Lecture 24X-Ultracategory Fibrations

April 11, 2018

Let \mathcal{C} be a small pretopos, which we regard as fixed throughout this lecture. Recall that an object of $\operatorname{Stone}_{\mathcal{C}}$ is *free* if it can be written as a coproduct $\coprod_{i \in I}(\{i\}, M_i)$, where $\{M_i\}_{i \in I}$ is a collection of models of \mathcal{C} indexed by a set I. Let $\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}$ denote the full subcategory of $\operatorname{Stone}_{\mathcal{C}}$ spanned by the free objects. By definition, the category $\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}$ contains the category of $\operatorname{Mod}(\mathcal{C})^{\operatorname{op}}$ as a full subcategory, and every object of $\operatorname{Stone}_{\mathcal{C}}^{\operatorname{fr}}$ can be written as a coproduct of objects of $\operatorname{Mod}(\mathcal{C})^{\operatorname{op}}$. Our goal in this lecture is to address the following:

Question 1. What is the structure of the category $\text{Stone}_{\mathbb{C}}^{\text{fr}}$? To what extent can it be reconstructed from the category $\text{Mod}(\mathbb{C})$ of models of \mathbb{C} ?

Let us begin by treating the case where $\mathcal{C} = \text{Set}_{\text{fin}}$ is the category of finite sets. Then Stone_c can be identified with the category Stone of Stone spaces, and $\text{Stone}_{\mathcal{C}}^{\text{fr}}$ can be identified with the category Stone^{fr} of *free* Stone spaces: that is, Stone spaces which have the form βI , for some set I. This category can be described explicitly as follows:

- The objects of Stone^{fr} are Stone spaces of the form βI , where I is a set.
- Morphisms in Stone^{fr} are given by continuous maps of Stone spaces $\beta I \to \beta J$. Using the universal property of βI , we see that a morphism from βI to βJ is just given by a map of sets $I \to \beta J$, or equivalently a collection $\{\mathcal{U}_i\}_{i \in I}$ of ultrafilters on J which parametrized by the set I.

Remark 2. The construction $I \mapsto \beta I$ determines a faithful and essentially surjective functor from the category Set to the category Stone^{fr}. For every pair of sets I and J, we can identify $\operatorname{Hom}_{\operatorname{Set}}(I,J)$ with the subset of $\operatorname{Hom}_{\operatorname{Stone}^{\operatorname{fr}}}(\beta I,\beta J) \simeq \operatorname{Hom}_{\operatorname{Set}}(I,\beta J)$ consisting of those maps which carry I into J. In other words, it corresponds to the subset of $\operatorname{Hom}_{\operatorname{Stone}^{\operatorname{fr}}}(\beta I,\beta J)$ corresponding to those collections of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ where each \mathcal{U}_i is principal.

Exercise 3. Let I, J, and K be sets, and suppose we are given morphisms

$$\beta I \xrightarrow{f} \beta J \xrightarrow{g} \beta K,$$

so that f determines a collection $\{\mathcal{U}_i\}_{i\in I}$ of ultrafilters on J, and g determines a collection $\{\mathcal{V}_j\}_{j\in J}$ of ultrafilters on K. Show that the composition $g \circ f$ corresponds to the collection of ultrafilters $\{\mathcal{W}_i\}_{i\in I}$ on K, where

$$(K_0 \in \mathcal{W}_i) \Leftrightarrow (\{j \in J : K_0 \in \mathcal{V}_i\} \in \mathcal{U}_i).$$

Let's now return to the case of a general pretopos C. Note that we have a forgetful functor

$$\pi : \operatorname{Stone}_{\mathcal{C}}^{\operatorname{tr}} \to \operatorname{Stone}^{\operatorname{tr}} \qquad \pi(X, \mathcal{O}_X) = X.$$

We now articulate a special feature of the functor π .

Definition 4. Let $\pi : \mathcal{E} \to \mathcal{B}$ be a functor between categories. For each object $B \in \mathcal{B}$, we let \mathcal{E}_B denote the fiber product $\mathcal{E} \times_{\mathcal{B}} \{B\}$.

Let $\overline{f}: E' \to E$ be a morphism in \mathcal{E} having image $f: B' \to B$ in the category \mathcal{B} . We will say that \overline{f} is *locally* π -*Cartesian* if the following condition is satisfied: for every object $E'' \in \mathcal{E}_{B'}$ with composition with \overline{f} induces a bijection

$$\operatorname{Hom}_{\mathcal{E}_{B'}}(E'',E') \to \operatorname{Hom}_{\mathcal{E}}(E'',E) \times_{\operatorname{Hom}_{\mathfrak{B}}(B',B)} \{f\}.$$

We say that π is a *local Grothendieck fibration* if, for every object $E \in \mathcal{E}$ and every morphism $f: B' \to \pi(E)$ in \mathcal{B} , there exists a locally π -Cartesian morphism $\overline{f}: E' \to E$ with $\pi(f) = f$. In this case, it follows from Yoneda's lemma that the object E' is well-defined up to canonical isomorphism as an object of the category $\mathcal{E}_{B'}$. Moreover, the construction $E \mapsto E'$ determines a functor $f^*: \mathcal{E}_B \to \mathcal{E}_{B'}$.

Remark 5. Let $\pi : \mathcal{E} \to \mathcal{B}$ be a local Grothendieck fibration of categories, and suppose we are given morphisms

$$B'' \xrightarrow{g} B' \xrightarrow{f} B$$

in the category \mathcal{B} . For each object $E \in \mathcal{E}_B$, we can lift f to a locally π -Cartesian morphism $\overline{f}: f^*E \to E$, and we can lift g to a locally π -Cartesian morphism $\overline{g}: g^*f^*E \to f^*E$. The composition $(\overline{f} \circ \overline{g}): g^*f^*E \to E$ induces a comparison map $\rho_E: g^*f^*E \to (f \circ g)^*E$. This construction depends functorially on E, and therefore determines a natural transformation of functors $\rho: g^* \circ f^* \to (f \circ g)^*$.

The following conditions on π are equivalent:

- The collection of locally π -Cartesian morphisms of \mathcal{E} is closed under composition.
- For every pair of morphisms $B'' \xrightarrow{g} B' \xrightarrow{f} B$ in \mathcal{B} , the comparison map $g^* \circ f^* \to (f \circ g)^*$ is an isomorphism.

If these conditions are satisfied, we say that π is a *Grothendieck fibration*.

Proposition 6. The forgetful functor π : Stone^{fr} \rightarrow Stone^{fr} is a local Grothendieck fibration.

Proof. Suppose we are given an object $(X, \mathcal{O}_X) \in \text{Stone}_{\mathbb{C}}^{\text{fr}}$ and a morphism $f: Y \to X$ in Stone^{fr} ; we wish to lift f to a locally π -Cartesian morphism

$$\overline{f}: (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$$

in Stone^{fr}_C. Write $Y = \beta I$ for some set I, so that f determines a map from I to X (which we will also denote by f). We take (Y, \mathcal{O}_Y) to be the coproduct $\coprod_{i \in I}(\{i\}, \mathcal{O}_{X,f(i)})$. The canonical maps $(\{i\}, \mathcal{O}_{X,f(i)}) \to (X, \mathcal{O}_X)$ then amalgamate to a map $\overline{f} : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$. We claim that \overline{f} is locally π -Cartesian. To prove this, we must show that for any other object $(Y, \mathcal{O}'_Y) \in \text{Stone}^{\text{fr}}_{\mathbb{C}}$, the canonical map

$$\theta: \operatorname{Hom}_{\operatorname{Stone}_{\rho}^{\operatorname{fr}}}((Y, \mathcal{O}'_{Y}), (Y, \mathcal{O}_{Y})) \times_{\operatorname{Hom}_{\operatorname{Stone}}(Y, Y)} \{\operatorname{id}_{Y}\} \to \operatorname{Hom}_{\operatorname{Stone}_{\rho}^{\operatorname{fr}}}((Y, \mathcal{O}'_{Y}), (X, \mathcal{O}_{X})) \times_{\operatorname{Hom}_{\operatorname{Stone}}(Y, X)} \{f\}$$

is bijective. Since (Y, \mathcal{O}'_Y) is free, we can write it as a coproduct $\coprod_{i \in I} (\{i\}, M_i)$ for some collection of models $\{M_i\}_{i \in I}$. We can then factor θ as a product of maps

$$\theta_i : \operatorname{Hom}_{\operatorname{Mod}(\mathcal{C})}(\mathcal{O}_{Y,i}, M_i) \to \operatorname{Hom}_{\operatorname{Mod}(\mathcal{C})}(\mathcal{O}_{X,f(i)}, M_i).$$

Each of these maps is bijective, because \overline{f} induces an isomorphism of models $\mathcal{O}_{X,f(i)} \simeq \mathcal{O}_{Y,i}$.

For each object $X \in \text{Stone}^{\text{fr}}$, let $\text{Stone}_{\mathcal{C},X}^{\text{fr}}$ denote the fiber product $\text{Stone}_{\mathcal{C}}^{\text{fr}} \times_{\text{Stone}^{\text{fr}}} \{X\}$. It follows from Proposition 6 that every continuous map $f: X \to Y$ in Stone^{fr} induces a pullback functor $f^*: \text{Stone}_{\mathcal{C},Y}^{\text{fr}} \to \text{Stone}_{\mathcal{C},X}^{\text{fr}}$.

Proposition 7. Let I be a set and set $X = \beta I$. For each $i \in I$, let $f_i : \{i\} \hookrightarrow X$ be the inclusion map. Then the pullback functors f_i^* induce an equivalence of categories

$$\operatorname{Stone}_{\mathcal{C},X}^{\operatorname{fr}} \to \prod_{i \in I} \operatorname{Stone}_{\mathcal{C},\{i\}}^{\operatorname{fr}} \simeq \prod_{i \in I} \operatorname{Mod}(\mathcal{C})^{\operatorname{op}}.$$

Proof. Concretely, this functor is given by

$$((X, \mathcal{O}_X) \in \operatorname{Stone}_{\mathcal{C}, X}^{\operatorname{tr}}) \mapsto \{\mathcal{O}_{X, i}\}_{i \in I}$$

An inverse functor is given by $\{M_i\}_{i \in I} \mapsto \coprod_{i \in I} (\{i\}, M_i)$.

Remark 8. In what follows, it will be convenient to use Proposition 7 to identify each of the categories $\operatorname{Stone}_{\mathcal{C},\beta I}^{\mathrm{fr}}$ with $(\operatorname{Mod}(\mathcal{C})^{\operatorname{op}})^{I}$. Suppose that $f:\beta I \to \beta J$ is a continuous map of Stone spaces, corresponding to a family of ultrafilters $\{\mathcal{U}_i\}_{i \in I}$ on the set J. Then the associated pullback functor

$$f^* : (\mathrm{Mod}(\mathcal{C})^{\mathrm{op}})^J \simeq \mathrm{Stone}_{\mathcal{C},\beta J}^{\mathrm{fr}} \to \mathrm{Stone}_{\mathcal{C},\beta I}^{\mathrm{fr}} \simeq (\mathrm{Mod}(\mathcal{C})^{\mathrm{op}})^I$$

is given by the construction

$$\{M_j\}_{j\in J} \mapsto \{(\prod_{j\in J} M_j)/\mathfrak{U}_i\}_{i\in I}.$$

In other words, the local Grothendieck fibration π encodes the operation of "forming ultraproducts in $Mod(\mathcal{C})$ ".

Warning 9. The local Grothendieck fibration $\pi : \operatorname{Stone}_{\mathbb{C}}^{\operatorname{fr}} \to \operatorname{Stone}^{\operatorname{fr}}$ is usually not a Grothendieck fibration. To see this, consider a pair of composable morphisms $\beta I \xrightarrow{g} \beta J \xrightarrow{f} \beta K$ in the category $\operatorname{Stone}^{\operatorname{fr}}$, corresponding to a family of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ on the set J and a family of ultrafilters $\{\mathcal{V}_j\}_{j\in J}$ on the set K. The composition $f \circ g$ then corresponds to a family of ultrafilters $\{\mathcal{W}_i\}_{i\in I}$ on the set K, as described in Exercise 3. We then have a natural transformation $g^* \circ f^* \to (f \circ g)^*$ of functors from $\operatorname{Stone}_{\mathcal{C},\beta K}^{\operatorname{fr}} \simeq (\operatorname{Mod}(\mathcal{C})^{\operatorname{op}})^I$. To a collection of models $\{M_k\}_{k\in K}$, this natural transformation associates a collection of maps

$$\rho_i: (\prod_{k \in K} M_k) / \mathcal{W}_i \to (\prod_{j \in J} ((\prod_{k \in K} M_k) / \mathcal{V}_j)) / \mathcal{U}_i.$$

of models of \mathcal{C} . These maps are usually not isomorphisms. For example, suppose we are given an object $C \in \mathcal{C}$ for which each $M_k(C)$ is nonempty. In this case, we obtain a map of sets

$$\rho_i(C): (\prod_{k \in K} M_k(C)) / \mathcal{W}_i \to (\prod_{j \in J} ((\prod_{k \in K} M_k(C)) / \mathcal{V}_j)) / \mathcal{U}_i.$$

whose domain can be identified with a quotient of the product $\prod_{k \in K} M_k(C)$, and whose codomain can be identified with a quotient of the product $\prod_{k \in K} M_k(C)^J$. This map is injective but usually not surjective.

Example 10. In the situation of Warning 9, suppose that we take I and K to be one-element sets, so that $f: \beta J \to \beta K$ is uniquely determined and $g: \beta I \to \beta J$ is given by specifying an ultrafilter \mathcal{U} on the set J. Let M be a model of \mathcal{C} , which we can identify with an object of $\operatorname{Stone}_{\mathcal{C},\beta K}^{\mathrm{fr}}$. In this case, we can identify $(f \circ g)^* M = \operatorname{id}^* M$ with M, and $(g^* \circ f^*)(M)$ with the ultrapower M^J/\mathcal{U} . Under these identifications, the natural transformation $g^* \circ f^* \to (f \circ g)^*$ induces the diagonal embedding

$$\delta_M: M \hookrightarrow M^J / \mathcal{U}$$

We now describe a situation where the issue raised in Warning 9 does not arise.

Proposition 11. Let $g: \beta I \to \beta J$ and $f: \beta J \to \beta K$ be maps in Stone^{fr}, and suppose that g carries I into J (that is, g arises from a map of sets $I \to J$). Then the natural transformation $g^* \circ f^* \to (f \circ g)^*$ is an equivalence of functors from Stone^{fr}_{C,\beta K} to Stone^{fr}_{C,\beta I}.

Proof. Let us identify g and f with collections of ultrafilters $\{\mathcal{U}_i\}_{i\in I}$ on the set J and $\{\mathcal{V}_j\}_{j\in J}$ on the set K, respectively. Our assumption is that each \mathcal{U}_i is the principal ultrafilter associated to some element $g(i) \in J$. In this case, the composite map $f \circ g : \beta I \to \beta K$ corresponds to the family of ultrafilters $\{\mathcal{V}_{g(i)}\}_{i\in I}$ on K. The desired result now follows from the observation that for any collection of sets $\{S_k\}_{k\in K}$, the canonical map

$$(\prod_{k \in K} S_k) / \mathcal{V}_{g(i)} \to (\prod_{j \in J} ((\prod_{k \in K} S_k) / \mathcal{V}_j)) / \mathcal{U}_i$$

is bijective (this is immediate from our assumption that \mathcal{U}_i is principal).

We now propose the following preliminary answer to Question 1:

Definition 12. An *ultracategory fibration* is a category \mathcal{E} together with a functor $\pi : \mathcal{E} \to \text{Stone}^{\text{fr}}$ with the following properties:

- (1) The functor π is a local Grothendieck fibration.
- (2) Let I be a set and let $f_i : \{i\} \hookrightarrow \beta I$ denote the inclusion map for each $i \in I$. Then the construction

$$(M \in \mathcal{E}_{\beta I}) \mapsto \{f_i^* M \in \mathcal{E}_{\{i\}}\}_{i \in I}$$

induces an equivalence of categories

$$\mathcal{E}_{\beta I} \to \prod_{i \in I} \mathcal{E}_{\{i\}}$$

(3) Let $g: \beta I \to \beta J$ and $f: \beta J \to \beta K$ be maps in Stone^{fr}, and suppose that g carries I into J. Then the natural transformation $g^* \circ f^* \to (f \circ g)^*$ is an equivalence of functors from $\mathfrak{M}_{\beta K}$ to $\mathcal{E}_{\beta I}$.

Example 13. Let \mathcal{C} be a small pretopos. Then the forgetful functor $\operatorname{Stone}^{\operatorname{fr}}_{\mathcal{C}} \to \operatorname{Stone}^{\operatorname{fr}}$ is an ultracategory fibration.