Lecture 4: Coherent Categories

January 31, 2018

Let T be a first-order theory and let Syny(7") denote the weak syntactic category of 7. In the previous
lecture, we proved that Syn,(T) has the following properties:

(A1) The category Syn(T") admits finite limits. In particular, it admits fiber products.

(A2) Every morphism f: X — Z in Syny(T) admits a factorization X % V ", 7, where g is an effective
epimorphism and A is a monomorphism.

(A3) For every object X € Syny(T), the partially ordered set Sub(X) is an upper semilattice: that is, it has
a least element, and every pair of subobjects Xy, X7 C X have a least upper bound X, V Xj.

Remark 1. In fact, we actually proved the following stronger version of (A3):
(A3') For every object X € Syny(T), the partially ordered set Sub(X) is a Boolean algebra.
We begin with a proof of the result promised in Lecture 3:

Theorem 2. Let T be a first-order theory and let F : Syny(T) — Set be a functor. Then F arises from a
model M E T if and only if it satisfies the following three conditions:

(1) The functor F preserves finite limits.
(2) The functor F carries effective epimorphisms in Syny(T) to surjections of sets.

(3) For every object X € Syny(T), the induced map Sub(X) — Sub(F (X)) is a homomorphism of upper
semilattices: that is, it carries the least element of Sub(X) to the empty set, and carries joins XoV X3
to unions of subsets of F(X).

Remark 3. In the statement of Theorem 2, we can replace (¢) by the following a priori stronger statement:

(3") For every object X € Syny(T'), the induced map Sub(X) — Sub(F (X)) is a homomorphism of Boolean
algebras.

Note that condition (1) already guarantees that the map Sub(X) — Sub(F(X)) is a homomorphism of lower
semilattices: that is, it carries X to F(X), and carries meets Xy A X; to intersections of the corresponding
subsets. It follows that it also preserves complements (if U is an element of a Boolean algebra with greatest
element T and least element 1, then the complement U° is characterized by the identities U A U¢ = L and
UvU° =T, and is therefore preserved by all lattice homomorphisms).

The necessity of conditions (1) and (3) was noted in the previous lecture. The necessity of (2) is a
consequence of the following:

Lemma 4. Let f : X — Z be a morphism in Syny(T). Then f is an effective epimorphism if and only if,
for every model M E T, the induced map fpr : M[X] — M[Z] is surjective.



Proof. Let X &Y %y 7 be the canonical factorization of produced in the previous lecture. Since the factor-
ization of f as an effective epimorphism followed by a monomorphism is unique (up to unique isomorphism),
it follows that f is an effective epimorphism if and only if h is an isomorphism. We saw in the previous
lecture that this is equivalent to the requirement that hys : M[Y] — M[Z] is bijective for each M E T, which
is equivalent to the surjectivity of gas : M[X] — M[Y]. O

Proof Sketch of Theorem 2. The necessity of conditions (1), (2), and (3) has now been established; let us
show the sufficiency. Let F': Syng(T") — Set be a functor satisfying (1), (2), and (3); we wish to construct a
model M of T and a collection of bijections F(X) ~ M[X] depending functorially on X € Syn, (7).

Fix a variable e and let E € Syny(7") be the object corresponding to some tautology having e as a free
variable (such as the formula e = e). For every finite set of variables Vo = {z1,...,2,}, let EV° denote the
object of Syng(T") given by the formula (x; = z1)A---A(zy, = x,) (regarded as a formula with free variables
in Vp). For every model N E T, we have canonical bijections

N[E]~N  N[EY"]~ N,

which exhibit EY° as a product [I.ev, £ in the category Syny (7).

Set M = F(E). Since the functor F' preserves products, we have canonical isomorphisms F(E"Y0) ~ Mo,
For every formula (%) having free variables Vo = {z1,...,z,}, we have a special monomorphism [¢(Z)] —
EYo in Syn,(T). Condition (1) guarantees that F preserves monomorphisms, so that we obtain an injective

map of sets
Loz * F([p(2)]) — F(EVO) ~ MW,

Suppose we are given a map between finite sets of variables Vj — Vi, carrying each z; to some element
y; € V1. Assuming that none of the variables in V; are bound in ¢, we can then consider the formula (%)
with variables in V;. In the category Syny(7T), we have a commutative diagram

[o()] — E™

|

[o(&)] — E"

where the horizontal maps are special monomorphisms. This diagram becomes a pullback square in every
model of T, and is therefore a pullback square in Syng(7"). Invoking assumption (1), we deduce:

() In the situation above, we have a pullback square of sets

F(lp(@) = MY

Lo (&)

F(lp(@)] 22> MY,

Let P; be a predicate of the language of T having arity n;, so that we can regard P;(z1,...,z,,) as a
formula with n, free variables. We regard M as a structure for the language of T' by taking M|[P;] to be the
subset

F([Pi(z1,...,x,,)]) © ME0onid & ppme,

We now prove the following:
(+") For every formula o(z1,...,2,), the map 1,z induces a bijection F'([o(Z)]) ~ M[p(7)].

The proof proceeds by induction on the construction of ¢; there are five cases to consider:



(¢) Suppose first that (&) is a formula of the form x = y. By virtue of (x), we can assume that z and y
are the only free variables of ¢ (and that they are distinct). In this case, we note that [¢] is equivalent,
as a subobject of E1#¥} ~ E x E, to the subobject given by the diagonal embedding E < F x E
(since this is true in every model of T'). Tt follows that F carries [¢] to the image of the diagonal map
M ~ F(E) — F(F) x F(E) = M x M, which is M[p].

(44) Suppose that o(Z) = Pi(zj,,...,x;, ). In this case, the desired result follows from the definition of
M|[P;] (together with (x)).

(791) Suppose that (&) has the form o (Z) V1 (Z). In this case, the desired result follows from our inductive
hypothesis together with (3).

(tv) Suppose that ¢(Z) has the form —(Z). In this case, the desired result follows from our inductive
hypothesis together condition (3’) of Remark 3.

(v) Suppose that ¢(Z) has the form (3y)[¢(Z,y)]. In this case, we have a natural map f : [¢(Z, y)] — [¢(Z)]
in Syny(T). The realization of f in every model is surjective, so f is an effective epimorphism (Lemma
4). Applying (2), we conclude that the induced map F([¢(Z,y)]) = F([¢(Z)]) is surjective, so that
to(z)(F([¢(F)])) can be identified with the image of the composite map

F([(F,)]) = M" x M — M".
Applying our inductive hypothesis, we conclude that this is the set

{(c1y...ycn) €M™ (Ad € M)[M E (cr, ... en,d)]} ={(c1,...,en) € M™ : M E @(cq,...,cn)}.

Applying (+’) in the case where ¢ is an axiom of T, we deduce that

(M F ) & (F([e]) #0).

However, [¢] is a final object of Syny(7) and F preserves final objects by (a), so that F([¢]) is a singleton
and therefore ¢ is true in M. It follows that M is a model of T, and assertion (x") supplies bijections
F([p(Z)]) ~ Mlp(Z)] for each formula ¢(Z). We leave it to the reader to verify that these bijections are
natural in [¢(Z)] (as an object of Syny (7). O

To complete the transition from the language of first-order logic to the language of category theory, we
need to address the following:

Question 5. Let € be a small category. Under what conditions does there exist a typed first-order theory
T such that C is equivalent to Syny(T")?

We have already noted that € must satisfy conditions (A1) through (A3) above. Roughly speaking, we
can think of (A1) through (A3) as describing operations that can be performed in the category C: that is,
procedures for combining various objects of € to produce new objects. We now formulate two additional
axioms which describe compatibilities among these operations.

Proposition 6. Let T be a typed first order theory and let Syny(T) be the syntactic category of T. Then
weak syntactic category Syny(T) satisfies the following:

(A4) For every pullback diagram
X —X

T
Y ——=Y

in Syng(T), if f is an effective epimorphism, then f' is also an effective epimorphism.



Proof. Let M be a model of T. Then the diagram

M[X'] —> M[X]

lleu J{fM

M[Y'] —> MI[Y]

is a pullback square of sets. Since f is an effective epimorphism, the map fjs is surjective (Lemma 4). It
follows that f}, is also surjective. Since this is true for every model M of T', Lemma 4 implies that f}, is an
effective epimorphism. O

Note that if € is any category which admits fiber products, then any morphism f: X — Y in € induces
a map of posets f~1 : Sub(Y) — Sub(X), given by f~}(Yp) = X xy Yp.

Proposition 7. For every typed first-order theory T, the weak syntactic category Syny(T) satisfies the
following:

(A5) For every morphism f : X — Y in Syny(T), the map f~! : Sub(Y) — Sub(X) is a homomorphism
of upper semilattices. That is, it preserves smallest elements, and we have f~ (Yo VY1) = f~1(Yy) V
f7H() for Yo, Y1 CY.

Proof. Let f: X — Y be a morphism in Syny(7") and suppose we are given a pair of subobjects Yy, Y; C Y.
Then Yy and Y are contained in Yy VY7, so f~1(Yp) and f~1(Y7) are contained in f~1(YyVY7). It follows that
we have f~1(Yp) vV f71(Y1) C f~1(Yy V Y1) (as subobjects of X), To show that this inclusion is an equality,
it will suffice to show that in every model M & T, we have M[f~1(Yy) VvV f~1(Y1)] = M[f~1(Yo vV Y1)] (as
subsets of M[X]). Since M is compatible with pullbacks and with joins of subobjects, this reduces to the
equality fy, M[Yo]U fi M[Y1] = £ (M[Yo] U M[Y1)). O

Definition 8. Let C be a category. We will say that € is coherent if it satisfies the following axioms:

(A1) The category € admits finite limits.

(A2) Every morphism f : X — Z in € admits a factorization X % Y UN Z, where g is an effective
epimorphism and h is a monomorphism.

(A3) For every object X € C, the partially ordered set Sub(X) is an upper semilattice: that is, it has a least
element, and every pair of subobjects Xy, X7 C X have a least upper bound X, V X;.

(A4) The collection of effective epimorphisms in € is stable under pullback.

(A5) For every morphism f: X — Y in €, the map f~! : Sub(Y) — Sub(X) is a homomorphism of upper
semilattices.

Example 9. For every typed first-order theory T', the weak syntactic category Syn(7') is a coherent category.
Example 10. The category Set of sets is a coherent category.

Example 11. Let P be a partially ordered set, considered as a category. Then axioms (A1) through (A5)
can be restated as follows:

(A1) The partially ordered set P is a lower semilattice: that is, it has a largest element T and pairwise
meets p A gq.

(A2) Automatically satisfied; for each p < ¢ in P, we associate the factorization p < p < q.

(A3) The partially ordered set P is also an upper semilattice: that is, it has a smallest element | and
pairwise joins p V q.



(A4) Automatically satisfied, since the effective epimorphisms in P are isomorphisms.
(A5) P satisfies the distributive law p A (gVr)=((pAq)V(pAT).
A partially ordered set satisfying these conditions is called a distributive lattice.

Remark 12. Let C be any coherent category and let X be an object of €. Then the poset of subobjects
Sub(X) is a distributive lattice.

Remark 13. Let C be any category which admits fiber products. Then, for every object X € €, the poset
Sub(X) is automatically a lower semilattice: it has a largest element given by X itself, and every pair of
subobjects Xy, X7 C X has a greatest lower bound given by the fiber product Xy x x X;. Moreover, for any
map f: X — Y in €, the pullback map f~!: Sub(Y) — Sub(X) is automatically a homomorphism of lower
semilattices: that is, it preserves largest elements and intersections.

Remark 14. Let C be a category satisfying (A2). We saw in the previous lecture that if a morphism f :

X — 7 admits a factorization X &Y 2 7 , where g is an effective epimorphism and A is a monomorphism,
then the factorization is unique (up to unique isomorphism). We will emphasize that uniqueness by writing
Y = Im(f) and referring to it as the image of f.

Remark 15. Let C be a category satisfying (A1) and (A2). Then (A4) is equivalent to the following:

(A4’) For any pullback diagram
X —X

if/ if
7 ——=7
in €, we have Im(f") = Im(f) xz Z’ (as subobjects of Z").

To see that (A4’") = (A4), consider as a diagram as above and suppose that f is an effective epimorphism.
Then Im(f) = Z, so (A4') implies that Im(f’) = Z’. It follows that f’ is also an effective epimorphism.
Conversely, suppose that (A4) is satisfied and consider a diagram as above, which we extend to a commutative
diagram

X — =X

Im(f)ljz 7 —— Iml(jf)
ih' \Lh
7z 57

where g is an effective epimorphism, A is a monomorphism, and the lower square is a pullback. Since the
outer rectangle is also a pullback, the upper square is a pullback. Applying (A4), we deduce that ¢’ is an
effective epimorphism. Moreover, h’ is a pullback of h, and therefore a monomorphism. It follows that
Im(f) Xz Z =Im(f’) as subobjects of Z’, as desired.

We now return to Question 5.

Definition 16. Let C be a coherent category. We will say that C is Boolean if it satisfies the following
stronger version of (A3):

(A3') For every object X € C, the partially ordered set Sub(X) is a Boolean algebra.

Theorem 17. Let C be a small category. The following conditions are equivalent:



(a) The category € is a Boolean coherent category.
(b) There exists a typed first-order theory T and an equivalence of categories C ~ Syn(T).
We will discuss Theorem 17 in the next lecture.

Remark 18. In the situation of Theorem 17, suppose that we want to guarantee that C is equivalent to
Syny(T'), where T is an untyped first-order theory. In this case, we must add the following axiom to our list:

(A6) There exists a single object X € C with the property that every object of € can be realized as a
subobject of X™ for some n > 0.



