Lecture 3: The Structure of Syny(T')

January 26, 2018

Throughout this lecture, we fix a first-order theory T'. We will assume for simplicity of exposition that T
is untyped, but all of our considerations extend to the case of typed theories without essential change. We
begin with the following question from the previous lecture:

Question 1. Let T be a first-order theory and let F' : Syny(7T') — Set be a functor. When does there exist
a model M of T and an isomorphism of functors F' ~ M|e]?

A satisfying answer to Question 1 would characterize the models of T as those functors F' : Syny(T") — Set
which preserve some sort of structure which is present on both Syng(7") and Set. We therefore begin with
the following:

Question 2. What are the important structural features of the category Syny(7T'), and how do they interact
with the functors Me] : Syny(T) — Set determined by models M F T?

Proposition 3. The category Syny(T) admits fiber products. Moreover, for every model M E T, the functor
Syng(T) — Set X — M[X]
preserves fiber products.

Proof. Suppose we are given a pair of morphisms f : X — Z and g : Y — Z in Syny(T); we would like
to construct a fiber product X xz Y. Write X = [a(Z)], Y = [B(¥), and Z = [y(Z)], and represent the
morphisms f and g by formulae 6(Z, 2) and ¢'(¢, Z). Introduce new sequences of variables ' and ¢ of the
same length as & and ¥, respectively, and let p(2’,¢") be the formula (32)[0(Z, 2) A ¢'(¥, Z)]. Note that for
any model M F T, there is a pullback square of sets

Mlp] > M[X]
M fm

-
M[Y] -2 M2,

Moreover, the collections of functions {mas}mer and {7y, }rmer comprise morphisms = : [p] — X and
7' : [p] = Y in the category Syn,(T): their graphs are defined by the formulae (Z = 2/) and (7 = ¢,
respectively. We claim that 7 and 7’ exhibit p as a fiber product of X and Y over Z (this fiber product is
then obviously preserved by the functor M{e] for every M E T').

Suppose that we are given some other object W = [¢()] in Syny(T"), together with maps v : W — X and
v: W — Y satisfying fou = gowv. Then, for each model M E T, there is a unique map hys : M[W] — M|p]
satisfying ups = mwar 0 hpy and vy = 7y, 0 hyy. To complete the proof, it will suffice to show that the
functions {hps}aper comprise a morphism h : W — [p] in the category Syn,(T"). To prove this, choose
formulas ¢ (uf, Z) and ¢’ (W, §) satisfying

D(unr) = M{p(@, 7)) T(oar) = My (0, 7))

for each M E T. Then we have I'(hy) = M[p(W, &, ¢)], where p(w,#,7’) is the formula (W, @) A
P, 77). N



Corollary 4. The category Syny(T) admits finite limits. Moreover, for every model M of T, the functor
MTe] : Syny(T') — Set preserves finite limits.

Proof. Since all finite limits can be built out of fiber products and final objects, it will suffice to show that
Syny(7T') has a final object which is preserved by each of the functors M[e]. Fix a sentence ¢ such that T F ¢
(for example, ¢ could be an axiom of T, or it could be the sentence (Vz)[z = z]), and set 1 = [p] € Syny(T).
Then, for every model M, the set M[1] has one element. It follows that, for any object X = [¢(&)] € Syny(T),
there is a unique map fys : M[X] — M[1] for each M E T. The functions {f }aper comprise a morphism
f of Syng(T") (their graphs are defined by the formula (%) itself), which is evidently the unique map from
X to 1 in Syny(T). It follows that 1 is a final object of Syny(T). O

Lemma 5. Let f: X — Y be a morphism in Syny(T'). Then f is an isomorphism if and only if, for every
model M of T, the induced map far : M[X] — M[Y] is an isomorphism.

Proof. The “only if” direction is obvious. To prove the converse, we must show that if each fy; is an
isomorphism, then the collection of functions {f;,'}ar7 determines a morphism from Y to X in Syny (7).
This is clear: any first-order definition of the graphs of each fj; is also a first-order definition of the graphs
of f3;* (with the variables read in reverse order). O

Corollary 6. Let f : X — Y be a morphism in Syny(T). Then f is a monomorphism if and only if, for
every model M of T, the induced map fp : M[X] — M[Y] is a monomorphism.

Proof. Apply Lemma 5 to the diagonal map X — X xy X. O

Construction 7. Let ¢o(%) and ¢(Z) be two formulas in the same free variables such that T F (VZ)[po(Z) =
©(Z)]. Then, for every model M of T, we can identify M[pg] with a subset of M|p]. This identification
determines a monomorphism from Xy = [po(Z)] to X = [¢(Z)] in the category Syn,(T').

Let us call a monomorphism in Syng(T) special if it arises from Construction 7. We next show, up to
isomorphism, every monomorphism in Syn,(T) is special.

Proposition 8. Let f : X — Z be a morphism in Syny(T). Then f admits a factorization X gy by Z,
where g is an epimorphism in Syny(T) and h is a special monomorphism in Syny(T). Moreover, we can
arrange that this factorization is preserved by the functor Mle| for every model M F T (that is, each g is
a surjection of sets, and each hyy is an injection of sets).

Proof. Write X = [p(&)] and Z = [14(Z)], so that f is given by a formula 0(Z,2). Set Y = [(3X)[0(Z, 2)]].
Note that, for every model M E T, we can identify M[Y] with the image of the map fu : M[X] — M[Z].
In particular, the map fj; factors canonically as a composition

M[X] 24 M[y) 225 Mz).

Note that T F (V2)[(3Z0(Z, Z)) = 1(Z)], so that the collection of maps {has}aer define a special monomor-
phism A : Y — Z in Syny(T). Moreover, the graphs of the maps {gas}mer are defined by the formula
0(Z, Z), and therefore determine a morphism ¢g : X — Y in Syny (7). To complete the proof, it will suffice to
show that g is an epimorphism; we will prove a stronger assertion below. O

Warning 9. The factorization of Proposition 8 is not completely determined (even up to isomorphism) by
saying that ¢ is an epimorphism and A is a monomorphism. For example, if T' is a propositional theory,
then the category Syny(7T) is equivalent to a poset: in this case, every morphism of Syny(7T) is both an
epimorphism and a monomorphism.

To address the uniqueness of the factorization appearing in Proposition 8, it is convenient to introduce
some category-theoretic terminology.



Definition 10. Let C be a category which admits fiber products, and suppose we are given a morphism
g: X — Y in C. Let X xy X denote the fiber product of X with itself over Y, and let 1,7’ : X xy X — X
denote the projection maps onto the two factors. We will say that g is an effective epimorphism if g exhibits
Y as a coequalizer of the maps 7,7’ : X xy X — X. In other words, g is an effective epimorphism if, for
every object W € €, we have

Home (Y, W) ~ {u € Home(X, W) :uom =uon'}.

Remark 11. Let C be a category which admits fiber products. Then every effective epimorphism is an
epimorphism. In the category of sets, the converse is true: if g : X — Y is a surjective map of sets, then
we can recover Y as the quotient of X by the equivalence relation R = X xy X = {(z,2) : g(z) = g(2')}.
However, this is not true in a general category.

Example 12. Let C be the category of commutative rings. Then a ring homomorphism f : R — S is an
effective epimorphism in C if and only if f is surjective. However, there are plenty of non-surjective ring
homomorphisms which are epimorphisms in €, such as localization maps R — R[1/t].

Example 13. The map g : X — Y constructed in the proof of Proposition 8 is actually an effective
epimorphism. To prove this, suppose we are given an object W and a map u : X — W in Syn(T) satisfying
uom = uon, where m,7’ : X xy X — X are the projection maps. For every model M F T, we have
(uom)pyr = (uwom)p. Since gy is a surjection of sets, it is an effective epimorphism; it follows that there
is a unique map Uy : M[Y] — M[W] such that ups = up o gpr. We claim that {Us}prerr determines
a morphism 7 : Y — W in Syny(7) (which is automatically the unique solution to v = g o w). Writing
W = [a(w)] (and retaining the notation of Proposition 8), we see that u can be described by the formula
B(Z,1) given by
(32)[0&,2) A B(Z, D)),

where (%, w) is any formula defining the morphism wu.

Proposition 14. Let C be a category which admits fiber products and let f : X — Z be a morphism in

C. If f can be factored as a composition X %Y Ly 7 where h is a monomorphism and g is an effective
epimorphism, then that factorization is unique (up to unique isomorphism,).

Proof. Suppose we are given another factorization X Sy g , where I/ is a monomorphism and ¢’ is
an effective epimorphism. We claim that there is a unique morphism u : Y — Y for which the diagram

x4y 2.7

bk

Xty sz
commutes. Since g is an effective epimorphism, it will suffice to show that ¢’ o 7 = ¢’ o 7/, where 7,7’ :
X xy X — X are the projection maps. Since h’ is a monomorphism, we are reduced to proving that
hog om=h og on’. But we can rewrite this equality as hogom = ho gon’, which follows from the
identity gom = go 7'.
Applying the same argument with the roles of Y and Y” reversed, we will obtain a morphism v : Y’ — Y/
it follows from the uniqueness of the factorization above that v and v are mutually inverse isomorphisms. [

Corollary 15. Let f : X — Z be a morphism in the syntactic category Syny(T'). Then the factorization X EN
Y ™ 7 is characterized uniquely (up to unique isomorphism) by the fact that g is an effective epimorphism
and h is a monomorphism.

Corollary 16. Let X = [p(Z)] be an object of Syny(T), and let f : Xo — X be a monomorphism in Syny(T).
Then f is isomorphic to a special monomorphism [po(Z)] < [p(Z)] (by an isomorphism which is the identity
on X).



Proof. Proposition 8 supplies a factorization of f as a composition X, % Y 2y X where g is an effective
epimorphism and h is a special monomorphism. However, if f is already a monomorphism, then we also

have the factorization X 1, Xo ENS'S Invoking the uniqueness of Proposition 14, we deduce that there is
a commutative diagram

Xo—4s x, Lo x

FTk

X2y "o x

where the vertical maps are isomorphisms. O

Notation 17. Let C be any category and let X be an object of €. We let Sub(X) denote the set of equivalence
classes of monomorphisms ig : Xo — X, where two monomorphisms ig : Xg — X and i1 : X; — X are
considered to be equivalent if there is an isomorphism e : Xy ~ X; for which the diagram

Xonl

commutes. We will refer to Sub(X) as the set of subobjects of X.

We will generally abuse notation by simply identifying elements of Sub(X) with the objects X, repre-
senting them (in this case, we implicitly assume that a monomorphism Xy < X has been supplied). Given
a pair of subobjects X, X; € Sub(X), we write Xg C X if there exists a commutative diagram

Xo X
X;

in this case e is automatically unique (and is also a monomorphism).

Proposition 18. Let X = [¢(Z)] be an object of Syny(T). Then:

(1) Ewery subobject of X is has the form [po(Z)], where po(Z) satisfies T E (VZ)[po(Z) = ¢(T)] (equipped
with the special monomorphism to X described in Construction 7.

(2) Given a pair of subobjects Xo = [po(Z)] and X1 = [¢1(Z)], we have Xo C X1 if and only if T E
(VZ)[po(7) = ¢1(2)]-
(3) Given a pair of subobjects Xo = [po(Z)] and X1 = [p1(Z)], we have Xo = X1 (in Sub(X)) if and only
if T (YZ)[po(F) & ¢1(T)]
Proof. Assertion (1) is Corollary 16 and (3) follows from (2). For assertion (2), it is clear that if Xy C X,
then for every model M E T we must have M[Xy] € M[X;] (where we identify both with subsets of M[X]),

so that T F (VZ)[po(Z) = 1(Z)]. Conversely, if each M[Xy] is a subset of M[X;], then the inclusion maps
enm : M[Xo] < M[X;] define a morphism e : Xo — X; (as in Construction 7), for which the diagram

Xo z X1

NS

X

commutes in Syny(T). O



Corollary 19. Let Z be an object of Syny(T'). Then the partially ordered set Sub(Z) is a Boolean algebra.
Moreover, for every model M of T, the construction (M[Zy] € Sub(Z)) — (M[Zo] C M[Z]) induces a
Boolean algebra homomorphism from Sub(Z) to the lattice of all subsets of M[Z].

Proof. Write Z = [p(Z)], and let us identify Sub(Z) with the collection of equivalence classes of formulae
©o(Z) in the free variables Z satisfying T F (VZ)[¢0(Z) = ¢(Z)]. This poset has a largest element (given
by ¢(Z)), a smallest element (given by (3x)-[z = z]), meets (given by ©o(2) A ¢1(2)), joins (given by
©0(2) V ¢1(2)), and complements (given by ¢o(2) — (—¢o(2) A ©(2))). O

We are now ready to answer Question 1:

Theorem 20. Let F : Syny(T) — Set be a functor. Then F arises from a model M E T if and only if it
satisfies the following three conditions:

(a) The functor F preserves finite limits.
(b) The functor F carries effective epimorphisms in Syng(T') to surjections of sets.

(¢) For every object X € Syny(T'), the induced map Sub(X) — Sub(F (X)) is a homomorphism of upper
semilattices: that is, it preserves least upper bounds of finite subsets.

We will prove Theorem 20 in the next lecture.



