
Lecture 4: Coherent Categories

January 31, 2018

Let T be a first-order theory and let Syn0(T ) denote the weak syntactic category of T . In the previous
lecture, we proved that Syn0(T ) has the following properties:

(A1) The category Syn0(T ) admits finite limits. In particular, it admits fiber products.

(A2) Every morphism f : X → Z in Syn0(T ) admits a factorization X
g−→ Y

h−→ Z, where g is an effective
epimorphism and h is a monomorphism.

(A3) For every object X ∈ Syn0(T ), the partially ordered set Sub(X) is an upper semilattice: that is, it has
a least element, and every pair of subobjects X0, X1 ⊆ X have a least upper bound X0 ∨X1.

Remark 1. In fact, we actually proved the following stronger version of (A3):

(A3′) For every object X ∈ Syn0(T ), the partially ordered set Sub(X) is a Boolean algebra.

We begin with a proof of the result promised in Lecture 3:

Theorem 2. Let T be a first-order theory and let F : Syn0(T ) → Set be a functor. Then F arises from a
model M � T if and only if it satisfies the following three conditions:

(1) The functor F preserves finite limits.

(2) The functor F carries effective epimorphisms in Syn0(T ) to surjections of sets.

(3) For every object X ∈ Syn0(T ), the induced map Sub(X) → Sub(F (X)) is a homomorphism of upper
semilattices: that is, it carries the least element of Sub(X) to the empty set, and carries joins X0 ∨X1

to unions of subsets of F (X).

Remark 3. In the statement of Theorem 2, we can replace (c) by the following a priori stronger statement:

(3′) For every object X ∈ Syn0(T ), the induced map Sub(X)→ Sub(F (X)) is a homomorphism of Boolean
algebras.

Note that condition (1) already guarantees that the map Sub(X)→ Sub(F (X)) is a homomorphism of lower
semilattices: that is, it carries X to F (X), and carries meets X0 ∧X1 to intersections of the corresponding
subsets. It follows that it also preserves complements (if U is an element of a Boolean algebra with greatest
element > and least element ⊥, then the complement U c is characterized by the identities U ∧ U c = ⊥ and
U ∨ U c = >, and is therefore preserved by all lattice homomorphisms).

The necessity of conditions (1) and (3) was noted in the previous lecture. The necessity of (2) is a
consequence of the following:

Lemma 4. Let f : X → Z be a morphism in Syn0(T ). Then f is an effective epimorphism if and only if,
for every model M � T , the induced map fM : M [X]→M [Z] is surjective.
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Proof. Let X
g−→ Y

h−→ Z be the canonical factorization of produced in the previous lecture. Since the factor-
ization of f as an effective epimorphism followed by a monomorphism is unique (up to unique isomorphism),
it follows that f is an effective epimorphism if and only if h is an isomorphism. We saw in the previous
lecture that this is equivalent to the requirement that hM : M [Y ]→M [Z] is bijective for each M � T , which
is equivalent to the surjectivity of gM : M [X]→M [Y ].

Proof Sketch of Theorem 2. The necessity of conditions (1), (2), and (3) has now been established; let us
show the sufficiency. Let F : Syn0(T )→ Set be a functor satisfying (1), (2), and (3); we wish to construct a
model M of T and a collection of bijections F (X) 'M [X] depending functorially on X ∈ Syn0(T ).

Fix a variable e and let E ∈ Syn0(T ) be the object corresponding to some tautology having e as a free
variable (such as the formula e = e). For every finite set of variables V0 = {x1, . . . , xn}, let EV0 denote the
object of Syn0(T ) given by the formula (x1 = x1)∧· · ·∧ (xn = xn) (regarded as a formula with free variables
in V0). For every model N � T , we have canonical bijections

N [E] ' N N [EV0 ] ' NV0 ,

which exhibit EV0 as a product
∏
x∈V0

E in the category Syn0(T ).

Set M = F (E). Since the functor F preserves products, we have canonical isomorphisms F (EV0) 'MV0 .
For every formula ϕ(~x) having free variables V0 = {x1, . . . , xn}, we have a special monomorphism [ϕ(~x)] ↪→
EV0 in Syn0(T ). Condition (1) guarantees that F preserves monomorphisms, so that we obtain an injective
map of sets

ιϕ(~x) : F ([ϕ(~x)]) ↪→ F (EV0) 'MV0 .

Suppose we are given a map between finite sets of variables V0 → V1, carrying each xi to some element
yi ∈ V1. Assuming that none of the variables in V1 are bound in ϕ, we can then consider the formula ϕ(~y)
with variables in V1. In the category Syn0(T ), we have a commutative diagram

[ϕ(~y)] //

��

EV1

��
[ϕ(~x)] // EV0

where the horizontal maps are special monomorphisms. This diagram becomes a pullback square in every
model of T , and is therefore a pullback square in Syn0(T ). Invoking assumption (1), we deduce:

(∗) In the situation above, we have a pullback square of sets

F ([ϕ(~y)])
ιϕ(~y) //

��

MV1

��
F ([ϕ(~x)]

ιϕ(~x) // MV0 .

Let Pi be a predicate of the language of T having arity ni, so that we can regard Pi(x1, . . . , xni) as a
formula with ni free variables. We regard M as a structure for the language of T by taking M [Pi] to be the
subset

F ([Pi(x1, . . . , xni)]) ⊆M{x1,...,xni} 'Mni .

We now prove the following:

(∗′) For every formula ϕ(x1, . . . , xn), the map ιϕ(~x) induces a bijection F ([ϕ(~x)]) 'M [ϕ(~x)].

The proof proceeds by induction on the construction of ϕ; there are five cases to consider:
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(i) Suppose first that ϕ(~x) is a formula of the form x = y. By virtue of (∗), we can assume that x and y
are the only free variables of ϕ (and that they are distinct). In this case, we note that [ϕ] is equivalent,
as a subobject of E{x,y} ' E × E, to the subobject given by the diagonal embedding E ↪→ E × E
(since this is true in every model of T ). It follows that F carries [ϕ] to the image of the diagonal map
M ' F (E)→ F (E)× F (E) = M ×M , which is M [ϕ].

(ii) Suppose that ϕ(~x) = Pi(xj1 , . . . , xjni ). In this case, the desired result follows from the definition of
M [Pi] (together with (∗)).

(iii) Suppose that ϕ(~x) has the form ϕ0(~x)∨ϕ1(~x). In this case, the desired result follows from our inductive
hypothesis together with (3).

(iv) Suppose that ϕ(~x) has the form ¬ψ(~x). In this case, the desired result follows from our inductive
hypothesis together condition (3′) of Remark 3.

(v) Suppose that ϕ(~x) has the form (∃y)[ψ(~x, y)]. In this case, we have a natural map f : [ψ(~x, y)]→ [ϕ(~x)]
in Syn0(T ). The realization of f in every model is surjective, so f is an effective epimorphism (Lemma
4). Applying (2), we conclude that the induced map F ([ψ(~x, y)]) → F ([ϕ(~x)]) is surjective, so that
ιϕ(~x)(F ([ϕ(~x)])) can be identified with the image of the composite map

F ([ψ(~x, y)])
ιψ(~x,y)−−−−→Mn ×M →Mn.

Applying our inductive hypothesis, we conclude that this is the set

{(c1, . . . , cn) ∈Mn : (∃d ∈M)[M � ψ(c1, . . . , cn, d)]} = {(c1, . . . , cn) ∈Mn : M � ϕ(c1, . . . , cn)}.

Applying (∗′) in the case where ϕ is an axiom of T , we deduce that

(M � ϕ)⇔ (F ([ϕ]) 6= ∅).

However, [ϕ] is a final object of Syn0(T ) and F preserves final objects by (a), so that F ([ϕ]) is a singleton
and therefore ϕ is true in M . It follows that M is a model of T , and assertion (∗′) supplies bijections
F ([ϕ(~x)]) ' M [ϕ(~x)] for each formula ϕ(~x). We leave it to the reader to verify that these bijections are
natural in [ϕ(~x)] (as an object of Syn0(T )).

To complete the transition from the language of first-order logic to the language of category theory, we
need to address the following:

Question 5. Let C be a small category. Under what conditions does there exist a typed first-order theory
T such that C is equivalent to Syn0(T )?

We have already noted that C must satisfy conditions (A1) through (A3) above. Roughly speaking, we
can think of (A1) through (A3) as describing operations that can be performed in the category C: that is,
procedures for combining various objects of C to produce new objects. We now formulate two additional
axioms which describe compatibilities among these operations.

Proposition 6. Let T be a typed first order theory and let Syn0(T ) be the syntactic category of T . Then
weak syntactic category Syn0(T ) satisfies the following:

(A4) For every pullback diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

in Syn0(T ), if f is an effective epimorphism, then f ′ is also an effective epimorphism.
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Proof. Let M be a model of T . Then the diagram

M [X ′]

f ′
M

��

// M [X]

fM

��
M [Y ′] // M [Y ]

is a pullback square of sets. Since f is an effective epimorphism, the map fM is surjective (Lemma 4). It
follows that f ′M is also surjective. Since this is true for every model M of T , Lemma 4 implies that f ′M is an
effective epimorphism.

Note that if C is any category which admits fiber products, then any morphism f : X → Y in C induces
a map of posets f−1 : Sub(Y )→ Sub(X), given by f−1(Y0) = X ×Y Y0.

Proposition 7. For every typed first-order theory T , the weak syntactic category Syn0(T ) satisfies the
following:

(A5) For every morphism f : X → Y in Syn0(T ), the map f−1 : Sub(Y ) → Sub(X) is a homomorphism
of upper semilattices. That is, it preserves smallest elements, and we have f−1(Y0 ∨ Y1) = f−1(Y0) ∨
f−1(Y1) for Y0, Y1 ⊆ Y .

Proof. Let f : X → Y be a morphism in Syn0(T ) and suppose we are given a pair of subobjects Y0, Y1 ⊆ Y .
Then Y0 and Y1 are contained in Y0∨Y1, so f−1(Y0) and f−1(Y1) are contained in f−1(Y0∨Y1). It follows that
we have f−1(Y0) ∨ f−1(Y1) ⊆ f−1(Y0 ∨ Y1) (as subobjects of X), To show that this inclusion is an equality,
it will suffice to show that in every model M � T , we have M [f−1(Y0) ∨ f−1(Y1)] = M [f−1(Y0 ∨ Y1)] (as
subsets of M [X]). Since M is compatible with pullbacks and with joins of subobjects, this reduces to the
equality f−1M M [Y0] ∪ f−1M M [Y1] = f−1M (M [Y0] ∪M [Y1]).

Definition 8. Let C be a category. We will say that C is coherent if it satisfies the following axioms:

(A1) The category C admits finite limits.

(A2) Every morphism f : X → Z in C admits a factorization X
g−→ Y

h−→ Z, where g is an effective
epimorphism and h is a monomorphism.

(A3) For every object X ∈ C, the partially ordered set Sub(X) is an upper semilattice: that is, it has a least
element, and every pair of subobjects X0, X1 ⊆ X have a least upper bound X0 ∨X1.

(A4) The collection of effective epimorphisms in C is stable under pullback.

(A5) For every morphism f : X → Y in C, the map f−1 : Sub(Y ) → Sub(X) is a homomorphism of upper
semilattices.

Example 9. For every typed first-order theory T , the weak syntactic category Syn0(T ) is a coherent category.

Example 10. The category Set of sets is a coherent category.

Example 11. Let P be a partially ordered set, considered as a category. Then axioms (A1) through (A5)
can be restated as follows:

(A1) The partially ordered set P is a lower semilattice: that is, it has a largest element > and pairwise
meets p ∧ q.

(A2) Automatically satisfied; for each p ≤ q in P , we associate the factorization p ≤ p ≤ q.

(A3) The partially ordered set P is also an upper semilattice: that is, it has a smallest element ⊥ and
pairwise joins p ∨ q.
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(A4) Automatically satisfied, since the effective epimorphisms in P are isomorphisms.

(A5) P satisfies the distributive law p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r).

A partially ordered set satisfying these conditions is called a distributive lattice.

Remark 12. Let C be any coherent category and let X be an object of C. Then the poset of subobjects
Sub(X) is a distributive lattice.

Remark 13. Let C be any category which admits fiber products. Then, for every object X ∈ C, the poset
Sub(X) is automatically a lower semilattice: it has a largest element given by X itself, and every pair of
subobjects X0, X1 ⊆ X has a greatest lower bound given by the fiber product X0×X X1. Moreover, for any
map f : X → Y in C, the pullback map f−1 : Sub(Y )→ Sub(X) is automatically a homomorphism of lower
semilattices: that is, it preserves largest elements and intersections.

Remark 14. Let C be a category satisfying (A2). We saw in the previous lecture that if a morphism f :

X → Z admits a factorization X
g−→ Y

h−→ Z, where g is an effective epimorphism and h is a monomorphism,
then the factorization is unique (up to unique isomorphism). We will emphasize that uniqueness by writing
Y = Im(f) and referring to it as the image of f .

Remark 15. Let C be a category satisfying (A1) and (A2). Then (A4) is equivalent to the following:

(A4′) For any pullback diagram

X ′

f ′

��

// X

f

��
Z ′ // Z

in C, we have Im(f ′) = Im(f)×Z Z ′ (as subobjects of Z ′).

To see that (A4′) ⇒ (A4), consider as a diagram as above and suppose that f is an effective epimorphism.
Then Im(f) = Z, so (A4′) implies that Im(f ′) = Z ′. It follows that f ′ is also an effective epimorphism.
Conversely, suppose that (A4) is satisfied and consider a diagram as above, which we extend to a commutative
diagram

X ′ //

g′

��

X

g

��
Im(f)×Z′ Z

h′

��

// Im(f)

h

��
Z ′ // Z

where g is an effective epimorphism, h is a monomorphism, and the lower square is a pullback. Since the
outer rectangle is also a pullback, the upper square is a pullback. Applying (A4), we deduce that g′ is an
effective epimorphism. Moreover, h′ is a pullback of h, and therefore a monomorphism. It follows that
Im(f)×Z′ Z = Im(f ′) as subobjects of Z ′, as desired.

We now return to Question 5.

Definition 16. Let C be a coherent category. We will say that C is Boolean if it satisfies the following
stronger version of (A3):

(A3′) For every object X ∈ C, the partially ordered set Sub(X) is a Boolean algebra.

Theorem 17. Let C be a small category. The following conditions are equivalent:
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(a) The category C is a Boolean coherent category.

(b) There exists a typed first-order theory T and an equivalence of categories C ' Syn0(T ).

We will discuss Theorem 17 in the next lecture.

Remark 18. In the situation of Theorem 17, suppose that we want to guarantee that C is equivalent to
Syn0(T ), where T is an untyped first-order theory. In this case, we must add the following axiom to our list:

(A6) There exists a single object X ∈ C with the property that every object of C can be realized as a
subobject of Xn for some n� 0.
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