
Lecture 7: Pretopoi

February 5, 2018

For the reader’s convenience, we recall the definition of a coherent category:

Definition 1. A category C is coherent if it satisfies the following axioms:

(A1) C admits finite limits.

(A2) Every morphism f : X → Z factors as a composition X
g−→ Y

h−→ Z, where h is a monomorphism and
g is an effective epimorphism.

(A3) For every object X ∈ C, the poset Sub(X) is an upper semilattice: that is, it has a least element and
joins X0 ∨X1.

(A4) The collection of effective epimorphisms in C is stable under pullbacks.

(A5) For every morphism f : X → Y in C, the map f−1 : Sub(Y ) → Sub(X) is a homomorphism of upper
semilattices: that is, it preserves least elements and joins.

Let T be a first-order theory. In Lecture 2, we associated to T a category Syn0(T ), which we call the
weak syntactic category of T . However, there is a sense in which this category is not really an invariant of
T . More precisely, there are examples of first-order theories that we might like to say are equivalent, despite
the fact that their weak syntactic categories are not equivalent (as categories).

Example 2. We define first-order theories T and T ′ as follows:

• The language of T has no predicates, and T has a single axiom (∃!x)[x = x].

• The language of T ′ has a single 1-ary predicate P , and a pair of axioms

(∃!y)[P (y)] (∃!z)[¬P (z)].

Up to isomorphism, the theory T has only one model: a set M having exactly one element. Similarly, the
theory T ′ has only one model, consisting of a pair of distinct points (one of which satisfies the predicate P ,
and one of which does not). In particular, the categories Mod(T ) and Mod(T ′) are equivalent. However, the
weak syntactic categories Syn0(T ) and Syn0(T ′) are not equivalent.

Exercise 3. Show that the category Syn0(T ) is equivalent to the poset {0 < 1}, and that Syn0(T ′) is
equivalent to the category of finite sets Setfin.

Our ultimate goal in this course is to prove Makkai’s strong conceptual completeness theorem, which
asserts roughly that one can recover the syntax of a first-order theory T from its semantics (encoded by the
category of models Mod(T ) with the structure given by ultraproducts). To have any hope of proving such
a statement, we cannot interpret “the syntax of T” as being its weak syntactic category Syn0(T ): Example
2 shows that two theories can have essentially the same semantics, but different weak syntactic categories.
We will correct this issue by replacing Syn0(T ) by a certain enlargement, which we will denote by Syn(T )
and refer to as the syntactic category of T .
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Before defining this enlargement in general, let’s begin by inspecting the difference between the categories
Syn0(T ) and Syn0(T ′) appearing in Example 2. Both of these categories are coherent: in particular, they
are categories in which we can form unions of subobjects of a fixed object. However, in the category
Syn0(T ′) ' Setfin we can do something a little bit better: given two finite sets S and T we can form their
disjoint union SqT . This is a new finite set which contains S and T as (disjoint) subobjects. Categorically,
it can be described as coproduct of S and T in the category Setfin. This is actually an instance of a general
phenomenon:

Proposition 4. Let C be a coherent category (or, more generally, any category satisfying (A1), (A3), and
(A5)). Let X be an object of C and suppose we are given a collection of subobjects X1, X2, . . . , Xn ⊆ X, such
that Xi ∧Xj = ∅ for i 6= j (here ∅ denotes the least element of Sub(X)). Then X1 ∨ · · · ∨Xn is a coproduct
of the subobjects {Xi}1≤i≤n in the category C.

Proof. Without loss of generality, we may assume that X = X1 ∨ · · · ∨Xn. Suppose we are given an object
Y ∈ C and a collection of maps fi : Xi → Y . We wish to show that there is a unique map f : X → Y satisfying
f |Xi

= fi. For 1 ≤ i ≤ n, regard Γ(fi) as a subobject of Xi×Y ⊆ X×Y , and set Z = Γ(f1)∨· · ·∨Γ(fn). We
will complete the proof by showing that Z is the graph of map from X to Y : that is, that the composition
Z ↪→ X × Y → X is an isomorphism. Let us denote the composition by h.

We first claim that h is a monomorphism. To prove this, we note that Z ×X Z can be identified with a
subobject of the product (X×Y )×X (X×Y ) ' X×Y ×Y . Let π : X×Y ×Y → X be the projection map.
Using axiom (A5), we can identify Z×X Z with the join of the subobjects Γ(fi)×X Γ(fj). For i 6= j, we have
Γ(fi)×X Γ(fj) ⊆ π−1(Xi ∧Xj) = π−1(∅). Since π−1 preserves least elements, it follows that Γ(fi)×X Γ(fj)
is a smallest element of Sub(X × Y × Y ). It follows that Z ×X Z is given by the join of the subobjects
Γ(fi) ×X Γ(fi), each of which is contained in the image of the diagonal Z → Z ×X Z. We therefore have
Z ' Z ×X Z, so that h is a monomorphism as desired.

Let Im(h) denote the subobject of X determined by the monomorphism h : Z → X. Since Z contains
each Γ(fi), we have Xi ⊆ Im(h) for 1 ≤ i ≤ n. The equality X = X1∨· · ·∨Xn then implies that Im(h) = X,
so that h is an isomorphism as desired.

In the special case n = 0, we obtain the following:

Corollary 5. Let C be a coherent category. For any object X ∈ C, the least element of Sub(X) is initial
when regarded as an object of C. In particular, C has an initial object, which we will henceforth denote by ∅.

Definition 6. Let C be a category which admits fiber products, and let X,Y ∈ C be a pair of objects which
admits a coproduct X q Y . We will say that X q Y is a disjoint coproduct of X and Y if the following pair
of conditions is satisfied:

• Each of the maps X → (X q Y )← Y is a monomorphism.

• The fiber product X ×XqY Y is an initial object of C.

We will that C has disjoint coproducts if it has an initial object and every pair of objects X,Y ∈ C has a
disjoint coproduct X q Y .

Corollary 7. Let C be a coherent category containing an object X and let X0, X1 ⊆ X be subobjects satisfying
X0 ∧X1 = ∅. Then X0 ∨X1 is a disjoint coproduct of X0 and X1.

Proof. We have monomorphisms X0 ↪→ X0 ∨X1 ←↩ X1, and the fiber product

X0 ×X0∨X1 X1 ' X0 ×X X1 ' ∅

is an initial object of C by assumption. Proposition 4 guarantees that these maps exhibit X0 ∨ X1 as a
coproduct of X0 and X1.

Proposition 8. Let C be a category. The following conditions are equivalent:
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(1) The category C is coherent and has disjoint coproducts.

(2) The category C satisfies (A1), (A2), and (A4), along with the following modified versions of (A3) and
(A5):

(A3′) The category C has disjoint coproducts.

(A5′) The formation of finite coproducts in C is preserved by pullbacks. More precisely, for every mor-
phism f : X → Y in C, the pullback functor

f∗ : C/Y → C/X f∗(U) = U ×Y X

preserves finite coproducts.

Proof. Suppose first that (1) is satisfied. Then (A1), (A2), (A3′), and (A4) are automatic. We will prove
(A5′). Fix a morphism f : X → Y in C and a collection of objects {Yi}1≤i≤n in C/Y . We wish to show that
the canonical map

(X ×Y Y1)q · · · q (X ×Y Yn)→ X ×Y (Y1 q · · · q Yn)

is an isomorphism. To prove this, we can replace Y by the coproduct Y1 q · · · q Yn (and X by the fiber
product X ×Y (Y1 q · · · q Yn)), and thereby reduce to the case where Y is the coproduct of the objects Yi.
Since coproducts in C are disjoint, we can view each Yi as a subobject of Y , and these subobjects are disjoint
(that is, Yi ∧ Yj = ∅ for i 6= j). Similarly, we can view the fiber products X ×Y Yi as disjoint subobjects of
X. In this case, Proposition 4 supplies identifications

Y1 q · · · q Yn ' Y1 ∨ · · · ∨ Yn

(X ×Y Y1)q · · · q (X ×Y Yn) ' (X ×Y Y1) ∨ · · · ∨ (X ×Y Yn)

(where the joins are formed in Sub(Y ) and Sub(X × Y ), respectively). We are therefore reduced to showing
that the map f−1 preserves joins of subobjects, which is a special case of axiom (A5).

We now show that (2) ⇒ (1). Assume that the category C satisfies (A1), (A2), (A3′), (A4), and (A5′).
We wish to show that it is a coherent category: that is, it satisfies (A3) and (A5). Let X be an object of
C, and suppose we are given a collection of subobjects X1, . . . , Xn ⊆ X; we wish to show that there exists
a least upper bound U for the set {X1, . . . , Xn} in the poset Sub(X). Assumption (A3′) guarantees that
there exists a coproduct X1 q · · · qXn in C. The least upper bound U is then given by taking U to be the
image of the map X1 q · · · qXn → X (which exists by virtue of (A2)). This completes the proof of (A3).
To prove (A5),we must show that the formation of least upper bounds is compatible with pullback along a
morphism f : Y → X. This follows from the construction, since coproducts are compatible with pullback
(A5′) and images are compatible with pullback by (A4).

We now discuss another sort of construction that we cannot quite carry out in a coherent category.

Definition 9. Let C be a category which admits finite limits and let X be an object of C. We say that a
subobject R ⊆ X ×X is an equivalence relation on X if, for every object Y ∈ C, the image of the induced
map

HomC(Y,R)→ HomC(Y,X ×X) ' HomC(Y,X)×HomC(Y,X)

is an equivalence relation on the set HomC(Y,X).

Every morphism f : X → Y determines an equivalence relation R on X, given by the fiber product
R = X×Y X. If f is an effective epimorphism, then we can recover the object Y (and the morphism f) from
the equivalence relation R: namely, it is the coequalizer of the pair of projection maps π, π′ : X ×Y X → X.

Definition 10. Let C be a category which admits finite limits, let X be an object of C, and let R ⊆ X ×X
be an equivalence relation. We say that R is effective if there exists an effective epimorphism f : X → Y
such that R = X ×Y X (as subobject of X ×X).
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Example 11. In the category of sets, every equivalence relation is effective. This is just the statement that
if R ⊆ X ×X is an equivalence relation on X, then an ordered pair (x, y) ∈ X ×X belongs to R if and only
if x and y have the same image in the quotient X/R.

Proposition 12. Let C be a category satisfying (A1) and (A4). Suppose that every equivalence relation in
C is effective. Then C also satisfies (A2).

The proof will require an elementary observation:

Lemma 13. Let C be a category satisfying (A1) and (A4) and suppose we are given a pullback diagram

X ′
f ′
//

g′

��

Y

g

��
X

f // Y

in C. If f is an effective epimorphism and g′ is an isomorphism, then g is an isomorphism.

Proof. Using (A4) we see that f ′ is also an effective epimorphism. We have a commutative diagram

X ′ ×Y ′ X ′ ////

��

X ′ //

��

Y ′

g

��
X ×Y X //// X // Y

where the rows are coequalizer diagrams and the left and middle vertical maps are isomorphisms. It follows
that g is an isomorphism as well.

Proof of Proposition 12. Let f : X → Z be a morphism in C. Then R = X ×Z X is an equivalence relation
on X. Suppose that this equivalence relation is effective: that is, there exists an effective epimorphism
g : X → Y such that R = X ×Y X (as subobjects of X × X). In particular, Y is the coequalizer of the
projection maps π, π′ : R → X. Since f ◦ π = f ◦ π′, there is a unique morphism h : Y → Z such that
f = h◦g. To complete the proof, it will suffice to show that h is a monomorphism: that is, that the diagonal
map Y → Y ×Z Y is an isomorphism. We have a commutative diagram of pullback squares

X ×Y X
δ′ //

��

X ×Z X //

��

X ×X

g×g
��

Y
δ // Y ×Z Y // Y × Y.

Since g is an effective epimorphism, the vertical maps in this diagram are effective epimorphisms. Moreover,
δ′ is an isomorphism by construction (since X ×Z X and X ×Y X are both equal to R as subobjects of
X ×X). Applying Lemma 13, we see that δ is an isomorphism, as desired.

We are now ready to introduce one of the central objects of interest in this course.

Definition 14. Let C be a category. We say that C is a pretopos if it satisfies the following axioms:

(A1) The category C admits finite limits.

(A2′) Every equivalence relation in C is effective.

(A3′) The category C admits finite coproducts, and coproducts are disjoint.

(A4) The collection of effective epimorphisms in C is closed under pullbacks.
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(A5′) The formation of finite coproducts in C is preserved by pullback.

We have proven:

Proposition 15. Every pretopos is a coherent category.

Proof. Combine Propositions 12 and 8.

Example 16. The category of sets is a pretopos.

Example 17. The category of finite sets is a pretopos.
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