Lecture 3: The Structure of $\operatorname{Syn}_{0}(T)$

January 26, 2018

Throughout this lecture, we fix a first-order theory T. We will assume for simplicity of exposition that T is untyped, but all of our considerations extend to the case of typed theories without essential change. We begin with the following question from the previous lecture:
Question 1. Let T be a first-order theory and let $F: \operatorname{Syn}_{0}(T) \rightarrow$ Set be a functor. When does there exist a model M of T and an isomorphism of functors $F \simeq M[\bullet]$?

A satisfying answer to Question 1 would characterize the models of T as those functors $F: \operatorname{Syn}_{0}(T) \rightarrow$ Set which preserve some sort of structure which is present on both $\operatorname{Syn}_{0}(T)$ and Set. We therefore begin with the following:
Question 2. What are the important structural features of the category $\operatorname{Syn}_{0}(T)$, and how do they interact with the functors $M[\bullet]: \operatorname{Syn}_{0}(T) \rightarrow$ Set determined by models $M \vDash T$?
Proposition 3. The category $\operatorname{Syn}_{0}(T)$ admits fiber products. Moreover, for every model $M \vDash T$, the functor

$$
\operatorname{Syn}_{0}(T) \rightarrow \operatorname{Set} \quad X \mapsto M[X]
$$

preserves fiber products.
Proof. Suppose we are given a pair of morphisms $f: X \rightarrow Z$ and $g: Y \rightarrow Z$ in $\operatorname{Syn}_{0}(T)$; we would like to construct a fiber product $X \times_{Z} Y$. Write $X=[\alpha(\vec{x})], Y=[\beta(\vec{y})$, and $Z=[\gamma(\vec{z})]$, and represent the morphisms f and g by formulae $\theta(\vec{x}, \vec{z})$ and $\theta^{\prime}(\vec{y}, \vec{z})$. Introduce new sequences of variables \vec{x}^{\prime} and \vec{y}^{\prime} of the same length as \vec{x} and \vec{y}, respectively, and let $\rho\left(\vec{x}^{\prime}, \vec{y}^{\prime}\right)$ be the formula $(\exists \vec{z})\left[\theta\left(\vec{x}^{\prime}, \vec{z}\right) \wedge \theta^{\prime}\left(\vec{y}^{\prime}, \vec{z}\right)\right]$. Note that for any model $M \vDash T$, there is a pullback square of sets

Moreover, the collections of functions $\left\{\pi_{M}\right\}_{M \vDash T}$ and $\left\{\pi_{M}^{\prime}\right\}_{M \vDash T}$ comprise morphisms $\pi:[\rho] \rightarrow X$ and $\pi^{\prime}:[\rho] \rightarrow Y$ in the category $\operatorname{Syn}_{0}(T)$: their graphs are defined by the formulae $\left(\vec{x}=\overrightarrow{x^{\prime}}\right)$ and $\left(\vec{y}=\vec{y}^{\prime}\right)$, respectively. We claim that π and π^{\prime} exhibit ρ as a fiber product of X and Y over Z (this fiber product is then obviously preserved by the functor $M[\bullet]$ for every $M \vDash T$).

Suppose that we are given some other object $W=[\varphi(\vec{w})]$ in $\operatorname{Syn}_{0}(T)$, together with maps $u: W \rightarrow X$ and $v: W \rightarrow Y$ satisfying $f \circ u=g \circ v$. Then, for each model $M \vDash T$, there is a unique map $h_{M}: M[W] \rightarrow M[\rho]$ satisfying $u_{M}=\pi_{M} \circ h_{M}$ and $v_{M}=\pi_{M}^{\prime} \circ h_{M}$. To complete the proof, it will suffice to show that the functions $\left\{h_{M}\right\}_{M \models T}$ comprise a morphism $h: W \rightarrow[\rho]$ in the category $\operatorname{Syn}_{0}(T)$. To prove this, choose formulas $\psi(\vec{w}, \vec{x})$ and $\psi^{\prime}(\vec{w}, \vec{y})$ satisfying

$$
\Gamma\left(u_{M}\right)=M[\psi(\vec{w}, \vec{x})] \quad \Gamma\left(v_{M}\right)=M[\psi(\vec{w}, \vec{y})]
$$

for each $M \vDash T$. Then we have $\Gamma\left(h_{M}\right)=M\left[\mu\left(\vec{w}, \vec{x}^{\prime}, \vec{y}^{\prime}\right)\right]$, where $\mu\left(\vec{w}, \vec{x}^{\prime}, \vec{y}^{\prime}\right)$ is the formula $\psi\left(\vec{w}, \vec{x}^{\prime}\right) \wedge$ $\psi\left(\vec{w}, \vec{y}^{\prime}\right)$.

Corollary 4. The category $\operatorname{Syn}_{0}(T)$ admits finite limits. Moreover, for every model M of T, the functor $M[\bullet]: \operatorname{Syn}_{0}(T) \rightarrow$ Set preserves finite limits.

Proof. Since all finite limits can be built out of fiber products and final objects, it will suffice to show that $\operatorname{Syn}_{0}(T)$ has a final object which is preserved by each of the functors $M[\bullet]$. Fix a sentence φ such that $T \vDash \varphi$ (for example, φ could be an axiom of T, or it could be the sentence $(\forall x)[x=x]$), and set $\mathbf{1}=[\varphi] \in \operatorname{Syn}_{0}(T)$. Then, for every model M, the set $M[\mathbf{1}]$ has one element. It follows that, for any object $X=[\psi(\vec{x})] \in \operatorname{Syn}_{0}(T)$, there is a unique map $f_{M}: M[X] \rightarrow M[\mathbf{1}]$ for each $M \vDash T$. The functions $\left\{f_{M}\right\}_{M \vDash T}$ comprise a morphism f of $\operatorname{Syn}_{0}(T)$ (their graphs are defined by the formula $\psi(\vec{x})$ itself), which is evidently the unique map from X to $\mathbf{1}$ in $\operatorname{Syn}_{0}(T)$. It follows that $\mathbf{1}$ is a final object of $\operatorname{Syn}_{0}(T)$.

Lemma 5. Let $f: X \rightarrow Y$ be a morphism in $\operatorname{Syn}_{0}(T)$. Then f is an isomorphism if and only if, for every model M of T, the induced map $f_{M}: M[X] \rightarrow M[Y]$ is an isomorphism.

Proof. The "only if" direction is obvious. To prove the converse, we must show that if each f_{M} is an isomorphism, then the collection of functions $\left\{f_{M}^{-1}\right\}_{M \vDash T}$ determines a morphism from Y to X in $\operatorname{Syn}_{0}(T)$. This is clear: any first-order definition of the graphs of each f_{M} is also a first-order definition of the graphs of f_{M}^{-1} (with the variables read in reverse order).

Corollary 6. Let $f: X \rightarrow Y$ be a morphism in $\operatorname{Syn}_{0}(T)$. Then f is a monomorphism if and only if, for every model M of T, the induced map $f_{M}: M[X] \rightarrow M[Y]$ is a monomorphism.

Proof. Apply Lemma 5 to the diagonal map $X \rightarrow X \times_{Y} X$.
Construction 7. Let $\varphi_{0}(\vec{x})$ and $\varphi(\vec{x})$ be two formulas in the same free variables such that $T \vDash(\forall \vec{x})\left[\varphi_{0}(\vec{x}) \Rightarrow\right.$ $\varphi(\vec{x})]$. Then, for every model M of T, we can identify $M\left[\varphi_{0}\right]$ with a subset of $M[\varphi]$. This identification determines a monomorphism from $X_{0}=\left[\varphi_{0}(\vec{x})\right]$ to $X=[\varphi(\vec{x})]$ in the category $\operatorname{Syn}_{0}(T)$.

Let us call a monomorphism in $\operatorname{Syn}_{0}(T)$ special if it arises from Construction 7 . We next show, up to isomorphism, every monomorphism in $\operatorname{Syn}_{0}(T)$ is special.

Proposition 8. Let $f: X \rightarrow Z$ be a morphism in $\operatorname{Syn}_{0}(T)$. Then f admits a factorization $X \xrightarrow{g} Y \xrightarrow{h} Z$, where g is an epimorphism in $\operatorname{Syn}_{0}(T)$ and h is a special monomorphism in $\operatorname{Syn}_{0}(T)$. Moreover, we can arrange that this factorization is preserved by the functor $M[\bullet]$ for every model $M \vDash T$ (that is, each g_{M} is a surjection of sets, and each h_{M} is an injection of sets).

Proof. Write $X=[\varphi(\vec{x})]$ and $Z=[\psi(\vec{z})]$, so that f is given by a formula $\theta(\vec{x}, \vec{z})$. Set $Y=[(\exists \vec{X})[\theta(\vec{x}, \vec{z})]]$. Note that, for every model $M \vDash T$, we can identify $M[Y]$ with the image of the map $f_{M}: M[X] \rightarrow M[Z]$. In particular, the map f_{M} factors canonically as a composition

$$
M[X] \xrightarrow{g_{M}} M[Y] \xrightarrow{h_{M}} M[Z] .
$$

Note that $T \vDash(\forall \vec{z})[(\exists \vec{x} \theta(\vec{x}, \vec{z})) \Rightarrow \psi(\vec{z})]$, so that the collection of maps $\left\{h_{M}\right\}_{M \vDash T}$ define a special monomorphism $h: Y \rightarrow Z$ in $\operatorname{Syn}_{0}(T)$. Moreover, the graphs of the maps $\left\{g_{M}\right\}_{M \vDash T}$ are defined by the formula $\theta(\vec{x}, \vec{z})$, and therefore determine a morphism $g: X \rightarrow Y$ in $\operatorname{Syn}_{0}(T)$. To complete the proof, it will suffice to show that g is an epimorphism; we will prove a stronger assertion below.

Warning 9. The factorization of Proposition 8 is not completely determined (even up to isomorphism) by saying that g is an epimorphism and h is a monomorphism. For example, if T is a propositional theory, then the category $\operatorname{Syn}_{0}(T)$ is equivalent to a poset: in this case, every morphism of $\operatorname{Syn}_{0}(T)$ is both an epimorphism and a monomorphism.

To address the uniqueness of the factorization appearing in Proposition 8, it is convenient to introduce some category-theoretic terminology.

Definition 10. Let \mathcal{C} be a category which admits fiber products, and suppose we are given a morphism $g: X \rightarrow Y$ in \mathcal{C}. Let $X \times_{Y} X$ denote the fiber product of X with itself over Y, and let $\pi, \pi^{\prime}: X \times_{Y} X \rightarrow X$ denote the projection maps onto the two factors. We will say that g is an effective epimorphism if g exhibits Y as a coequalizer of the maps $\pi, \pi^{\prime}: X \times_{Y} X \rightarrow X$. In other words, g is an effective epimorphism if, for every object $W \in \mathcal{C}$, we have

$$
\operatorname{Hom}_{\mathcal{C}}(Y, W) \simeq\left\{u \in \operatorname{Hom}_{\mathcal{C}}(X, W): u \circ \pi=u \circ \pi^{\prime}\right\}
$$

Remark 11. Let \mathcal{C} be a category which admits fiber products. Then every effective epimorphism is an epimorphism. In the category of sets, the converse is true: if $g: X \rightarrow Y$ is a surjective map of sets, then we can recover Y as the quotient of X by the equivalence relation $R=X \times_{Y} X=\left\{\left(x, x^{\prime}\right): g(x)=g\left(x^{\prime}\right)\right\}$. However, this is not true in a general category.

Example 12. Let \mathcal{C} be the category of commutative rings. Then a ring homomorphism $f: R \rightarrow S$ is an effective epimorphism in \mathcal{C} if and only if f is surjective. However, there are plenty of non-surjective ring homomorphisms which are epimorphisms in \mathcal{C}, such as localization maps $R \mapsto R[1 / t]$.
Example 13. The map $g: X \rightarrow Y$ constructed in the proof of Proposition 8 is actually an effective epimorphism. To prove this, suppose we are given an object W and a map $u: X \rightarrow W$ in $\operatorname{Syn}_{0}(T)$ satisfying $u \circ \pi=u \circ \pi^{\prime}$, where $\pi, \pi^{\prime}: X \times_{Y} X \rightarrow X$ are the projection maps. For every model $M \vDash T$, we have $(u \circ \pi)_{M}=\left(u \circ \pi^{\prime}\right)_{M}$. Since g_{M} is a surjection of sets, it is an effective epimorphism; it follows that there is a unique map $\bar{u}_{M}: M[Y] \rightarrow M[W]$ such that $u_{M}=\bar{u}_{M} \circ g_{M}$. We claim that $\left\{\bar{u}_{M}\right\}_{M \in \vDash T}$ determines a morphism $\bar{u}: Y \rightarrow W$ in $\operatorname{Syn}_{0}(T)$ (which is automatically the unique solution to $u=g \circ \bar{u}$). Writing $W=[\alpha(\vec{w})]$ (and retaining the notation of Proposition 8), we see that u can be described by the formula $\bar{\beta}(\vec{z}, \vec{w})$ given by

$$
(\exists \vec{x})[\theta(\vec{x}, \vec{z}) \wedge \beta(\vec{z}, \vec{w})]
$$

where $\beta(\vec{x}, \vec{w})$ is any formula defining the morphism u.
Proposition 14. Let \mathcal{C} be a category which admits fiber products and let $f: X \rightarrow Z$ be a morphism in C. If f can be factored as a composition $X \xrightarrow{g} Y \xrightarrow{h} Z$ where h is a monomorphism and g is an effective epimorphism, then that factorization is unique (up to unique isomorphism).

Proof. Suppose we are given another factorization $X \xrightarrow{g^{\prime}} Y^{\prime} \xrightarrow{h^{\prime}} Z$, where h^{\prime} is a monomorphism and g^{\prime} is an effective epimorphism. We claim that there is a unique morphism $u: Y \rightarrow Y^{\prime}$ for which the diagram

commutes. Since g is an effective epimorphism, it will suffice to show that $g^{\prime} \circ \pi=g^{\prime} \circ \pi^{\prime}$, where π, π^{\prime} : $X \times_{Y} X \rightarrow X$ are the projection maps. Since h^{\prime} is a monomorphism, we are reduced to proving that $h^{\prime} \circ g^{\prime} \circ \pi=h^{\prime} \circ g^{\prime} \circ \pi^{\prime}$. But we can rewrite this equality as $h \circ g \circ \pi=h \circ g \circ \pi^{\prime}$, which follows from the identity $g \circ \pi=g \circ \pi^{\prime}$.

Applying the same argument with the roles of Y and Y^{\prime} reversed, we will obtain a morphism $v: Y^{\prime} \rightarrow Y$; it follows from the uniqueness of the factorization above that u and v are mutually inverse isomorphisms.

Corollary 15. Let $f: X \rightarrow Z$ be a morphism in the syntactic category $\operatorname{Syn}_{0}(T)$. Then the factorization $X \xrightarrow{g}$ $Y \xrightarrow{h} Z$ is characterized uniquely (up to unique isomorphism) by the fact that g is an effective epimorphism and h is a monomorphism.

Corollary 16. Let $X=[\varphi(\vec{x})]$ be an object of $\operatorname{Syn}_{0}(T)$, and let $f: X_{0} \hookrightarrow X$ be a monomorphism in $\operatorname{Syn}_{0}(T)$. Then f is isomorphic to a special monomorphism $\left[\varphi_{0}(\vec{x})\right] \hookrightarrow[\varphi(\vec{x})]$ (by an isomorphism which is the identity on X).

Proof. Proposition 8 supplies a factorization of f as a composition $X_{0} \xrightarrow{g} Y \xrightarrow{h} X$ where g is an effective epimorphism and h is a special monomorphism. However, if f is already a monomorphism, then we also have the factorization $X_{0} \xrightarrow{\text { id }} X_{0} \xrightarrow{f} X$. Invoking the uniqueness of Proposition 14, we deduce that there is a commutative diagram

where the vertical maps are isomorphisms.
Notation 17. Let \mathcal{C} be any category and let X be an object of \mathcal{C}. We let $\operatorname{Sub}(X)$ denote the set of equivalence classes of monomorphisms $i_{0}: X_{0} \rightarrow X$, where two monomorphisms $i_{0}: X_{0} \rightarrow X$ and $i_{1}: X_{1} \rightarrow X$ are considered to be equivalent if there is an isomorphism $e: X_{0} \simeq X_{1}$ for which the diagram

commutes. We will refer to $\operatorname{Sub}(X)$ as the set of subobjects of X.
We will generally abuse notation by simply identifying elements of $\operatorname{Sub}(X)$ with the objects X_{0} representing them (in this case, we implicitly assume that a monomorphism $X_{0} \hookrightarrow X$ has been supplied). Given a pair of subobjects $X_{0}, X_{1} \in \operatorname{Sub}(X)$, we write $X_{0} \subseteq X_{1}$ if there exists a commutative diagram

in this case e is automatically unique (and is also a monomorphism).
Proposition 18. Let $X=[\varphi(\vec{x})]$ be an object of $\operatorname{Syn}_{0}(T)$. Then:
(1) Every subobject of X is has the form $\left[\varphi_{0}(\vec{x})\right]$, where $\varphi_{0}(\vec{x})$ satisfies $T \vDash(\forall \vec{z})\left[\varphi_{0}(\vec{x}) \Rightarrow \varphi(\vec{x})\right]$ (equipped with the special monomorphism to X described in Construction 7.
(2) Given a pair of subobjects $X_{0}=\left[\varphi_{0}(\vec{x})\right]$ and $X_{1}=\left[\varphi_{1}(\vec{x})\right]$, we have $X_{0} \subseteq X_{1}$ if and only if $T \vDash$ $(\forall \vec{x})\left[\varphi_{0}(\vec{x}) \Rightarrow \varphi_{1}(\vec{x})\right]$.
(3) Given a pair of subobjects $X_{0}=\left[\varphi_{0}(\vec{x})\right]$ and $X_{1}=\left[\varphi_{1}(\vec{x})\right]$, we have $X_{0}=X_{1}$ (in $\left.\operatorname{Sub}(X)\right)$ if and only if $T \vDash(\forall \vec{x})\left[\varphi_{0}(\vec{x}) \Leftrightarrow \varphi_{1}(\vec{x})\right]$
Proof. Assertion (1) is Corollary 16 and (3) follows from (2). For assertion (2), it is clear that if $X_{0} \subseteq X_{1}$, then for every model $M \vDash T$ we must have $M\left[X_{0}\right] \subseteq M\left[X_{1}\right]$ (where we identify both with subsets of $M[X]$), so that $T \vDash(\forall \vec{x})\left[\varphi_{0}(\vec{x}) \Rightarrow \varphi_{1}(\vec{x})\right]$. Conversely, if each $M\left[X_{0}\right]$ is a subset of $M\left[X_{1}\right]$, then the inclusion maps $e_{M}: M\left[X_{0}\right] \hookrightarrow M\left[X_{1}\right]$ define a morphism $e: X_{0} \rightarrow X_{1}$ (as in Construction 7), for which the diagram

commutes in $\operatorname{Syn}_{0}(T)$.

Corollary 19. Let Z be an object of $\operatorname{Syn}_{0}(T)$. Then the partially ordered set $\operatorname{Sub}(Z)$ is a Boolean algebra. Moreover, for every model M of T, the construction $\left(M\left[Z_{0}\right] \in \operatorname{Sub}(Z)\right) \mapsto\left(M\left[Z_{0}\right] \subseteq M[Z]\right)$ induces a Boolean algebra homomorphism from $\operatorname{Sub}(Z)$ to the lattice of all subsets of $M[Z]$.
Proof. Write $Z=[\varphi(\vec{z})]$, and let us identify $\operatorname{Sub}(Z)$ with the collection of equivalence classes of formulae $\varphi_{0}(\vec{z})$ in the free variables \vec{z} satisfying $T \vDash(\forall \vec{z})\left[\varphi_{0}(\vec{z}) \Rightarrow \varphi(\vec{z})\right]$. This poset has a largest element (given by $\varphi(\vec{z})$), a smallest element (given by $(\exists x) \neg[x=x]$), meets (given by $\varphi_{0}(\vec{z}) \wedge \varphi_{1}(\vec{z})$), joins (given by $\left.\varphi_{0}(\vec{z}) \vee \varphi_{1}(\vec{z})\right)$, and complements (given by $\varphi_{0}(\vec{z}) \mapsto\left(\neg \varphi_{0}(\vec{z}) \wedge \varphi(\vec{z})\right)$).

We are now ready to answer Question 1 :
Theorem 20. Let $F: \operatorname{Syn}_{0}(T) \rightarrow$ Set be a functor. Then F arises from a model $M \vDash T$ if and only if it satisfies the following three conditions:
(a) The functor F preserves finite limits.
(b) The functor F carries effective epimorphisms in $\operatorname{Syn}_{0}(T)$ to surjections of sets.
(c) For every object $X \in \operatorname{Syn}_{0}(T)$, the induced map $\operatorname{Sub}(X) \rightarrow \operatorname{Sub}(F(X))$ is a homomorphism of upper semilattices: that is, it preserves least upper bounds of finite subsets.

We will prove Theorem 20 in the next lecture.

