(C) = \mathscr{F}(C) \amalg \mathscr{G}(C)$). Then the sheafification $L(\mathscr{F} \amalg \mathscr{G})$ is a coproduct of \mathscr{F} and \mathscr{G} in the category of sheaves. We wish to show that the fiber product

$$\mathscr{F} \times_{L(\mathscr{F} \amalg \mathscr{G})} \mathscr{G}$$

is an initial object of Shv(\mathcal{C}). Since the functor L preserves finite limits, we can identify this fiber product with $L(\mathscr{F} \times_{\mathscr{F}\amalg\mathscr{G}}\mathscr{G}) = L(\emptyset)$, where \emptyset denotes the initial object of Fun($\mathcal{C}^{\mathrm{op}}$, Set). We conclude by observing that L carries the initial presheaf to the initial sheaf.

Lemma 7. Colimits in the category \mathfrak{X} are universal. That is, for every morphism $f : \mathscr{F} \to \mathscr{G}$ in the category \mathfrak{X} and every diagram $\{\mathscr{G}_{\alpha}\}$ in $\mathfrak{X}_{/\mathscr{G}}$, the canonical map

$$\varinjlim_{\alpha}(\mathscr{F}\times_{\mathscr{G}}\mathscr{G}_{\alpha})\to\mathscr{F}\times_{\mathscr{G}}(\varinjlim^{\mathscr{G}}\mathscr{G}_{\alpha})$$

is an isomorphism (where the colimits are taken in the category of sheaves).

Exercise 8. Check that Lemma 7 holds when $\mathcal{X} =$ Set is the category of sets.

Proof of Lemma 7. Let us break with the notation used in the statement of Lemma 7 and instead write $(\varinjlim \mathscr{G}_{\alpha})$ and $\varinjlim_{\alpha} (\mathscr{F} \times_{\mathscr{G}} \mathscr{G}_{\alpha})$ for the appropriate colimits formed in the category Fun(\mathcal{C}^{op} , Set) of presheaves. In this case, everything is computed pointwise, so that Exercise 8 shows that the map

$$\varinjlim_{\alpha}(\mathscr{F}\times_{\mathscr{G}}\mathscr{G}_{\alpha})\to\mathscr{F}\times_{\mathscr{G}}(\varinjlim^{\mathscr{G}}\mathscr{G}_{\alpha})$$

is an isomorphism of *presheaves*. Applying the sheafification functor L (and using that it commutes with finite limits), we deduce that the canonical map

$$\begin{array}{rcl} L \varinjlim_{\alpha}(\mathscr{F} \times_{\mathscr{G}} \mathscr{G}_{\alpha}) & \to & L(\mathscr{F} \times_{\mathscr{G}}(\varinjlim \mathscr{G}_{\alpha})) \\ & \to & L \, \mathscr{F} \times_{L \, \mathscr{G}} L(\varinjlim \mathscr{G}_{\alpha}) \\ & \simeq & \mathscr{F} \times_{\mathscr{G}} L(\varinjlim \mathscr{G}_{\alpha}). \end{array}$$

is an isomorphism, which is the content of Lemma 7.

Lemma 9. Suppose we are given a pullback diagram

 $\begin{array}{c} \mathcal{G} \\ \mathcal{G}' \\$

in the category \mathfrak{X} . If f is an effective epimorphism, then so is f'.

 $\mathbf{2}$

Proof. Set $\mathscr{R} = \mathscr{F} \times_{\mathscr{G}} \mathscr{F}$ and set $\mathscr{R}' = \mathscr{F}' \times_{\mathscr{G}'} \mathscr{F}'$. Our assumption that f is an effective epimorphism guarantees that we have a coequalizer diagram

$$\mathscr{R} \Longrightarrow \mathscr{F} \longrightarrow \mathscr{G}$$

Pulling back along the map $\mathscr{G}' \to \mathscr{G}$ and applying Lemma 7, we obtain a coequalizer diagram

$$\mathscr{R}' \Longrightarrow \mathscr{F}' \longrightarrow \mathscr{G}'$$

so that f' is also an effective epimorphism.

Proof of Theorem 1. Let $\mathfrak{X} \simeq \text{Shy}(\mathfrak{C})$ be a topos. Then \mathfrak{X} admits finite limits (Lemma 3), equivalence relations in \mathcal{X} are effective (Lemma 5), \mathcal{X} admits disjoint coproducts (Lemmas 4 and 6), pullbacks of effective epimorphisms are effective effective epimorphisms (Lemma 9), and coproducts are preserved by pullback (Lemma 7). In particular, \mathcal{X} is a pretopos.

Exercise 10. Let \mathcal{C} be a pretopos and let $\mathcal{C}_0 \subseteq \mathcal{C}$ be a full subcategory. Suppose that that inclusion functor $\mathcal{C}_0 \hookrightarrow \mathcal{C}$ admits a left adjoint $L : \mathcal{C} \to \mathcal{C}_0$ which preserves finite limits. Show that \mathcal{C}_0 is also a pretopos (when applied to the inclusion $Shv(\mathcal{C}) \hookrightarrow Fun(\mathcal{C}^{op}, Set)$, this shows that Theorem 2 implies Theorem 1).

We now turn to the proof of Theorem 2. For the remainder of this lecture, we fix a small category $\mathcal C$ with finite limits, which admits a Grothendieck topology. Recall that a functor $\mathscr{F}: \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ is a *sheaf* if, for every covering $\{U_i \to X\}$ in \mathcal{C} , the diagram

$$\mathscr{F}(X) \longrightarrow \prod_{i \in I} \mathscr{F}(U_i) \Longrightarrow \prod_{i,j \in I} \mathscr{F}(U_i \times_X U_j)$$

is an equalizer in the category of sets. In what follows, we will refer to an element $s \in \mathscr{F}(Y)$ as a section of \mathscr{F} over Y; given a morphism $Y' \to Y$ in \mathscr{C} , we denote the image of s in $\mathscr{F}(Y')$ by $s|_{Y'}$. By definition, the equalizer

Eq(
$$\prod_{i \in I} \mathscr{F}(U_i) \Longrightarrow \prod_{i,j \in I} \mathscr{F}(U_i \times_X U_j)$$
)

is the set of all tuples $\{s_i \in \mathscr{F}(U_i)\}_{i \in I}$ satisfying $s_i|_{U_i \times_X U_j} = s_j|_{U_i \times_X U_j}$. Given any tuple of elements $\{s_i \in \mathscr{F}(U_i)\}_{i \in I}$ and a map $g: V \to X$ which factors as a composition $V \xrightarrow{g_i} U_i \to X$, we can form the restriction $s_i|_V \in \mathscr{F}(V)$. In general, this will depend on the choice of i and of the map g_i . However, the condition $s_i|_{U_i \times_X U_j} = s_j|_{U_i \times_X U_j}$ is exactly what we need in order to guarantee that the restriction $s_i|_V$ is independent of i. Put another way, we have a canonical bijection

$$\operatorname{Eq}(\prod_{i\in I}\mathscr{F}(U_i) \Longrightarrow \prod_{i,j\in I} \mathscr{F}(U_i \times_X U_j)) \simeq \varprojlim_{V \in \mathfrak{C}_{/X}^{(0)}} \mathscr{F}(V),$$

where $\mathcal{C}_{X}^{(0)}$ denotes the full subcategory of \mathcal{C}_{X} spanned by those maps $V \to X$ which factor through some U_i (the factorization need not be specified). To exploit this, it will be convenient to introduce some terminology.

Definition 11. Let X be an object of C. A sieve on X is a full subcategory $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$ with the property that, for each morphism $U \to V$ in $\mathcal{C}_{/X}$, if V belongs to $\mathcal{C}_{/X}^{(0)}$ then U also belongs to $\mathcal{C}_{/X}^{(0)}$. We will say that a sieve $\mathcal{C}_{/X}^{(0)}$ is covering if it contains a collection of maps $\{U_i \to X\}$ which form a covering of X (with respect to our chosen Grothendieck topology).

Exercise 12. Let $\{f_i: U_i \to X\}$ be a collection of morphisms in C having some common codomain X, and let $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$ be the full subcategory spanned by those maps $g: V \to X$ which factor through some f_i . Show that $\mathcal{C}_{/X}^{(0)}$ is a sieve on X, which is covering sieve if and only if $\{f_i : U_i \to X\}$ is a covering.

Applying the above discussion, we can reformulate the definition of sheaf as follows:

Definition 13. Let $\mathscr{F} : \mathbb{C}^{\text{op}} \to \text{Set}$ be a presheaf. Then \mathscr{F} is a sheaf if and only if, for every covering sieve $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$, the map $\mathscr{F}(X) \to \varinjlim_{U \in \mathcal{C}_{/X}} \mathscr{F}(U)$ is a bijection.

We are now ready to describe the sheafification procedure explicitly.

Construction 14. Let $\mathscr{F} : \mathscr{C}^{\mathrm{op}} \to \mathsf{Set}$ be a presheaf. We define a new presheaf $\mathscr{F}^{\dagger} : \mathscr{C}^{\mathrm{op}} \to \mathsf{Set}$ by the formula

$$\mathscr{F}^{\dagger}(X) = \varinjlim_{\substack{\longrightarrow \\ C_{/X}^{(0)}}} \varprojlim_{U \in \mathfrak{C}_{/X}^{(0)}} \mathscr{F}(U).$$

Here the colimit is taken over all covering sieves $C_{/X}^{(0)}$ on X (which we regard as a partially ordered set under reverse inclusion).

Note that for any object $X \in \mathcal{C}$, the sieve $\mathcal{C}_{/X}$ is always a covering. We therefore have a canonical map

$$\alpha_{\mathscr{F}}:\mathscr{F}(X)\simeq \varprojlim_{U\in \mathfrak{C}_{/X}}\mathscr{F}(U)\to \varinjlim_{\mathfrak{C}_{/X}^{(0)}}\varprojlim_{U\in \mathfrak{C}_{/X}^{(0)}}\mathscr{F}(U)\simeq \mathscr{F}^{\dagger}(X)$$

(see the proof of Lemma 18 below for a more precise definition of the presheaf \mathscr{F}^{\dagger} and of this map). We will deduce Theorem 2 from the following more precise statements:

Proposition 15. For every presheaf $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$, the composite map

$$\mathscr{F} \xrightarrow{\alpha_{\mathscr{F}}} \mathscr{F}^{\dagger} \xrightarrow{\alpha_{\mathscr{F}^{\dagger}}} \mathscr{F}^{\dagger \dagger}$$

exhibits $\mathscr{F}^{\dagger\dagger}$ as a sheafification of \mathscr{F} . In other words, $\mathscr{F}^{\dagger\dagger}$ is a sheaf and, for every sheaf $\mathscr{G}: \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$, the induced map

$$\operatorname{Hom}_{\operatorname{Shv}(\mathcal{C})}(\mathscr{F}^{\dagger\dagger},\mathscr{G}) \to \operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})}(\mathscr{F},\mathscr{G})$$

is bijective.

Proposition 16. The functor $\mathscr{F} \mapsto \mathscr{F}^{\dagger}$ is left exact: that is, it preserves finite limits.

Let us begin with the second statement.

Lemma 17. Let X be an object of C. Then the collection of covering sieves $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$ is closed under finite intersections.

Proof. Let $\mathcal{C}_{/X}^{(0)}$ and $\mathcal{C}_{/X}^{(1)}$ be covering sieves on X. Then $\mathcal{C}_{/X}^{(0)}$ contains a covering $\{U_i \to X\}_{i \in I}$ and $\mathcal{C}_{/X}^{(1)}$ contains a covering $\{V_j \to X\}_{j \in J}$. Since coverings are closed under pullback, the collection of maps $\{U_i \times_X V_j \to U_i\}_{j \in J}$ is a covering for each $i \in I$. It follows that the collection of composite maps $\{U_i \times_X V_j \to X\}$ is a covering of X. We conclude by observing that each of these maps is contained in the sieve $\mathcal{C}_{/X}^{(0)} \cap \mathcal{C}_{/X}^{(1)}$. \Box

Proof of Proposition 16. Fix an object $X \in \mathcal{C}$, and regard the construction

$$\mathscr{F} \mapsto \mathscr{F}^{\dagger}(X) = \varinjlim_{\mathfrak{C}_{/X}^{(0)}} \varprojlim_{U \in \mathfrak{C}_{/X}^{(0)}} \mathscr{F}(U)$$

as a functor of the presheaf \mathscr{F} . It follows from Lemma 17 that the colimit appearing in this expression is filtered (it is taken over a directed poset), and therefore commutes with finite limits. Since limits in Fun($\mathcal{C}^{\mathrm{op}}$, Set) are computed pointwise, it follows that the construction $\mathscr{F} \mapsto \mathscr{F}^{\dagger}$ commutes with finite limits. **Lemma 18.** Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a presheaf and let $\mathscr{G} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a sheaf. Then composition with $\alpha_{\mathscr{F}} : \mathscr{F} \to \mathscr{F}^{\dagger}$ induces a bijection

$$\operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})}(\mathscr{F}^{\dagger},\mathscr{G}) \to \operatorname{Hom}_{\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{Set})}(\mathscr{F},\mathscr{G}).$$

Proof. We begin by giving a more precise definition of the functor \mathscr{F}^{\dagger} and of the natural map $\alpha : \mathscr{F} \to \mathscr{F}^{\dagger}$. For this, we need an auxiliary construction:

Notation 19. We define a category $Cov(\mathcal{C})$ as follows:

- The objects of $\text{Cov}(\mathcal{C})$ are pairs $(X, \mathcal{C}_{/X}^{(0)})$, where $X \in \mathcal{C}$ is an object and $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$ is a covering sieve.
- Given a pair of objects $(X, \mathcal{C}_{/X}^{(0)}), (Y, \mathcal{C}_{/Y}^{(0)}) \in \text{Cov}(\mathcal{C})$, a morphism from $(X, \mathcal{C}_{/X}^{(0)})$ to $(Y, \mathcal{C}_{/Y}^{(0)})$ is a morphism $u : X \to Y$ in the category \mathcal{C} with property that, for every morphism $U \to X$ belonging to the sieve $\mathcal{C}_{/X}^{(0)}$, the composite map $U \to X \xrightarrow{u} Y$ belongs to the sieve $\mathcal{C}_{/Y}^{(0)}$.

We have evident functors $i: \mathcal{C} \to \text{Cov}(\mathcal{C})$ and $\rho: \text{Cov}(\mathcal{C}) \to \mathcal{C}$, given by the formulae

$$i(X) = (X, \mathcal{C}_{/X}) \qquad \rho(X, \mathcal{C}_{/X}^{(0)}) = X$$

Composition with i and ρ determines pullback functors

$$i^*: \operatorname{Fun}(\operatorname{Cov}(\mathcal{C})^{\operatorname{op}}, \operatorname{Set}) \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}) \qquad \rho^*: \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{Set}) \to \operatorname{Fun}(\operatorname{Cov}(\mathcal{C})^{\operatorname{op}}, \operatorname{Set}).$$

The functor i^* admits a right adjoint $i_* : \operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set}) \to \operatorname{Fun}(\operatorname{Cov}(\mathbb{C})^{\operatorname{op}}, \operatorname{Set})$ (given by right Kan extension along i), and the functor ρ^* admits a left adjoint $\rho_! \operatorname{Fun}(\operatorname{Cov}(\mathbb{C})^{\operatorname{op}}, \operatorname{Set}) \to \operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set})$ (given by left Kan extension along ρ). Concretely, we have

$$i_*(\mathscr{F})(X, \mathfrak{C}_{/X}^{(0)}) \simeq \varprojlim_{U \in \mathfrak{C}_{/X}^{(0)}} \mathscr{F}(U) \qquad \rho_!(\mathscr{H})(X) = \varinjlim_{\mathfrak{C}_{/X}^{(0)}} \mathscr{H}(X, \mathfrak{C}_{/X}^{(0)}),$$

where the colimit is taken over the collection of all covering sieves on X. The construction $\mathscr{F} \mapsto \mathscr{F}^{\dagger}$ can now be described more precisely by the formula $\mathscr{F}^{\dagger} = \rho_! i_* \mathscr{F}$.

Note that, since *i* is a full faithful embedding, the natural map $i^*i_* \mathscr{F} \to \mathscr{F}$ is an equivalence for every presheaf \mathscr{F} . Consequently, for any pair of presheaves $\mathscr{F}, \mathscr{G} \in \operatorname{Fun}(\mathbb{C}^{\operatorname{op}}, \operatorname{Set})$, we have a natural map

$$\begin{split} \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}},\operatorname{Set})}(\mathscr{F}^{\dagger},\mathscr{G}) &= \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}},\operatorname{Set})}(\rho_{!}i_{*}\mathscr{F},\mathscr{G}) \\ &\simeq \operatorname{Hom}_{\operatorname{Fun}(\operatorname{Cov}(\mathbb{C})^{\operatorname{op}},\operatorname{Set})}(i_{*}\mathscr{F},\rho^{*}\mathscr{G}) \\ &\stackrel{u}{\to} \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}},\operatorname{Set})}(i^{*}i_{*}\mathscr{F},i^{*}\rho^{*}\mathscr{G}) \\ &\simeq \operatorname{Hom}_{\operatorname{Fun}(\mathbb{C}^{\operatorname{op}},\operatorname{Set})}(\mathscr{F},\mathscr{G}). \end{split}$$

These maps depends functorially on \mathscr{G} , and are therefore (by Yoneda's lemma) given by precomposition with some map of presheaves $\mathscr{F} \to \mathscr{F}^{\dagger}$; this gives a more precise definition of the map $\alpha_{\mathscr{F}}$ appearing in the statement of Lemma 18. To complete the proof of Lemma 18, we must show that u is a bijection when \mathscr{G} is a sheaf. Note that u can be identified with the canonical map

$$\operatorname{Hom}_{\operatorname{Fun}(\operatorname{Cov}(\mathfrak{C})^{\operatorname{op}},\operatorname{Set})}(i_*\mathscr{F},\rho^*\mathscr{G}) \to \operatorname{Hom}_{\operatorname{Fun}(\operatorname{Cov}(\mathfrak{C})^{\operatorname{op}},\operatorname{Set})}(i_*\mathscr{F},i_*i^*\rho^*\mathscr{G}).$$

We are therefore reduced to showing that if \mathscr{G} is a sheaf, then the unit map $\rho^* \mathscr{G} \to i_* i^* \rho^* \mathscr{G}$ is an equivalence of presheaves on Cov(\mathscr{C}). Unwinding the definitions, we must show that for each object $(X, \mathscr{C}_{/X}^{(0)})$, the canonical map

$$\mathscr{G}(X) \to \varprojlim_{U \in \mathfrak{C}_{/X}^{(0)}} \mathscr{G}(U)$$

is a bijection, which is a translation of our hypothesis that \mathscr{G} is a sheaf (Definition 13).

To complete the proof of Proposition 15, we must show that applying the functor $\mathscr{F} \to \mathscr{F}^{\dagger}$ twice converts any presheaf into a sheaf. This is a consequence of a more precise assertion.

Definition 20. Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a functor. We will say that \mathscr{F} is a *separated presheaf* if, for every covering $\{U_i \to X\}$, the natural map $\mathscr{F}(X) \to \prod \mathscr{F}(U_i)$ is injective. Equivalently, we say that \mathscr{F} is a separated presheaf if the unit map $\rho^* \mathscr{F} \to i_* i^* \rho^* \mathscr{F}$ is a monomorphism of presheaves on $\mathrm{Cov}(\mathbb{C})$.

Notation 21. Given a presheaf \mathscr{F} , an object $X \in \mathcal{C}$, and a covering sieve $\mathcal{C}_{/X}^{(0)} \subseteq \mathcal{C}_{/X}$, we let $\mathscr{F}(X, \mathcal{C}_{/X}^{(0)})$ denote the value of the functor $(i_* \mathscr{F})$ on the pair $(X, \mathcal{C}_{/X}^{(0)})$, given by the direct limit $\mathscr{F}(X, \mathcal{C}_{/X}^{(0)}) = \lim_{U \in \mathcal{C}_{(X)}^{(0)}} \mathscr{F}(U)$.

Lemma 22. Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a separated presheaf. Then, for every object $X \in \mathbb{C}$ and every inclusion of covering sieves $\mathbb{C}_{/X}^{(0)} \subseteq \mathbb{C}_{/X}^{(1)} \subseteq \mathbb{C}_{/X}$, the restriction map $\mathscr{F}(X, \mathbb{C}_{/X}^{(1)}) \to \mathscr{F}(X, \mathbb{C}_{/X}^{(0)})$ is injective.

Proof. For each object $V \in \mathcal{C}_{/X}^{(1)}$, let $\mathcal{C}_{/V}^{(0)}$ denote the sieve on V given by those maps $U \to V$ for which the composite map $U \to V \to X$ belongs to $\mathcal{C}_{/U}^{(0)}$. We then compute

$$\begin{split} \mathcal{F}(X, \mathfrak{C}_{/X}^{(1)}) &= \lim_{V \in \mathfrak{C}_{/X}^{(1)}} \mathscr{F}(V) \\ &= \lim_{V \in \mathfrak{C}_{/X}^{(1)}} \lim_{U \in \mathfrak{C}_{/V}} \mathscr{F}(U) \\ & \hookrightarrow \lim_{V \in \mathfrak{C}_{/X}^{(1)}} \lim_{U \in \mathfrak{C}_{/V}^{(0)}} \mathscr{F}(U) \\ & \cong \lim_{U \in \mathfrak{C}_{/X}^{(0)}} \mathscr{F}(U). \end{split}$$

Lemma 23. Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a separated presheaf. Then, for every object $X \in \mathbb{C}$ and every covering sieve $\mathbb{C}_{/X}^{(0)} \subseteq \mathbb{C}_{/X}$, the canonical map $\mathscr{F}(X, \mathbb{C}_{/X}^{(0)}) \to \mathscr{F}^{\dagger}(X)$ is injective.

Proof. Apply Lemma 22 (note that a filtered colimit of injections is still an injection). \Box

Lemma 24. Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be a separated presheaf. Then \mathscr{F}^{\dagger} is a sheaf.

Ŧ

Proof. Let X be an object of C and let $C_{/X}^{(1)}$ be a covering sieve on X; we wish to show that the canonical map

$$\theta: \mathscr{F}^{\dagger}(X) \to \mathscr{F}^{\dagger}(X, \mathfrak{C}_{/X}^{(1)})$$

is bijective. Write $\mathscr{F}^{\dagger}(X)$ as a filtered colimit $\varinjlim_{\mathfrak{C}_{/X}^{(0)}} \mathscr{F}(X, \mathfrak{C}_{/X}^{(0)})$. Here it suffices to take the colimit over those covering sieves $\mathfrak{C}_{/X}^{(0)}$ which are contained in $\mathfrak{C}_{/X}^{(1)}$. Using the notation of Lemma 22, we compute

$$\mathscr{F}(X, \mathfrak{C}_{/X}^{(0)}) = \varprojlim_{V \in \mathfrak{C}_{/X}^{(1)}} \mathscr{F}(V, \mathfrak{C}_{/V}^{(0)}).$$

We can therefore write θ as a filtered colimit of maps

$$\theta_{\mathcal{C}^{(0)}_{/X}}: \varprojlim_{V \in \mathcal{C}^{(1)}_{/X}} \mathscr{F}(V, \mathcal{C}^{(0)}_{/V}) \to \varprojlim_{V \in \mathcal{C}^{(1)}_{/X}} \mathscr{F}^{\dagger}(V),$$

where $\mathcal{C}_{/X}^{(0)}$ ranges over all covering sieves on X which are contained in $\mathcal{C}_{/X}^{(1)}$. Lemma 23 guarantees that each $\theta_{\mathcal{C}_{/X}^{(0)}X}$ is a monomorphism, so that θ is a monomorphism.

To complete the proof, we show that for each element $s \in \varprojlim_{V \in \mathcal{C}_{/X}^{(1)}} \mathscr{F}^{\dagger}(V)$, we can choose some covering $\mathcal{C}_{/X}^{(0)}$ for which s belongs to the image of $\theta_{\mathcal{C}_{/X}^{(0)}}$. For each object $V \in \mathcal{C}_{/X}^{(1)}$, let s_V denote the image of s in $\mathscr{F}^{\dagger}(V)$. From the definition of \mathscr{F}^{\dagger} , we see that there exists a covering sieve $\mathcal{C}_{/V}^{(2)} \subseteq \mathcal{C}_{/V}$ for which s_V belongs to the image of the monomorphism

$$\mathscr{F}(V, \mathfrak{C}^{(2)}_{/V}) \hookrightarrow \mathscr{F}^{\dagger}(V)$$

We now complete the proof by taking $\mathcal{C}_{/X}^{(0)}$ to be the smallest sieve on X which contains each of the composite maps $U \to V \to X$, where $U \to V$ belongs to $\mathcal{C}_{/V}^{(2)}$ and $V \to X$ belongs to $\mathcal{C}_{/X}^{(1)}$.

Lemma 25. Let $\mathscr{F} : \mathbb{C}^{\mathrm{op}} \to \mathrm{Set}$ be any presheaf. Then \mathscr{F}^{\dagger} is a separated presheaf.

Proof. We argue as in the proof of Lemma 24. Fix an object $X \in \mathcal{C}$ and let $\mathcal{C}_{/X}^{(1)}$ be a covering sieve on X; we wish to show that the canonical map

$$\theta: \mathscr{F}^{\dagger}(X) \to \mathscr{F}^{\dagger}(X, \mathfrak{C}_{/X}^{(1)})$$

is injective. Write θ as as a filtered colimit of maps

$$\theta_{\mathcal{C}^{(0)}_{/X}}: \varprojlim_{V \in \mathcal{C}^{(1)}_{/X}} \mathscr{F}(V, \mathcal{C}^{(0)}_{/V}) \to \varprojlim_{V \in \mathcal{C}^{(1)}_{/X}} \mathscr{F}^{\dagger}(V),$$

where $\mathcal{C}_{/X}^{(0)}$ ranges over covering sieves on X that are contained in $\mathcal{C}_{/X}^{(1)}$. Suppose we are given a pair of elements $s, t \in \varprojlim_{V \in \mathcal{C}_{/X}^{(1)}} \mathscr{F}(V, \mathcal{C}_{/V}^{(0)})$ which have the same image under $\theta_{\mathcal{C}_{/X}^{(0)}}$. For each $V \in \mathcal{C}_{/X}^{(1)}$, let s_V and t_V denote the images of s and t in $\mathscr{F}(V, \mathcal{C}_{/V}^{(0)})$. Then s_V and t_V have the same image in $\mathscr{F}^{\dagger}(V)$. It follows that we can choose some covering sieve $\mathcal{C}_{/V}^{(2)} \subseteq \mathcal{C}_{/V}^{(0)}$ such that s_V and t_V have the same image in $\mathscr{F}(V, \mathcal{C}_{/V}^{(2)})$. Let $\mathcal{C}_{/X}'$ denote the smallest sieve on X which contains all composite maps $U \to V \to X$, where $U \to V$ belongs to $\mathcal{C}_{/V}^{(2)}$ and $V \to X$ belongs to $\mathcal{C}_{/X}^{(1)}$. Then $\mathcal{C}_{/X}'$ is a covering sieve, and s and t have the same image in $\mathscr{F}(X, \mathcal{C}_{/Y})$.

Proof of Proposition 15. Combine Lemmas 18, 24, and 25.