Lecture 7: Pretopoi

February 5, 2018

For the reader's convenience, we recall the definition of a coherent category:
Definition 1. A category \mathcal{C} is coherent if it satisfies the following axioms:
(A1) \mathcal{C} admits finite limits.
(A2) Every morphism $f: X \rightarrow Z$ factors as a composition $X \xrightarrow{g} Y \xrightarrow{h} Z$, where h is a monomorphism and g is an effective epimorphism.
(A3) For every object $X \in \mathcal{C}$, the poset $\operatorname{Sub}(X)$ is an upper semilattice: that is, it has a least element and joins $X_{0} \vee X_{1}$.
(A4) The collection of effective epimorphisms in \mathfrak{C} is stable under pullbacks.
(A5) For every morphism $f: X \rightarrow Y$ in \mathcal{C}, the map $f^{-1}: \operatorname{Sub}(Y) \rightarrow \operatorname{Sub}(X)$ is a homomorphism of upper semilattices: that is, it preserves least elements and joins.

Let T be a first-order theory. In Lecture 2, we associated to T a category $\operatorname{Syn}_{0}(T)$, which we call the weak syntactic category of T. However, there is a sense in which this category is not really an invariant of T. More precisely, there are examples of first-order theories that we might like to say are equivalent, despite the fact that their weak syntactic categories are not equivalent (as categories).

Example 2. We define first-order theories T and T^{\prime} as follows:

- The language of T has no predicates, and T has a single axiom $(\exists!x)[x=x]$.
- The language of T^{\prime} has a single 1 -ary predicate P, and a pair of axioms

$$
(\exists!y)[P(y)] \quad(\exists!z)[\neg P(z)] .
$$

Up to isomorphism, the theory T has only one model: a set M having exactly one element. Similarly, the theory T^{\prime} has only one model, consisting of a pair of distinct points (one of which satisfies the predicate P, and one of which does not). In particular, the categories $\operatorname{Mod}(T)$ and $\operatorname{Mod}\left(T^{\prime}\right)$ are equivalent. However, the weak syntactic categories $\operatorname{Syn}_{0}(T)$ and $\operatorname{Syn}_{0}\left(T^{\prime}\right)$ are not equivalent.
Exercise 3. Show that the category $\operatorname{Syn}_{0}(T)$ is equivalent to the poset $\{0<1\}$, and that $\operatorname{Syn}_{0}\left(T^{\prime}\right)$ is equivalent to the category of finite sets Set ${ }^{\mathrm{fin}}$.

Our ultimate goal in this course is to prove Makkai's strong conceptual completeness theorem, which asserts roughly that one can recover the syntax of a first-order theory T from its semantics (encoded by the category of models $\operatorname{Mod}(T)$ with the structure given by ultraproducts). To have any hope of proving such a statement, we cannot interpret "the syntax of T " as being its weak syntactic category $\operatorname{Syn}_{0}(T)$: Example 2 shows that two theories can have essentially the same semantics, but different weak syntactic categories. We will correct this issue by replacing $\operatorname{Syn}_{0}(T)$ by a certain enlargement, which we will denote by $\operatorname{Syn}(T)$ and refer to as the syntactic category of T.

Before defining this enlargement in general, let's begin by inspecting the difference between the categories $\operatorname{Syn}_{0}(T)$ and $\operatorname{Syn}_{0}\left(T^{\prime}\right)$ appearing in Example 2. Both of these categories are coherent: in particular, they are categories in which we can form unions of subobjects of a fixed object. However, in the category $\operatorname{Syn}_{0}\left(T^{\prime}\right) \simeq \mathcal{S e t}^{\text {fin }}$ we can do something a little bit better: given two finite sets S and T we can form their disjoint union $S \amalg T$. This is a new finite set which contains S and T as (disjoint) subobjects. Categorically, it can be described as coproduct of S and T in the category $\mathcal{S e t}{ }^{\text {fin }}$. This is actually an instance of a general phenomenon:

Proposition 4. Let \mathcal{C} be a coherent category (or, more generally, any category satisfying (A1), (A3), and (A5)). Let X be an object of \mathcal{C} and suppose we are given a collection of subobjects $X_{1}, X_{2}, \ldots, X_{n} \subseteq X$, such that $X_{i} \wedge X_{j}=\emptyset$ for $i \neq j$ (here \emptyset denotes the least element of $\operatorname{Sub}(X)$). Then $X_{1} \vee \cdots \vee X_{n}$ is a coproduct of the subobjects $\left\{X_{i}\right\}_{1 \leq i \leq n}$ in the category \mathcal{C}.

Proof. Without loss of generality, we may assume that $X=X_{1} \vee \cdots \vee X_{n}$. Suppose we are given an object $Y \in \mathcal{C}$ and a collection of maps $f_{i}: X_{i} \rightarrow Y$. We wish to show that there is a unique map $f: X \rightarrow Y$ satisfying $\left.f\right|_{X_{i}}=f_{i}$. For $1 \leq i \leq n$, regard $\Gamma\left(f_{i}\right)$ as a subobject of $X_{i} \times Y \subseteq X \times Y$, and set $Z=\Gamma\left(f_{1}\right) \vee \cdots \vee \Gamma\left(f_{n}\right)$. We will complete the proof by showing that Z is the graph of map from X to Y : that is, that the composition $Z \hookrightarrow X \times Y \rightarrow X$ is an isomorphism. Let us denote the composition by h.

We first claim that h is a monomorphism. To prove this, we note that $Z \times_{X} Z$ can be identified with a subobject of the product $(X \times Y) \times_{X}(X \times Y) \simeq X \times Y \times Y$. Let $\pi: X \times Y \times Y \rightarrow X$ be the projection map. Using axiom (A5), we can identify $Z \times_{X} Z$ with the join of the subobjects $\Gamma\left(f_{i}\right) \times_{X} \Gamma\left(f_{j}\right)$. For $i \neq j$, we have $\Gamma\left(f_{i}\right) \times_{X} \Gamma\left(f_{j}\right) \subseteq \pi^{-1}\left(X_{i} \wedge X_{j}\right)=\pi^{-1}(\emptyset)$. Since π^{-1} preserves least elements, it follows that $\Gamma\left(f_{i}\right) \times_{X} \Gamma\left(f_{j}\right)$ is a smallest element of $\operatorname{Sub}(X \times Y \times Y)$. It follows that $Z \times_{X} Z$ is given by the join of the subobjects $\Gamma\left(f_{i}\right) \times_{X} \Gamma\left(f_{i}\right)$, each of which is contained in the image of the diagonal $Z \rightarrow Z \times_{X} Z$. We therefore have $Z \simeq Z \times_{X} Z$, so that h is a monomorphism as desired.

Let $\operatorname{Im}(h)$ denote the subobject of X determined by the monomorphism $h: Z \rightarrow X$. Since Z contains each $\Gamma\left(f_{i}\right)$, we have $X_{i} \subseteq \operatorname{Im}(h)$ for $1 \leq i \leq n$. The equality $X=X_{1} \vee \cdots \vee X_{n}$ then implies that $\operatorname{Im}(h)=X$, so that h is an isomorphism as desired.

In the special case $n=0$, we obtain the following:
Corollary 5. Let \mathcal{C} be a coherent category. For any object $X \in \mathcal{C}$, the least element of $\operatorname{Sub}(X)$ is initial when regarded as an object of \mathcal{C}. In particular, \mathcal{C} has an initial object, which we will henceforth denote by \emptyset.

Definition 6. Let \mathcal{C} be a category which admits fiber products, and let $X, Y \in \mathcal{C}$ be a pair of objects which admits a coproduct $X \amalg Y$. We will say that $X \amalg Y$ is a disjoint coproduct of X and Y if the following pair of conditions is satisfied:

- Each of the maps $X \rightarrow(X \amalg Y) \leftarrow Y$ is a monomorphism.
- The fiber product $X \times_{X \amalg Y} Y$ is an initial object of \mathcal{C}.

We will that \mathcal{C} has disjoint coproducts if it has an initial object and every pair of objects $X, Y \in \mathcal{C}$ has a disjoint coproduct $X \amalg Y$.

Corollary 7. Let \mathcal{C} be a coherent category containing an object X and let $X_{0}, X_{1} \subseteq X$ be subobjects satisfying $X_{0} \wedge X_{1}=\emptyset$. Then $X_{0} \vee X_{1}$ is a disjoint coproduct of X_{0} and X_{1}.

Proof. We have monomorphisms $X_{0} \hookrightarrow X_{0} \vee X_{1} \hookleftarrow X_{1}$, and the fiber product

$$
X_{0} \times_{X_{0} \vee X_{1}} X_{1} \simeq X_{0} \times_{X} X_{1} \simeq \emptyset
$$

is an initial object of \mathcal{C} by assumption. Proposition 4 guarantees that these maps exhibit $X_{0} \vee X_{1}$ as a coproduct of X_{0} and X_{1}.

Proposition 8. Let \mathcal{C} be a category. The following conditions are equivalent:
(1) The category \mathcal{C} is coherent and has disjoint coproducts.
(2) The category \mathcal{C} satisfies (A1), (A2), and (A4), along with the following modified versions of (A3) and (A5):
($A 3^{\prime}$) The category \mathcal{C} has disjoint coproducts.
(A5') The formation of finite coproducts in \mathcal{C} is preserved by pullbacks. More precisely, for every morphism $f: X \rightarrow Y$ in \mathcal{C}, the pullback functor

$$
f^{*}: \mathcal{C}_{/ Y} \rightarrow \mathcal{C}_{/ X} \quad f^{*}(U)=U \times_{Y} X
$$

preserves finite coproducts.
Proof. Suppose first that (1) is satisfied. Then $(A 1),(A 2),\left(A 3^{\prime}\right)$, and $(A 4)$ are automatic. We will prove $\left(A 5^{\prime}\right)$. Fix a morphism $f: X \rightarrow Y$ in \mathcal{C} and a collection of objects $\left\{Y_{i}\right\}_{1 \leq i \leq n}$ in $\mathcal{C}_{/ Y}$. We wish to show that the canonical map

$$
\left(X \times_{Y} Y_{1}\right) \amalg \cdots \amalg\left(X \times_{Y} Y_{n}\right) \rightarrow X \times_{Y}\left(Y_{1} \amalg \cdots \amalg Y_{n}\right)
$$

is an isomorphism. To prove this, we can replace Y by the coproduct $Y_{1} \amalg \cdots \amalg Y_{n}$ (and X by the fiber product $\left.X \times_{Y}\left(Y_{1} \amalg \cdots \amalg Y_{n}\right)\right)$, and thereby reduce to the case where Y is the coproduct of the objects Y_{i}. Since coproducts in \mathcal{C} are disjoint, we can view each Y_{i} as a subobject of Y, and these subobjects are disjoint (that is, $Y_{i} \wedge Y_{j}=\emptyset$ for $i \neq j$). Similarly, we can view the fiber products $X \times_{Y} Y_{i}$ as disjoint subobjects of X. In this case, Proposition 4 supplies identifications

$$
\begin{aligned}
Y_{1} \amalg \cdots \amalg Y_{n} & \simeq Y_{1} \vee \cdots \vee Y_{n} \\
\left(X \times_{Y} Y_{1}\right) \amalg \cdots \amalg\left(X \times_{Y} Y_{n}\right) & \simeq\left(X \times_{Y} Y_{1}\right) \vee \cdots \vee\left(X \times_{Y} Y_{n}\right)
\end{aligned}
$$

(where the joins are formed in $\operatorname{Sub}(Y)$ and $\operatorname{Sub}(X \times Y)$, respectively). We are therefore reduced to showing that the map f^{-1} preserves joins of subobjects, which is a special case of axiom (A5).

We now show that $(2) \Rightarrow(1)$. Assume that the category \mathcal{C} satisfies $(A 1),(A 2),\left(A 3^{\prime}\right),(A 4)$, and $\left(A 5^{\prime}\right)$. We wish to show that it is a coherent category: that is, it satisfies $(A 3)$ and (A5). Let X be an object of \mathcal{C}, and suppose we are given a collection of subobjects $X_{1}, \ldots, X_{n} \subseteq X$; we wish to show that there exists a least upper bound U for the set $\left\{X_{1}, \ldots, X_{n}\right\}$ in the poset $\operatorname{Sub}(X)$. Assumption $\left(A 3^{\prime}\right)$ guarantees that there exists a coproduct $X_{1} \amalg \cdots \amalg X_{n}$ in \mathcal{C}. The least upper bound U is then given by taking U to be the image of the map $X_{1} \amalg \cdots \amalg X_{n} \rightarrow X$ (which exists by virtue of (A2)). This completes the proof of (A3). To prove ($A 5$), we must show that the formation of least upper bounds is compatible with pullback along a morphism $f: Y \rightarrow X$. This follows from the construction, since coproducts are compatible with pullback $\left(A 5^{\prime}\right)$ and images are compatible with pullback by $(A 4)$.

We now discuss another sort of construction that we cannot quite carry out in a coherent category.
Definition 9. Let \mathcal{C} be a category which admits finite limits and let X be an object of \mathcal{C}. We say that a subobject $R \subseteq X \times X$ is an equivalence relation on X if, for every object $Y \in \mathcal{C}$, the image of the induced map

$$
\operatorname{Hom}_{\mathfrak{C}}(Y, R) \rightarrow \operatorname{Hom}_{\mathcal{C}}(Y, X \times X) \simeq \operatorname{Hom}_{\mathcal{C}}(Y, X) \times \operatorname{Hom}_{\mathcal{C}}(Y, X)
$$

is an equivalence relation on the set $\operatorname{Hom}_{\mathcal{C}}(Y, X)$.
Every morphism $f: X \rightarrow Y$ determines an equivalence relation R on X, given by the fiber product $R=X \times_{Y} X$. If f is an effective epimorphism, then we can recover the object Y (and the morphism f) from the equivalence relation R : namely, it is the coequalizer of the pair of projection maps $\pi, \pi^{\prime}: X \times_{Y} X \rightarrow X$.

Definition 10. Let \mathcal{C} be a category which admits finite limits, let X be an object of \mathcal{C}, and let $R \subseteq X \times X$ be an equivalence relation. We say that R is effective if there exists an effective epimorphism $f: X \rightarrow Y$ such that $R=X \times_{Y} X$ (as subobject of $X \times X$).

Example 11. In the category of sets, every equivalence relation is effective. This is just the statement that if $R \subseteq X \times X$ is an equivalence relation on X, then an ordered pair $(x, y) \in X \times X$ belongs to R if and only if x and y have the same image in the quotient X / R.
Proposition 12. Let \mathcal{C} be a category satisfying $(A 1)$ and $(A 4)$. Suppose that every equivalence relation in \mathcal{C} is effective. Then \mathcal{C} also satisfies (A2).

The proof will require an elementary observation:
Lemma 13. Let \mathcal{C} be a category satisfying $(A 1)$ and $(A 4)$ and suppose we are given a pullback diagram

in \mathcal{C}. If f is an effective epimorphism and g^{\prime} is an isomorphism, then g is an isomorphism.
Proof. Using ($A 4$) we see that f^{\prime} is also an effective epimorphism. We have a commutative diagram

where the rows are coequalizer diagrams and the left and middle vertical maps are isomorphisms. It follows that g is an isomorphism as well.

Proof of Proposition 12. Let $f: X \rightarrow Z$ be a morphism in \mathcal{C}. Then $R=X \times_{Z} X$ is an equivalence relation on X. Suppose that this equivalence relation is effective: that is, there exists an effective epimorphism $g: X \rightarrow Y$ such that $R=X \times_{Y} X$ (as subobjects of $X \times X$). In particular, Y is the coequalizer of the projection maps $\pi, \pi^{\prime}: R \rightarrow X$. Since $f \circ \pi=f \circ \pi^{\prime}$, there is a unique morphism $h: Y \rightarrow Z$ such that $f=h \circ g$. To complete the proof, it will suffice to show that h is a monomorphism: that is, that the diagonal map $Y \rightarrow Y \times_{Z} Y$ is an isomorphism. We have a commutative diagram of pullback squares

Since g is an effective epimorphism, the vertical maps in this diagram are effective epimorphisms. Moreover, δ^{\prime} is an isomorphism by construction (since $X \times_{Z} X$ and $X \times_{Y} X$ are both equal to R as subobjects of $X \times X)$. Applying Lemma 13, we see that δ is an isomorphism, as desired.

We are now ready to introduce one of the central objects of interest in this course.
Definition 14. Let \mathcal{C} be a category. We say that \mathcal{C} is a pretopos if it satisfies the following axioms:
(A1) The category \mathcal{C} admits finite limits.
($A 2^{\prime}$) Every equivalence relation in \mathcal{C} is effective.
($A 3^{\prime}$) The category \mathcal{C} admits finite coproducts, and coproducts are disjoint.
(A4) The collection of effective epimorphisms in \mathcal{C} is closed under pullbacks.
$\left(A 5^{\prime}\right)$ The formation of finite coproducts in \mathcal{C} is preserved by pullback.
We have proven:
Proposition 15. Every pretopos is a coherent category.
Proof. Combine Propositions 12 and 8.
Example 16. The category of sets is a pretopos.
Example 17. The category of finite sets is a pretopos.

