
Lecture 3: The Structure of Syn0(T )

January 26, 2018

Throughout this lecture, we fix a first-order theory T . We will assume for simplicity of exposition that T
is untyped, but all of our considerations extend to the case of typed theories without essential change. We
begin with the following question from the previous lecture:

Question 1. Let T be a first-order theory and let F : Syn0(T )→ Set be a functor. When does there exist
a model M of T and an isomorphism of functors F 'M [•]?

A satisfying answer to Question 1 would characterize the models of T as those functors F : Syn0(T )→ Set
which preserve some sort of structure which is present on both Syn0(T ) and Set. We therefore begin with
the following:

Question 2. What are the important structural features of the category Syn0(T ), and how do they interact
with the functors M [•] : Syn0(T )→ Set determined by models M � T?

Proposition 3. The category Syn0(T ) admits fiber products. Moreover, for every model M � T , the functor

Syn0(T )→ Set X 7→M [X]

preserves fiber products.

Proof. Suppose we are given a pair of morphisms f : X → Z and g : Y → Z in Syn0(T ); we would like
to construct a fiber product X ×Z Y . Write X = [α(~x)], Y = [β(~y), and Z = [γ(~z)], and represent the
morphisms f and g by formulae θ(~x, ~z) and θ′(~y, ~z). Introduce new sequences of variables ~x′ and ~y′ of the
same length as ~x and ~y, respectively, and let ρ(~x′, ~y′) be the formula (∃~z)[θ(~x′, ~z) ∧ θ′(~y′, ~z)]. Note that for
any model M � T , there is a pullback square of sets

M [ρ]

π′
M

��

πM // M [X]

fM

��
M [Y ]

gM // M [Z].

Moreover, the collections of functions {πM}M�T and {π′M}M�T comprise morphisms π : [ρ] → X and

π′ : [ρ] → Y in the category Syn0(T ): their graphs are defined by the formulae (~x = ~x′) and (~y = ~y′),
respectively. We claim that π and π′ exhibit ρ as a fiber product of X and Y over Z (this fiber product is
then obviously preserved by the functor M [•] for every M � T ).

Suppose that we are given some other object W = [ϕ(~w)] in Syn0(T ), together with maps u : W → X and
v : W → Y satisfying f ◦u = g ◦ v. Then, for each model M � T , there is a unique map hM : M [W ]→M [ρ]
satisfying uM = πM ◦ hM and vM = π′M ◦ hM . To complete the proof, it will suffice to show that the
functions {hM}M�T comprise a morphism h : W → [ρ] in the category Syn0(T ). To prove this, choose
formulas ψ(~w, ~x) and ψ′(~w, ~y) satisfying

Γ(uM ) = M [ψ(~w, ~x)] Γ(vM ) = M [ψ(~w, ~y)]

for each M � T . Then we have Γ(hM ) = M [µ(~w, ~x′, ~y′)], where µ(~w, ~x′, ~y′) is the formula ψ(~w, ~x′) ∧
ψ(~w, ~y′).
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Corollary 4. The category Syn0(T ) admits finite limits. Moreover, for every model M of T , the functor
M [•] : Syn0(T )→ Set preserves finite limits.

Proof. Since all finite limits can be built out of fiber products and final objects, it will suffice to show that
Syn0(T ) has a final object which is preserved by each of the functors M [•]. Fix a sentence ϕ such that T � ϕ
(for example, ϕ could be an axiom of T , or it could be the sentence (∀x)[x = x]), and set 1 = [ϕ] ∈ Syn0(T ).
Then, for every model M , the set M [1] has one element. It follows that, for any object X = [ψ(~x)] ∈ Syn0(T ),
there is a unique map fM : M [X] → M [1] for each M � T . The functions {fM}M�T comprise a morphism
f of Syn0(T ) (their graphs are defined by the formula ψ(~x) itself), which is evidently the unique map from
X to 1 in Syn0(T ). It follows that 1 is a final object of Syn0(T ).

Lemma 5. Let f : X → Y be a morphism in Syn0(T ). Then f is an isomorphism if and only if, for every
model M of T , the induced map fM : M [X]→M [Y ] is an isomorphism.

Proof. The “only if” direction is obvious. To prove the converse, we must show that if each fM is an
isomorphism, then the collection of functions {f−1M }M�T determines a morphism from Y to X in Syn0(T ).
This is clear: any first-order definition of the graphs of each fM is also a first-order definition of the graphs
of f−1M (with the variables read in reverse order).

Corollary 6. Let f : X → Y be a morphism in Syn0(T ). Then f is a monomorphism if and only if, for
every model M of T , the induced map fM : M [X]→M [Y ] is a monomorphism.

Proof. Apply Lemma 5 to the diagonal map X → X ×Y X.

Construction 7. Let ϕ0(~x) and ϕ(~x) be two formulas in the same free variables such that T � (∀~x)[ϕ0(~x)⇒
ϕ(~x)]. Then, for every model M of T , we can identify M [ϕ0] with a subset of M [ϕ]. This identification
determines a monomorphism from X0 = [ϕ0(~x)] to X = [ϕ(~x)] in the category Syn0(T ).

Let us call a monomorphism in Syn0(T ) special if it arises from Construction 7. We next show, up to
isomorphism, every monomorphism in Syn0(T ) is special.

Proposition 8. Let f : X → Z be a morphism in Syn0(T ). Then f admits a factorization X
g−→ Y

h−→ Z,
where g is an epimorphism in Syn0(T ) and h is a special monomorphism in Syn0(T ). Moreover, we can
arrange that this factorization is preserved by the functor M [•] for every model M � T (that is, each gM is
a surjection of sets, and each hM is an injection of sets).

Proof. Write X = [ϕ(~x)] and Z = [ψ(~z)], so that f is given by a formula θ(~x, ~z). Set Y = [(∃ ~X)[θ(~x, ~z)]].
Note that, for every model M � T , we can identify M [Y ] with the image of the map fM : M [X] → M [Z].
In particular, the map fM factors canonically as a composition

M [X]
gM−−→M [Y ]

hM−−→M [Z].

Note that T � (∀~z)[(∃~xθ(~x, ~z))⇒ ψ(~z)], so that the collection of maps {hM}M�T define a special monomor-
phism h : Y → Z in Syn0(T ). Moreover, the graphs of the maps {gM}M�T are defined by the formula
θ(~x, ~z), and therefore determine a morphism g : X → Y in Syn0(T ). To complete the proof, it will suffice to
show that g is an epimorphism; we will prove a stronger assertion below.

Warning 9. The factorization of Proposition 8 is not completely determined (even up to isomorphism) by
saying that g is an epimorphism and h is a monomorphism. For example, if T is a propositional theory,
then the category Syn0(T ) is equivalent to a poset: in this case, every morphism of Syn0(T ) is both an
epimorphism and a monomorphism.

To address the uniqueness of the factorization appearing in Proposition 8, it is convenient to introduce
some category-theoretic terminology.
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Definition 10. Let C be a category which admits fiber products, and suppose we are given a morphism
g : X → Y in C. Let X ×Y X denote the fiber product of X with itself over Y , and let π, π′ : X ×Y X → X
denote the projection maps onto the two factors. We will say that g is an effective epimorphism if g exhibits
Y as a coequalizer of the maps π, π′ : X ×Y X → X. In other words, g is an effective epimorphism if, for
every object W ∈ C, we have

HomC(Y,W ) ' {u ∈ HomC(X,W ) : u ◦ π = u ◦ π′}.

Remark 11. Let C be a category which admits fiber products. Then every effective epimorphism is an
epimorphism. In the category of sets, the converse is true: if g : X → Y is a surjective map of sets, then
we can recover Y as the quotient of X by the equivalence relation R = X ×Y X = {(x, x′) : g(x) = g(x′)}.
However, this is not true in a general category.

Example 12. Let C be the category of commutative rings. Then a ring homomorphism f : R → S is an
effective epimorphism in C if and only if f is surjective. However, there are plenty of non-surjective ring
homomorphisms which are epimorphisms in C, such as localization maps R 7→ R[1/t].

Example 13. The map g : X → Y constructed in the proof of Proposition 8 is actually an effective
epimorphism. To prove this, suppose we are given an object W and a map u : X →W in Syn0(T ) satisfying
u ◦ π = u ◦ π′, where π, π′ : X ×Y X → X are the projection maps. For every model M � T , we have
(u ◦ π)M = (u ◦ π′)M . Since gM is a surjection of sets, it is an effective epimorphism; it follows that there
is a unique map uM : M [Y ] → M [W ] such that uM = uM ◦ gM . We claim that {uM}M∈�T determines
a morphism u : Y → W in Syn0(T ) (which is automatically the unique solution to u = g ◦ u). Writing
W = [α(~w)] (and retaining the notation of Proposition 8), we see that u can be described by the formula
β(~z, ~w) given by

(∃~x)[θ(~x, ~z) ∧ β(~z, ~w)],

where β(~x, ~w) is any formula defining the morphism u.

Proposition 14. Let C be a category which admits fiber products and let f : X → Z be a morphism in

C. If f can be factored as a composition X
g−→ Y

h−→ Z where h is a monomorphism and g is an effective
epimorphism, then that factorization is unique (up to unique isomorphism).

Proof. Suppose we are given another factorization X
g′−→ Y ′

h′

−→ Z, where h′ is a monomorphism and g′ is
an effective epimorphism. We claim that there is a unique morphism u : Y → Y ′ for which the diagram

X
g //

id

��

Y

u

��

g // Z

id

��
X

g′ // Y ′
h′
// Z

commutes. Since g is an effective epimorphism, it will suffice to show that g′ ◦ π = g′ ◦ π′, where π, π′ :
X ×Y X → X are the projection maps. Since h′ is a monomorphism, we are reduced to proving that
h′ ◦ g′ ◦ π = h′ ◦ g′ ◦ π′. But we can rewrite this equality as h ◦ g ◦ π = h ◦ g ◦ π′, which follows from the
identity g ◦ π = g ◦ π′.

Applying the same argument with the roles of Y and Y ′ reversed, we will obtain a morphism v : Y ′ → Y ;
it follows from the uniqueness of the factorization above that u and v are mutually inverse isomorphisms.

Corollary 15. Let f : X → Z be a morphism in the syntactic category Syn0(T ). Then the factorization X
g−→

Y
h−→ Z is characterized uniquely (up to unique isomorphism) by the fact that g is an effective epimorphism

and h is a monomorphism.

Corollary 16. Let X = [ϕ(~x)] be an object of Syn0(T ), and let f : X0 ↪→ X be a monomorphism in Syn0(T ).
Then f is isomorphic to a special monomorphism [ϕ0(~x)] ↪→ [ϕ(~x)] (by an isomorphism which is the identity
on X).
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Proof. Proposition 8 supplies a factorization of f as a composition X0
g−→ Y

h−→ X where g is an effective
epimorphism and h is a special monomorphism. However, if f is already a monomorphism, then we also

have the factorization X0
id−→ X0

f−→ X. Invoking the uniqueness of Proposition 14, we deduce that there is
a commutative diagram

X0
id //

id

��

X0
f //

��

X

id

��
X0

g // Y
h // X

where the vertical maps are isomorphisms.

Notation 17. Let C be any category and letX be an object of C. We let Sub(X) denote the set of equivalence
classes of monomorphisms i0 : X0 → X, where two monomorphisms i0 : X0 → X and i1 : X1 → X are
considered to be equivalent if there is an isomorphism e : X0 ' X1 for which the diagram

X0
e //

i0

  

X1

i1

~~
X

commutes. We will refer to Sub(X) as the set of subobjects of X.
We will generally abuse notation by simply identifying elements of Sub(X) with the objects X0 repre-

senting them (in this case, we implicitly assume that a monomorphism X0 ↪→ X has been supplied). Given
a pair of subobjects X0, X1 ∈ Sub(X), we write X0 ⊆ X1 if there exists a commutative diagram

X0
e //

i0

  

X1

i1

~~
X;

in this case e is automatically unique (and is also a monomorphism).

Proposition 18. Let X = [ϕ(~x)] be an object of Syn0(T ). Then:

(1) Every subobject of X is has the form [ϕ0(~x)], where ϕ0(~x) satisfies T � (∀~z)[ϕ0(~x) ⇒ ϕ(~x)] (equipped
with the special monomorphism to X described in Construction 7.

(2) Given a pair of subobjects X0 = [ϕ0(~x)] and X1 = [ϕ1(~x)], we have X0 ⊆ X1 if and only if T �
(∀~x)[ϕ0(~x)⇒ ϕ1(~x)].

(3) Given a pair of subobjects X0 = [ϕ0(~x)] and X1 = [ϕ1(~x)], we have X0 = X1 (in Sub(X)) if and only
if T � (∀~x)[ϕ0(~x)⇔ ϕ1(~x)]

Proof. Assertion (1) is Corollary 16 and (3) follows from (2). For assertion (2), it is clear that if X0 ⊆ X1,
then for every model M � T we must have M [X0] ⊆M [X1] (where we identify both with subsets of M [X]),
so that T � (∀~x)[ϕ0(~x) ⇒ ϕ1(~x)]. Conversely, if each M [X0] is a subset of M [X1], then the inclusion maps
eM : M [X0] ↪→M [X1] define a morphism e : X0 → X1 (as in Construction 7), for which the diagram

X0

  

e // X1

~~
X

commutes in Syn0(T ).
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Corollary 19. Let Z be an object of Syn0(T ). Then the partially ordered set Sub(Z) is a Boolean algebra.
Moreover, for every model M of T , the construction (M [Z0] ∈ Sub(Z)) 7→ (M [Z0] ⊆ M [Z]) induces a
Boolean algebra homomorphism from Sub(Z) to the lattice of all subsets of M [Z].

Proof. Write Z = [ϕ(~z)], and let us identify Sub(Z) with the collection of equivalence classes of formulae
ϕ0(~z) in the free variables ~z satisfying T � (∀~z)[ϕ0(~z) ⇒ ϕ(~z)]. This poset has a largest element (given
by ϕ(~z)), a smallest element (given by (∃x)¬[x = x]), meets (given by ϕ0(~z) ∧ ϕ1(~z)), joins (given by
ϕ0(~z) ∨ ϕ1(~z)), and complements (given by ϕ0(~z) 7→ (¬ϕ0(~z) ∧ ϕ(~z))).

We are now ready to answer Question 1:

Theorem 20. Let F : Syn0(T ) → Set be a functor. Then F arises from a model M � T if and only if it
satisfies the following three conditions:

(a) The functor F preserves finite limits.

(b) The functor F carries effective epimorphisms in Syn0(T ) to surjections of sets.

(c) For every object X ∈ Syn0(T ), the induced map Sub(X) → Sub(F (X)) is a homomorphism of upper
semilattices: that is, it preserves least upper bounds of finite subsets.

We will prove Theorem 20 in the next lecture.
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